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The properties of strain localization for elastic-plastic porous media with transversely isotro-
pic elasticity under undrained conditions are investigated. Under non-associated plasticity
and tri-axial stress states, the conditions for strain localization of elastic-plastic porous me-
dia are derived, in which the effects of deviation from isotropic elasticity and pore fluid
compressibility are included. Based on the Mohr-Coulomb yield criterion, the influences of
the deviation from isotropic elasticity and pore fluid compressibility on the direction angle
of localized band initiation and the corresponding critical hardening modulus for the case
of plane strain are discussed. As a result, the properties of strain localization are dependent
upon the deviation from isotropic elasticity and pore fluid compressibility. The deviation
from isotropic elasticity and pore fluid compressibility has significant impacts on the direc-
tion angle of localized band initiation and the corresponding critical hardening modulus.
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1. Introduction

Strain localization of plastic flow into localized deformation bands is a typical feature of geoma-
terials such as rocks and soils undergoing non-homogeneous deformation. The onset of localized
bands is a failure precursor as it signifies the initiation of an emerging localized failure me-
chanism. Strain localization is mathematically described as the inception of a discontinuous
bifurcation in the form of a jump in the velocity gradient field within classical rate independent
continuum theory. Analysis of strain localization may provide insight into the failure mechanism
of engineering materials. Over the last decades, much attention has been drawn to the field of
strain localization (Ottosen and Runesson, 1991; Bigoni and Loret, 1999; Rizzi and Loret, 1999;
Zhang and Schrefler, 2001; Zhang et al., 2002; Longere and Dragon, 2007; Alyavuz and Gultop,
2009; Gao and Zhao, 2013). A suitable tool for delineating localization in solid mechanics is on
the basis of strain rate discontinuity in continuum theory, and its basic principles were developed
by Thomas (1961), Mandel (1962, 1964), and Rice (1976).

For a wide variety of constitutive models, conditions for the onset of strain localization were
obtained by Ottosen and Runesson (1991), Neilsen and Schreyer (1993), Runesson et al. (1996),
Zhang et al., 2002. In these studies, it was assumed that elasticity remained isotropic during
the loading process. As a matter of fact, transversely isotropic materials are of primary interest
in many engineering applications. Rudnicki (1977) proposed a transversely isotropic constituti-
ve relation and elucidated properties of deformation localization of brittle rocks. Following the
associated plastic flow rule, Rizzi and Loret (1997) presented the localization condition for an
elastoplastic von Mises material with transversely isotropic elasticity under uniaxial tension.
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With associated plasticity and uniaxial tension, further developments concerning both trans-
versely isotropic elasticity and plasticity were given by Loret and Rizzi (1997). Rudnicki (2002)
derived the conditions for localized deformation in a transversely isotropic material under axi-
symmetric compression. For non-associated plasticity, Zhang et al. (2003) deduced the general
description of properties of strain localization for elastoplastic materials with transversely iso-
tropic elasticity subjected to tri-axial stress states. It is noted that these researches involves only
the behaviour of one-phase transversely isotropic materials. As a matter of fact, the localization
phenomena are relevant also for porous media with pores filled with a fluid. Based on the specific
constitutive model developed by Rudnicki (1977) for transversely isotropic brittle rock, Zhang
et al. (2005) analysed material instabilities of saturated multiphase porous media.
In this paper, the localization analysis is performed for elastic-plastic saturated porous media

with transversely isotropic elasticity under undrained conditions. The general description of
the properties of strain localization is deduced for porous media which follow non-associated
plasticity and are subjected to tri-axial stress states. The effects of deviation from isotropic
elasticity and pore fluid compressibility at plane strain are investigated. The porous body is
assumed to undergo small deformations, and thus the nominal time rate is used instead of any
objective rate measure.

2. Elastic-plastic constitutive relations under undrained conditions

For saturated porous media (e.g. soils), the deformation and strength under loading is not
determined directly by the total stress but the effective stress. With compression being defined
as positive, the effective stress can be expressed as

σ
′ = σ − pI (2.1)

where σ is the total stress tensor, σ′ is the effective stress tensor, p is the pore fluid pressure,
and I is the second-order identity tensor. It is supposed that σ′ is responsible for deformation
in the skeleton of the porous solid, whereas p is responsible for compression of the pore fluid.
Under undrained conditions, it has the form

ṗ = KfI : ε̇ (2.2)

where ε̇ is the strain rate tensor, Kf is the compression modulus of the pore fluid, and the
symbol ‘:’ is the inner product with double index contraction. It should be pointed out that the
effective stress principle defined by Eq. (2.1) is valid when the degree of saturation varies from
0.85 to 1.0. In this case, Kf can be regarded as the bulk modulus of the two-phase mixture
comprising liquid/air in the pores, and generally it may be two or three orders of magnitude
smaller than that for the case of full saturation (Runesson et al., 1996).
Generally, the relationship between the total stress rate σ̇ and the strain rate ε̇ for plastic

loading can be described by the incrementally linear relationship (Runesson et al., 1996)

σ̇ = Du : ε̇ (2.3)

where Du is the total tangent stiffness tensor pertinent to the undrained condition, which is
given by

Du = D
′ +KfI⊗ I (2.4)

where D′ denotes the effective elastic-plastic tangent stiffness tensor, and the symbol ⊗ designa-
tes the outer product of two tensors. Defining the yield function F and the plastic potential G
in the effective stress space, we have

D′ = E′ − 1
A′
(E′ : Q′)⊗ (P′ : E′) (2.5)
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where P′ and Q′ are the unit outward normals to the yield surface and the plastic potential,
respectively, and they are defined as

P′ =
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∂σ′
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∂σ′
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∥

(2.6)

where ‖ · ‖ stands for a norm of a tensor. The positive parameter A′ is defined as A′ = H ′+P′ :
E′ : Q′, whereH ′ is the generalized plastic modulus and E′ is the effective elastic stiffness tensor.

For a transversely isotropic elastic material, it has the rotational symmetry property with
reference to a certain axis. The plane perpendicular to this axis is called the basal plane while
planes containing the axis of symmetry will be named the zonal planes. To better express material
properties componentwise, the cartesian axes (e1, e2, e3) are adopted, where e1 and e2 are two
arbitrary orthogonal unit vectors of the basal plane, and the unit vector e3 denotes the axis of
rotational symmetry. Thus, the stiffness E′ can take the form (Rizzi and Loret, 1997)

E′ = c1I⊗ I+ c2I ⊗ I+ c3(I⊗M+M⊗ I) + c4M⊗M+ c5(I ⊗M+M ⊗ I) (2.7)

where the tensor M = e3 ⊗ e3, ci (i ∈ [1, 5]) are five material constants, and the symbol ⊗
denotes a symmetrized outer product, and it has (M ⊗ I)ijkl = (MikIjl +MilIjk)/2.

3. Localization condition for non-associated plasticity

It is known that the strain rate ε̇ across the localized band is discontinuous. Assuming that ε̇i

and ε̇o denote the strain rates inside and outside the band, respectively, it follows from Eq. (2.3)
that

σ̇
i = Diu : ε̇

i
σ̇
o = Dou : ε̇

o (3.1)

where σ̇i and σ̇o are the total stress rate inside and outside the localized band, respectively,
and Diu and D

o
u denote the total tangential stiffness tensors inside and outside the band under

undrained conditions, respectively. As mentioned by Zhang et al. (2003), the difference between
the strain rates inside and outside the band is equal to (m⊗ n+ n⊗m)/2 with the vector m
the mode of discontinuity of the strain rate and n the unit normal vector of the band. The
traction rate across the band must be unique, namely n · (σ̇i− σ̇o) = 0 with symbol ‘·’ the inner
product with single index contraction. Moreover, it can be regarded that Dou = D

i
u = Du at the

inception of strain localization. Thus, from Eq. (3.1), we have

L ·m = 0 or det(L) = 0 (3.2)

which is the necessary condition for strain localization, and the total acoustic tensor under the
undrained condition

L = n ·Du · n = L′ +Kfn⊗ n (3.3)

where L′ is the effective acoustic tensor, which can be expressed as

L′ = n ·D′ · n = L′e −
1

A′
a⊗ b (3.4)

where L′e denotes the effective elastic acoustic tensor, which is defined as

L′e = n ·E′ · n (3.5)
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Additionally, the vectors a and b are formulated by

a = n ·E′ : Q′ b = P′ : E′ · n (3.6)

Introduction of Eq. (2.7) into Eq. (3.5) yields (Zhang et al., 2003)

L′e = α1I+ α2n⊗ n+ α3(e3 ⊗ n+ n⊗ e3) + α4e3 ⊗ e3 (3.7)

with

α1 =
c2
2
+
c5
2
(e3 · n)2 α2 = c1 +

c2
2

α3 =
(

c3 +
c5
2

)

(e3 · n) α4 =
(

c5
2 + c4

)

(e3 · n)2
(3.8)

Substitution of Eq. (2.7) into Eq. (3.6) leads to

a = η1n+ η2Q
′ · n+ η3e3 + η4Q′ · e3 b = χ1n+ χ2P

′ · n+ χ3e3 + χ4P′ · e3 (3.9)

with

η1 = c1 trQ
′ + c3(e3 ·Q′ · e3) η2 = c2

η3 = [c3 trQ
′ + c4(e3 ·Q′ · e3)](e3 · n) + c5(n ·Q′ · e3) η4 = c5(e3 · n)

(3.10)

and

χ1 = c1 trP
′ + c3(e3 ·P′ · e3) χ2 = c2

χ3 = [c3 trP
′ + c4(e3 ·P′ · e3)](e3 · n) + c5(n ·P′ · e3) χ4 = c5(e3 · n)

(3.11)

where the symbol “ tr ” denotes the trace operator of tensors.
When the tensor L is singular, the corresponding hardening modulus can be obtained by

H ′ = a ·R′e · b− ψ
(a ·R′e · n)(b ·R′e · n)

n ·R′e · n
−P′ : E′ : Q′ = hn − hE (3.12)

where ψ = Kfn ·R′e · n/(1 +Kfn ·R′e · n), and

hn = a ·R′e · b− ψ
(a ·R′e · n)(b ·R′e · n)

n ·R′e · n
hE = P

′ : E′ : Q′ (3.13)

where R′e is the inverse of the effective elastic acoustic tensor L
′

e, which is expressed as (Zhang
et al., 2003)

R′e = β1I+ β2n⊗ n+ β3(e3 ⊗ n+ n⊗ e3) + β4e3 ⊗ e3 (3.14)

where

β1 =
1

α1
β2 =

1

α1∆
[−α2(α1 + α4) + α23]

β3 =
1

α1∆
[−α1α3 + (α2α4 − α23)(e3 · n)] β4 =

1

α1∆
[−α4(α1 + α2) + α23]

(3.15)

with

∆ =
1

2
(c1 + c2)(c2 + c5) + [(c3 + c5)(c2 − c3) + c4(c1 + c2)](e3 · n)2

+
1

2
[2c3(c3 + 2c5)− c4(2c1 + c2) + c5(c4 + 2c5)](e3 · n)4

(3.16)
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Substituting Eq. (2.7) into Eq. (3.13), we have

hE = c1( trP
′)( trQ′) + c2P

′ : Q′ + c3[(e3 ·Q′ · e3) trP′ + (e3 ·P′ · e3) trQ′]
+ c4(e3 ·P′ · e3)(e3 ·Q′ · e3) + 2c5(e3 · (P′ ·Q′) · e3)

(3.17)

As strain localization may occur along a surface of normal n when the elastoplastic acoustic
tensor gets first singular in that direction, the most critical directions n will be those correspon-
ding to the largest hardening modulus which makes the elastoplastic acoustic tensor singular.
Thus, from Eq. (3.12), we have

H ′cr = max
n,n·n=1

H ′(n) = max
n,n·n=1

(hn)− hE (3.18)

It is noted from Eq. (2.7) that the material constants c3, c4, and c5 can be interpreted as
measures of the deviation from isotropic elasticity. When c3 = c4 = c5 = 0, Eq. (2.7) reduces
to the case of isotropic elasticity. Assuming that λ and µ denote the Lamé coefficients of an
isotropic reference elastic material with positive definite elastic stiffness, it has 3λ+2µ > 0 and
µ > 0 (Zhang et al., 2003). Rizzi and Loret (1997) carried out numerical simulations on three
prototypes of anisotropic materials due to difficulties of theoretical derivations. It was found to
include most of the qualitative features common to other simulations for the case of c1 = λ,
c2 = 2µ, c3 = c5 = 0, and c4 6= 0. As a consequence, the analysis in this study is confined to this
case for simplicity in the mathematical derivations. For this case, we have (Zhang et al., 2003)

EL =
µ(3λ+ 2µ) + (λ+ µ)c4

λ+ µ
ET =

4µ[µ(3λ+ 2µ) + c4(λ+ µ)]

4µλ+ µ+ c4(λ+ 2µ)

Gl = GT = µ νL =
λ

2(λ+ µ

where EL and ET , respectively, denote the longitudinal (or axial) elastic modulus and the
transverse (or cross-axial) elastic modulus, GL and GT , respectively, denote the longitudinal
(or zonal) shear modulus and the transverse (or basal) shear modulus, and νL the longitudinal
Poisson ratio (representing the contraction in the longitudinal direction due to an imposed
traction in the basal plane).

Corresponding to the Loss of Positive Definiteness (LPD) of the elastic stiffness, there is a
lower bound for the admissible values of the elastic parameter c4, which is herein denoted by
cLPD4 and given by

c4 > cLPD4 = −µ(3λ+ 2µ)
λ+ µ

= −E (3.19)

where E is Young’s modulus corresponding to the assumed Lamé constants.

In view of the above simplification, it follows from Eq. (3.13) that

hn = U1 + U2 −
KfU3U4
1 +KfU5

(3.20)

with

U1 = [2c
2
1β3P

′

vQ
′

v + c1c4β3(P
′

vQ
′

33 +Q
′

vP
′

33)]n3 + [c2c4(β1 + β4)(Q
′

33P
′

3jnj + P
′

33Q
′

3jnj)

+ c1c2β4(Q
′

vP
′

3jnj + P
′

vQ
′

3jnj)]n3 + [c1c2β3(P
′

v +Q
′

v) + c2c4β3(P
′

33 +Q
′

33)](niQ
′

ijnj)n3

+ [c21β4P
′

vQ
′

v + c1c4(β2 + β4 + β1)(P
′

vQ
′

33 +Q
′

vP
′

33) + c
2
4(β1 + β4)P

′

33Q
′

33]n
2
3

+ c2c4β2(Q
′

33niP
′

ijnj + P
′

33niQ
′

ijnj)n
2
3 + c2c4β3(P

′

33Q
′

3jnj +Q
′

33P
′

3jnj)n
2
3
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U2 = c
2
4β2Q

′

33P
′

33n
4
3 + c

2
2β4P

′

3jnjQ
′

3knk + c1c2β3(Q
′

3jnjP
′

v + P
′

3jnjQ
′

v)

+ c22β2niQ
′

ijnjnkP
′

klnl + c
2
2β1niP

′

ikQ
′

kjnj + c
2
2β3(P

′

3jnjnkQ
′

klnl +Q
′

3jnjnkP
′

klnl)

+ c21(β1 + β2)P
′

vQ
′

v + c1c2(β1 + β2)(P
′

vniQ
′

ijnj +Q
′

vniP
′

ijnj)

+ [c1c4β3(Q
′

vP
′

33 + P
′

vQ
′

33) + 2c
2
4β3Q

′

33P
′

33]n
3
3

U3 = c1Q
′

v(β1 + β2 + 2β3n3 + β4n
2
3) + c2niQ

′

ijnj(β1 + β2 + β3n3)

+ c2Q
′

3jnj(β3 + β4n3) + c4Q
′

33n3[β3 + (β1 + β2 + β4)n3 + β3n
2
3]

U4 = c1P
′

v(β1 + β2 + 2β3n3 + β4n
2
3) + c2niP

′

ijnj(β1 + β2 + β3n3) + c2P
′

3jnj(β3 + β4n3)

+ c4P
′

33n3[β3 + (β1 + β2 + β4)n3 + β3n
2
3]

U5 = β1 + β2 + 2β3n3 + β4n
2
3

and

hE = c1P
′

vQ
′

v + c2P
′

ijQ
′

ij + c4P
′

33Q
′

33 (3.21)

where the summation convention is adopted for Latin indices, P ′v = trP
′, and Q′v = trQ

′.
When the modulus Kf = 0, Eq. (3.20) can be reduced to the solution of the single-phase

solid obtained by Zhang et al. (2003). When the parameter c4 = 0, Eq. (3.20) can be simplified
to the solution given by Runesson et al. (1996).

4. Properties of the localized band at plane strain

In the case of plane strain, assuming the stress principal directions are consistent with the
symmetrical axes of material and the components n1 and n3 are located in the plane of interest,
for associated plasticity Eqs. (3.20) and (3.21) can be reduced to

hn = V1 + V2 −
Kf (V3)

2

1 +KfV4
(4.1)

with

V1 = c1P
′

v(β1 + β2)[c1P
′

v + 2c2(P
′

1n
2
1 + P

′

3n
2
3)]

+ c22(P
′2
1 n
2
1 + P

′2
3 n
2
3)[β1 + β2(P

′2
1 n
2
1 + P

′2
3 n
2
3)]

+ 2β3[c1P
′

v + (c4 + c2)P
′

3[c1P
′

v + c2(P
′

1n
2
1 + P

′

3n
2
3)]n3

V2 = [(2c2c4 + c
2
4)(β1 + β4)P

′2
3 + c1β4P

′

v(2c2P
′

3 + c1P
′

v)

+ 2c1c4(β1 + β2 + β4)P
′

3P
′

v + c
2
2β4P

′2
3 ]n

2
3 + 2c2c4β2P

′

3(P
′

1n
2
1 + P

′

3n
2
3)n
2
3

+ 2c4β3P
′

3(c2P
′

3 + c1P
′

v + c4P
′

3)n
3
3 + c

2
4β2P

′2
3 n
4
3

V3 = c1P
′

v(β1 + β2 + 2β3n3 + β4n
2
3) + c2(β1 + β2 + β3n3)(P

′

1n
2
1 + P

′

3n
2
3)

+ c2(β3 + β4n3)P
′

3n3 + c4P
′

3n3[β3 + (β1 + β2 + β4)n3 + β3n
2
3]

V4 = β1 + β2 + 2β3n3 + β4n
2
3

and

hE = c1P
′2
v + c2(P

′2
1 + P

′2
2 + P

′2
3 ) + c4P

′2
3 (4.2)

It should be mentioned that for the present case of plane strain we have

n21 + n
2
3 = 1 n21 = 1− n23 (4.3)
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Combination of Eqs. (3.8), (3.15), (3.16), (4.1) and (4.3) yields

hn =
1

u2∆

[

u2(r4n
4
3 + r2n

2
3 + r0)−

Kf (s5n
5
3 + s4n

4
3 + s2n

2
3 + s0)

2

∆+Kf (u+ c4n23 − c4n43)
]

(4.4)

where

r4 = −P ′23 (λ+ µ)c24 + [4µP ′1P ′3(λ+ µ)− 4µP ′23 (λ+ µ)− 4µ2P ′21
− 4λµP ′1P ′v − λ2P ′2v ]c4 − 4µ2(P ′3 − P ′1)2(λ+ µ)

r2 = (λ+ 2µ)P
′2
3 c
2
4 + [4µP

′2
3 (λ+ 2µ)− 4µP ′1P ′3(λ+ µ) + 4µ2P ′21

+ λ2P ′2v + 4λµP
′

vP
′

1 + 2λµP
′

3P
′

v]c4 + 4λµ
2P ′v(P

′

3 − P ′1)
+ 4µ2(P ′3 − P ′1)[(P ′3 + P ′1)(λ+ 2µ)− 2P ′1(λ+ µ)]

r0 = 4µ
3P ′21 + λ

2µP ′2v + 4λµ
2P ′1P

′

v

(4.5)

and

s5 = P
′

3(λ+ µ)c
2
4 s4 = c4[P

′

3(λ+ 2µ)c4 − λµP ′v − 2µ2P1]
s2 = µc4(λP

′

v + 2µP
′

1) + 2µ
3(P ′3 − P ′1) + µ2c4P ′3 s0 = µ

2(λP ′v + 2µP
′

1)
(4.6)

Additionally, we have

∆ = µ(λ+ 2µ) + c4(λ+ 2µ)n
2
3 − c4(λ+ µ)n43 (4.7)

It is seen from Eq. (3.18) that the critical hardening modulus H ′cr corresponding to the
initiation of strain localization is defined as the constrained maximization of H ′ over all possible
localized band directions n for a given state. Assuming that the maximum value of H ′ is reached
when n3 = n

cr
3 , it has tan

2 θ = (ncr3 )
2/[1− (ncr3 )2], where θ denotes the angle in the e1−e3 plane

from the e1-axis to the normal vector (n1, n3) as shown in Fig. 1. Then substituting n
cr
3 into Eq.

(4.4) and combining Eq. (4.2), the corresponding maximum value of the hardening modulus H ′cr
can be obtained.

Fig. 1. Geometric relationship among the anisotropy axes, stress principal axes and the localized band
direction at plane strain

5. Numerical results and discussions

In this Section, the properties of strain localization at strain plane is investigated based on the
Mohr-Coulomb yield criterion. The Mohr-Coulomb yield criterion can be defined by

F =
1

2
(σ′I − σ′III) +

1

2
(σ′I + σ

′

III) sinϕ− c = 0 (5.1)

where σ′I ­ σ′II ­ σ′III are the effective principal stresses (which are taken positive in compres-
sion), ϕ is the angle of internal friction, and c is a cohesion intercept.
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As the direction of the effective principal stress σ′3 is assumed to be consistent with the
cartesian axe e3, there exist two situations for the in-plane effective principal stresses, namely
σ′1 ­ σ′3 and σ

′

3 ­ σ′1. For the situation σ
′

1 ­ σ′3, there are three cases depending on the
magnitude of the out-of-plane stress σ′2.

Case A

When σ′1 ­ σ′2 ­ σ′3, it has σ′I = σ1 and σIII = σ′3, and from Eqs. (2.6) and (5.1), we obtain

P ′1 =

√
2

2

1 + sinϕ
√

1 + sin2 ϕ
P ′2 = 0 P ′3 =

−
√
2

2

1− sinϕ
√

1 + sin2 ϕ
(5.2)

and

P ′v =

√
2 sinϕ

√

1 + sin2 ϕ
(5.3)

Substituting Eqs. (5.2) and (5.3) into Eqs. (4.2) and (4.4) and combining Eq. (3.18), the
critical hardening modulus and the band direction angle at the onset of strain localization can
be determined. Suppose λ/µ = 1, we know from Eq. (3.19) that c4/µ > −2.5. In addition,
for soils the magnitude of the ratio Kf/(2µ) may range from 10−1 to 103 in practice, which
represent extreme states for moduli for partial and full liquid saturation, respectively. Thus,
with ϕ = 10◦, the influences of the parameters c4 and K

f on the angle θ and the critical
hardening modulus H ′cr are shown in Figs. 2a and 2b, respectively. As can be seen from Fig. 2a,
the angle θ first increases with the increase of the parameter c4, and then decreases with its
further increase. The influence of the modulus Kf on the angle θ is related to the magnitude of
the parameter c4. It can be observed from Fig. 2b that at first the critical hardening modulusH

′

cr

becomes larger with the increase of the parameter c4, but it becomes smaller with the further
increase of the parameter c4 when −2.5 < c4/µ ¬ 0 or c4 ­ 0. In addition, the critical hardening
modulus H ′cr generally decreases with the increase of the modulus K

f .

Fig. 2. Variation of the band direction angle θ (a) and the critical hardening modulus H ′cr (b) with the
parameter c4 for various K

f in the case σ′
1
­ σ′

2
­ σ′

3

Case B

When σ′1 ­ σ′3 ­ σ′2, it has σ′I = σ′1 and σ′III = σ′2. Then it follows from Eqs. (2.6) and (5.1) that

P ′1 =

√
2

2

1 + sinϕ
√

1 + sin2 ϕ
P ′2 =

−
√
2

2

1− sinϕ
√

1 + sin2 ϕ
P ′3 = 0 (5.4)

and
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P ′v =

√
2 sinϕ

√

1 + sin2 ϕ
(5.5)

Thus, assuming λ/µ = 1 and ϕ = 10◦, the impacts of the parameters c4 and K
f on the band

angle θ and the critical hardening modulus H ′cr are illustrated in Figs. 3a and 3b, respectively.
As can be seen, the direction angle of localized band initiation and the corresponding critical
hardening modulus are significantly dependent upon the deviation from isotropic elasticity and
pore fluid compressibility. For the effect of deviation from isotropic elasticity, it is shown that
a larger value of the parameter c4 leads to smaller values of the band angle θ and the critical
hardening modulus H ′cr. As for the effect of pore fluid compressibility, it is indicated that a
larger value of the modulus Kf results in a larger value of the band angle θ for the vast majority
of cases and a smaller value of the critical hardening modulus H ′cr.

Fig. 3. Variation of the band direction angle θ (a) and the critical hardening modulus H ′cr (b) with the
parameter c4 for various K

f in the case σ′
1
­ σ′

3
­ σ′

2

Case C

When σ′2 ­ σ′1 ­ σ′3, it has σ′I = σ′2, σ′III = σ′3. Hence, combination of Eqs. (2.6) and (5.1) yields

P ′1 = 0 P ′2 =

√
2

2

1 + sinϕ
√

1 + sin2 ϕ
P ′3 =

−
√
2

2

1− sinϕ
√

1 + sin2 ϕ
(5.6)

and

P ′v =

√
2 sinϕ

√

1 + sin2 ϕ
(5.7)

In this case, with λ/µ = 1 and ϕ = 10◦, the dependences of the band direction angle
at the inception of strain localization and the corresponding critical hardening modulus on
the deviation from isotropic elasticity and pore fluid compressibility are indicated in Figs. 4a
and 4b, respectively. It can be observed that the band direction angle θ and the critical hardening
modulus H ′cr get smaller with an increase in the value of modulus K

f . However, it should be
noted that the influence of pore fluid compressibility on the critical hardening modulus is very
limited when c4/µ ranges between −2.5 and −1. On the other hand, it is found that the effects of
the deviation from isotropic elasticity on the band direction angle and the corresponding critical
hardening modulus are obvious. When c4 ­ 0, the band direction angle θ diminishes with an
increase in the parameter c4. When c4 ¬ 0, the band direction angle θ becomes larger with the
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Fig. 4. Variation of the band direction angle θ (a) and the critical hardening modulus H ′cr (b) with the
parameter c4 for various K

f in the case σ′2 ­ σ′1 ­ σ′3

increasing parameter c4 in the cases of K
f/µ = 1 and Kf/µ = 10, whereas it first decreases and

then increases with the diminishment of the parameter c4 in the case ofK
f/µ = 0.1. Additionally,

the critical hardening modulus H ′cr becomes smaller with an increase in the parameter c4.

For the situation σ′3 ­ σ′1, there also exist three cases depending on the magnitude of the
out-of-plane stress σ′2, which are defined by σ3 ­ σ2 ­ σ1, σ3 ­ σ1 ­ σ2, and σ2 ­ σ3 ­ σ1,
respectively. Similar to those cases for the situation σ′1 ­ σ′3, with λ/µ = 1 and ϕ = 10

◦ the
influences of the deviation from isotropic elasticity and pore fluid compressibility on the band
direction angle at the initiation of strain localization and the corresponding critical hardening
modulus are calculated and shown in Figs. 5-7. Among these figures, Figs. 5a and 5b are for the
case σ3 ­ σ2 ­ σ1, Figs. 6a and 6b are for the case σ3 ­ σ1 ­ σ2, and Figs. 7a and 7b are for the
case σ2 ­ σ3 ­ σ1. It can be found from Figs. 5-7 that the effects of the deviation from isotropic
elasticity and pore fluid compressibility on the band direction angle and the critical hardening
modulus are considerable.

Fig. 5. Relationship between the band direction angle θ (a) and the critical hardening modulus H ′cr (b)
and parameter c4 for different K

f for the case σ′
3
­ σ′

2
­ σ′

1

In addition, for both the situations σ′1 ­ σ′3 and σ′3 ­ σ′1, it can be concluded from the above
discussions that the initiation of strain localization for porous media with transversely isotropic
elasticity is delayed with the increase of pore fluid compressibility, which is consistent with the
conclusions for isotropic porous media drawn by Han and Vardoulakis (1991) and Runesson et
al. (1996). For associated plasticity, it is found from the corresponding figures that the values of
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Fig. 6. Relationship between the band direction angle θ (a) and the critical hardening modulus H ′cr (b)
and parameter c4 for different K

f for the case σ′3 ­ σ′1 ­ σ′2

Fig. 7. Relationship between the band direction angle θ (a) and the critical hardening modulus H ′cr (b)
and parameter c4 for different K

f for the case σ′
2
­ σ′

3
­ σ′

1

the critical hardening modulus at the onset of strain localization are non-positive, which is in
agreement with the point of view proposed by Ottosen and Runesson (1991).

6. Conclusions

This study conducts an investigation on the properties of strain localization for elastic-plastic
porous media with transversely isotropic elasticity under undrained conditions. Under non-
-associated plasticity and tri-axial stress states, the conditions for localization of deformation
into a band in the incremental response of porous media are derived, in which the effects of the
deviation from isotropic elasticity and pore fluid compressibility are taken into account. The
explicit expression for the hardening modulus at the onset of strain localization are obtained.

With reference to the Mohr-Coulomb yield criterion, the effects of deviation from isotropic
elasticity and pore fluid compressibility in the formulation of strain localization for the case of
plane strain are discussed. It turns out that the properties of strain localization are dependent
upon the deviation from isotropic elasticity and pore fluid compressibility. The deviation from
isotropic elasticity and pore fluid compressibility have great impacts on the direction angle of
localized band initiation and the corresponding critical hardening modulus. In general, a larger
value of the compression modulus of pore fluid leads to a smaller value of the critical hardening
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modulus at the initiation of strain localization. In other words, the onset of strain localization
for elastic-plastic porous media with transversely isotropic elasticity is delayed with an increase
in the pore fluid compressibility. The influence of the pore fluid compressibility on the direction
angle of localized band is related to the magnitude of deviation from isotropic elasticity.
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Mécanique I, 1, 3-30
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