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An approximate analytical model is developed for the evaluation of the interfacial shear and
peeling stresses in a bi-material element composed of two elastic plates bonded together
by an interface zero thickness material and subjected to monotonically increasing thermal
loading. Thermal peeling stress is caused by thermal and elastic mismatch of a two-plate
structure undergo a temperature change. The “peeling” stress can be determined from the
evaluated interfacial shear stress and is proportional to deflections of the thinner plate of
the structure, i.e. to its displacements with respect to the thicker plate. The interface is
assumed to exhibit brittle failure at the critical shear stress value. The analytical solution
qualitatively shows delamination and ultimate failure. The results are illustrated in figures
and discussed.
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1. Introduction

The thermal response of the interface has an essential significance in the design of multilayered
systems. Interfacial stresses of layered composite materials under thermal loading were analysed
in numerous papers. In most of them, the analyses are based on linear fracture mechanics
assumptions when both element cracking and interface debonding are treated as the mixed
mode crack propagation with critical conditions expressed in terms of stress intensity factors, cf.
Zhang (2000), Bleeck et al. (1998), Sorensen et al. (1998). The crack singularities at bi-material
interfaces were analysed by Rizk and Erdogan (1989). Białas and Mróz (2006) analysed the
progressive delamination and cracking of a thin layer bonded to a rigid or elastic substrate and
subjected to thermal loading.
The approximate analytical model for the assessment of the interfacial stresses in a bi-

material soldered assembly with a low-yield-stress of the bonding material, in bi-metal ther-
mostats, bi-material assembly with a low-yield-stress bonding layer, in adhesively bonded and
soldered assemblies and in a tri-material assembly were presented by Suhir (1986a,b, 1987, 1989,
2001, 2006).
Compared with the paper by Suhir (2006) in this study, we use the analytical shear lag

analysis associated with damage constitutive equations to calculate the lengths of elastic and
delamination zones, the interfacial shear stress and the critical temperature values cases at full
debonding of the interface layer.
The present paper is aimed at the analysis of a two plate joint subjected to thermal loading.

An approximate predictive model (Nikolova et al., 2006; Nikolova, 2008) was developed for the
evaluation of interfacial thermal stresses in a bi-material assembly. This material is considered
linearly elastic at the stress level below the critical point and ideally plastic at higher stresses.
The delamination process is analysed for homogeneous plates with the stress free boundary.

The plates are assumed as linear elastic and isotropic with different stiffness and thermal expan-
sion moduli. The analytic solutions for the shear and peeling stresses are obtained. The main
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objective of the paper is to discuss the effect of the interface parameters and interfacial stresses
on the delamination process.

2. Problem formulation

2.1. Two-plate structure model and basic equations

Let us consider two elastic plates A and B with different stiffness moduli and thermal expan-
sion coefficients, bonded along the interface I and loaded by a thermal monotonic loading ∆T ,
where αA, αB denote thermal expansion coefficients (see Fig. 1).

Fig. 1. Two-plate structure model A

The shear lag model is used and the plate bending is neglected. The neglecting of the bending
effects in the shear-lag model results from the qualitative values of the stress-strain behavior.
The interface is supposed to be with a negligible thickness and works only on shear. The axial
stresses and strains are uniform over the cross section of each plate. At least one of the plates is
thick and stiff enough, so that this component and the structure as a whole does not experience
bending deformations.
In view of symmetry, only the solution for the half plate is derived taking the origin of the

Cartesian coordinate at the centre of interface I. The plate length is denoted by L and thickness
by 2hA, hB . The Young moduli are EA, EB. The uniform temperature of plates is ∆T . The
interface is simulated as the zero thickness layer with the shear response specified in terms of
the displacement discontinuity on I (Nikolova et al., 2006; Nikolova, 2008).
The following ordinary differential equations of plate equilibrium can be stated

dσA
dx
=
τ I

2hA

dσB
dx
= −

τ I

2hB
(2.1)

where τ I = τ I(x) is the interface shear stress. The elastic plate response is specified by the
constitutive equations

σA = EA(εA − αA∆T ) σB = EB(εB − αB∆T ) (2.2)

and the elastic interface response is specified by the relation

τ I = GIwI (2.3)

where

wI =
uA − uB
hA + hB

=
uI

hA + hB
εA =

duA
dx

εB =
duB
dx

(2.4)

and uA = uA(x), uB = uB(x) are the displacement fields in plates A and B, respectively, and
GI is the representative shear modulus of the adhesive layer.
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Introduce now non-dimensional variables defined as follows

x =
x

h
ui =

ui
h

σi =
σi
EB

τ I =
τ I

EB
G
I
=
GI

EB

ξ =
hA
hB

η =
EA
EB

i = A,B, I h = hA + hB

(2.5)

Equilibrium equations (2.1) now are

dσA
dx
=
τ I(1 + ξ)

2ξ

dσB
dx
= −
τ I(1 + ξ)

2
(2.6)

In subsequent derivation, the formulas will be expressed in terms of non-dimensional variables,
but the dashes over the symbols will be deleted.

2.2. Elastic zone solution

Let us denote uI(x) = uA(x)− uB(x). In view of constitutive equations (2.2), we obtain for
the elastic state

d2uI
dx2
= λ2uI −

d

dx
[(αA − αB)∆T ] (2.7)

where

λ2 =
GI(1 + ξ)(1 + ξη)

2ξη
(2.8)

Assuming uniform temperature fields in plates A and B and constant thermal expansion coef-
ficients, equation (2.7) becomes

d2uI
dx2
= λ2uI (2.9)

and equilibrium equations (2.6) can be expressed as follows

d2uA
dx2
=
λ2

1 + ξη
uI

d2uB
dx2
= −

λ2

1 + ξη
ξηuI (2.10)

The general solution to equation (2.9) has the form

uI = A1 cosh(λx) +A2 sinh(λx) (2.11)

where A1, A2 are integration constants.

Considering two homogeneous plates, we can state the boundary conditions

uI(0) = uA(0) = uB(0) = 0 σeA(L) = σ
e
B(L) = 0

εA(L) = αA∆T εB(L) = αB∆T
(2.12)

Integrating Equations (2.10) and satisfying conditions (2.12), we obtain

τ I(x) = GuI(x) =
G(αA − αB)∆T

λ

sinh(λx)

cosh(λL)
(2.13)
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2.3. Length of the elastic zone

The length of the plastic zone le, which gives the magnitude of the brittle cracking along the
interface layer can be calculated from (2.13) assuming that at τ I(x) = τ cr, uI(le) = u

cr = τ cr/G.

Then

τ I(x) = GuI(x) =
G(αA − αB)∆T

λ

sinh(λx)

cosh(λL)
= τ cr (2.14)

Using the substitution exp(λle) = y, we receive from (2.14) the following equation for y

y2 − 2Ay − 1 = 0 A =
λτ cr cosh(λL)

(αA − αB)∆T
(2.15)

Then, two roots of (2.15) are available

y1,2 = A±
√

A2 + 1 (2.16)

Now using the substitution exp(λle) = y, we obtain

le1,2 =
1

λ
ln
(

A±
√

A2 + 1
)

Obviously, A2 + 1 > 0.

Then, we have to choose the length of the debonding zone from the condition that this length
has its maximum value, i.e.

le =
1

λ
ln
(

A+
√

A2 + 1
)

(2.17)

2.4. Elasto-plastic zone solution

In the case when plastic strains occur in the bonding material, the following conditions must
be fulfilled at the boundary x = x∗ = L − le, between the “inner” (linearly elastic) and the
“outer” (ideally plastic) zones

τ I(x∗) =
G∆α∆T

λ

sinh(λx∗)

cosh(λL)
=
G∆α∆T

λ

sinh[λ(L− le)]

cosh(λL)
= τ cr (2.18)

Condition (2.18) indicates that the shear stress at the boundary between the elastic and the
plastic zones must be equal to the critical stress (Nikolova et al., 2006; Nikolova, 2008).

2.5. Length of the plastic zone

The length of the plastic zone le can be calculated from (2.18) assuming that at τ
I(x∗) = τ

cr.

Then

τ I(x∗) =
G∆α∆T

λ

sinh(λx∗)

cosh(λL)
= τ cr(x) (2.19)

We obtain the following formula for the relative length of the plastic zone

x∗ = L− le = L−
1

λ
ln
(

A+
√

A2 + 1
)

(2.20)



Interfacial shear and peeling stresses ... 941

3. Determination of the peeling stress

3.1. Basic equation of the peeling stress

The basic equation for the dimensional peeling stress p(x), can be obtained using the follo-
wing equation of equilibrium for the thinner plate A of the structure treated as an elongated
thin plate (Suhir, 2006)

x
∫

−x∗

x
∫

−x∗

p(ς) dς dς +D1w
′′(x) =

hA
2
T (x) =

hA
2

(

x
∫

−x∗

τ I(ς) dς − τ crle

)

(3.1)

where

DA =
EAh

3
A

12(1 − ν2A)
(3.2)

is the flexural rigidity of the plate A, and w(x) is the deflection function of this plate (with
respect to the thicker plate that does not experience bending deformations)

T (x) =

x
∫

−x∗

τ(ς) dς − τ crle (3.3)

are the thermally induced forces acting in the cross-sections of the two-plate structure, τ cr is
the critical stress of the interface, and le is the length of the elastic zone. The length le can
be defined as le = L − x∗, where L is the half of the structure length. The origin 0 of the
coordinate x is in the mid-cross-section of the structure (Suhir 1986a,b, 1989).
Equation (3.1) indicates that the “external” bending moment experienced by the plate 1,

and expressed by the right part in equation (3.1) and the first term in the left part, should be
equilibrated by the elastic bending moment, which is expressed by the second term in the left
part of equation (3.1). This term is proportional, for small deflections, to the second derivative
(curvature) of the deflection function w(x).
The peeling stress p(x), can be evaluated as

p(x) = Kw(x) (3.4)

where K is the spring constant of the elastic foundation provided by the bonding layer (inter-
face). In an approximate analysis, we assume that the spring constant of the elastic foundation
can be put equal to Young’s modulus of the bonding material.
Excluding the deflection function w(x) from equations (3.1) and (3.4), we obtain the follo-

wing integral equation for the peeling stress function p(x)

x
∫

−x∗

x
∫

−x∗

p(ς) dς dς +
DA
K
p′′(x) =

hA
2
T (x) (3.5)

After differentiating this equation twice with respect to the coordinate x and considering rela-
tionship (3.3), we obtain the following basic equation for the peeling stress function

pIV (x) + 4β4p(x) = 2β4hAτ
′(x) (3.6)

where

β = 4

√

K

/4DA
(3.7)

is the parameter of the peeling stress.
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Equation (3.6) has form of the equation of bending of a beam lying on a continuous elastic
foundation (see, for instance Suhir, 2006a,b) and loaded by a distributed load whose magnitude
is proportional to the rate of changing in the interfacial shear stress along the assembly. Since
the shear stress is constant outside the elastic region, the “peeling” stress is zero in this region.
Note that in the close proximity to the boundary between the elastic and plastic zones, the
peeling stress might change in a manner that violates its proportionality to the derivative of
the shear stress. The behavior of the peeling stress in the proximity of this boundary might be
different of what is described by equation (3.6).

In the case when plastic strains occur in the bonding material, the following conditions must
be fulfilled at the boundary x = x∗ between the elastic and the ideally plastic zones:

τ I(x∗) = τ
cr T (x∗) = −τ

crle (3.8)

The first condition in (3.8) indicates that the shear stress at the boundary between the elastic
and the plastic zones must be equal to the critical stress. The second condition follows from
formula (3.3): the shear stress, τ I(x) is self-equilibrated, and therefore the integral in (3.3) is
zero for x = x∗. Physically, this condition is due to the fact that since the interfacial shear stress
at the peripheral portions of the structure is constant (is equal to the critical stress τ cr), the
force T (x) changes linearly at these portions from its value τ crle at the boundary of the elastic
and the plastic zones to zero at the structure ends. The sign “minus” in front of the second
boundary condition in (3.8) indicates that the force at the boundary should be compressive
(negative) for the compressed plate of the structure. In the case of a purely elastic state of strain
(le = 0), the following boundary condition should be fulfilled

T (L) =

L
∫

−L

τ I(x) dx = 0 (3.9)

This condition reflects the fact that there are no external longitudinal forces acting at the end
cross-sections of the plate-structure.

The peeling stress should be self-equilibrated within the elastic region and, therefore, the
following conditions of equilibrium with respect to the bending moments and the lateral forces
should be fulfilled

x∗
∫

−x∗

x
∫

−x∗

p(ς) dς dς = 0

x∗
∫

−x∗

p(ς) dς = 0 (3.10)

From (3.5), we find, by differentiation

x
∫

−x∗

p(ς) dς +
DA
K
p′′′(x) =

hA
2
τ I(x) (3.11)

Relationships (3.5) and (3.11), with consideration to conditions (3.10), result in the following
boundary conditions for the peeling stress function p(x)

p′′(x∗) = −
hAKleτ

cr

4DA
= −2β4hAleτ

cr p′′′(x∗) =
hAKτ

cr

2DA
= 2β4hAτ

cr (3.12)

The peeling stress in the zones of plastic shear strains should be zero, as it follows from
equation (3.6), the shear stress function is equal to the critical stress in these zones, and hence,
does not change along the structure.
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3.2. Solution to the peeling stress equation

Equation (3.6) has form of an equation of a beam lying on a continuous elastic foundation
(Suhir, 2006a,b). We seek for the solution to this equation in form

p(x) = C0V0(βx) + C1V1(βx) + C2V2(βx) + C3V3(βx) +B
cosh(λx)

cosh(λx∗)
(3.13)

This functions p(x) is an odd function, i.e. p(−x) = −p(x) and has its maximum value (zero
derivative) at the origin and is symmetric with respect to the mid-cross-section of the assembly.
The final form of the solution to equation (3.6) is the following

p(x) = C0V0(βx) + C2V2(βx) +B
cosh(λx)

cosh(λx∗)
(3.14)

where the functions Vi(βx), i = 0, 2 are expressed as follows

V0(βx) = cosh(βx) cos(βx) V2(βx) = sinh(βx) sin(βx) (3.15)

The first two terms in (3.14) provide the general solution to the homogeneous equation, which
corresponds to non-homogeneous equation (3.6), and the third term is the particular solution
to this equation.
Introducing this term into the equation (3.6), we obtain

B =
2GIEBhAβ

4(αA − αB)∆T

4β4 + λ4
(3.16)

Using boundary conditions (3.12), we obtain the following algebraic equations for the constants
C0 and C2 of integration

− 2β3 sin(βx∗) cosh(βx∗)C0 − 2β
3 cos(βx∗) sinh(βx∗)C0

− 2β3 sin(βx∗) cosh(βx∗)C2 + 2β
3 cos(βx∗) sinh(βx∗)C2 = 2β

4hAτ
cr

− β sin(βx∗) cosh(βx∗)C0 + β cos(βx∗) sinh(βx∗)C0

+ β sin(βx∗) cosh(βx∗)C2 + β cos(βx∗) sinh(βx∗)C2 = −2β
4hAleτ

cr

(3.17)

Algebraic equations (3.17) have the following solutions

C0 =
βhA[− sin(βx∗) cosh(βx∗)(2β

2le − 1) + sinh(βx∗) cos(βx∗)(2β
2le + 1)]τ

cr

cos(2βx∗)− cosh(2βx∗)

C2 =
βhA[sinh(βx∗) cos(βx∗)(2β

2le − 1) + sin(βx∗) cosh(βx∗)(2β
2le + 1)]τ

cr

cos(2βx∗)− cosh(2βx∗)

(3.18)

Note that for long enough elastic zones, solution (3.14) can be simplified as follows

p(x) =
βhA[sin(βx∗) cosh(βx∗)(1 − 2β

2le)]τ
cr

cos(2βx∗)− cosh(2βx∗)
cosh(βx) cos(βx)

+
βhA[sinh(βx∗) cos(βx∗)(1 + 2β

2le)]τ
cr

cos(2βx∗)− cosh(2βx∗)
cosh(βx) cos(βx)

−
βhA[sinh(βx∗) cos(βx∗)(1 − 2β

2le)]τ
cr

cos(2βx∗)− cosh(2βx∗)
sinh(βx) sin(βx)

+
βhA[sin(βx∗) cosh(βx∗)(1 + 2β

2le)]τ
cr

cos(2βx∗)− cosh(2βx∗)
sinh(βx) sin(βx)

+
2GIEBhAβ

4(αA − αB)∆T

4β4 + λ4
cosh(λx)

cosh(λx∗)

(3.19)
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4. Numerical example

Let us consider two elastic plates A (from ZrO2) and B (from Ti6Al4V) with finite lengths
2L = 120mm, and the thickness of the first plate hA will be variable 2hA ∈ [0.4mm, 2mm],
2hB = 2mm, h = hA+hB ∈ [1.2mm, 2mm], ξ = hA/hB ∈ [0.2, 1] under monotonic temperature
loading ∆T and

• ZrO2 – elastic constant EA = 132.2GPa, coefficient of thermal expansion αA = 13.3 ·
10−6K−1,

• Ti6Al4V – elastic constant EB = 122.7GPa, coefficient of thermal expansion αB = 10.291·
10−6K−1,

• interface layer – elastic constant E0 = 2.1GPa, shear modulus G
I = 800MPa, the critical

shear stress τ I = τ cr = 18MPa.

In Table 1, the variable parameters of the problem considered are presented

Table 1. Variable parameter

Name Variable

Thickness of first plate A hA

Geometric parameter of the structure ξ = hA/hB

Non-dimensional parameter λ =
√

GI(1 + ξ)(1 + ξη)/(2ξη)

Flexural rigidity of plate A DA = EAh
3
A/[12(1 − ν

2
A)]

Parameter of the peeling stress β = 4
√

K/(4DA)

Temperature monotonic loading ∆T

The behaviour of the interfacial shear and the peeling stresses on x/h, peeling stresses p(x)
for different temperature monotonic loadings ∇T (∇T ¬ ∇T cr) (for more details about calcu-
lation of the critical temperature ∇T cr, see paper by Nikolova et al. (2006), Nikolova (2008)
and the behaviour of peeling stresses p(x) for different values of parameters ξ = hA/hB are
illustrated at the given below figures, respectively.
The calculated interfacial shear and the peeling stresses are plotted in Fig. 2. As it can be

seen from the plot, one cannot simply truncate the diagram for the shear stress obtained on the
basis of the elastic solution in order to evaluate the length of the plastic zone.

On the other hand, the plastic zone is about 30% from the elastic one, which results in the
fact that the elastic approach cannot be used to assess the peeling stress either.
Figure 3 shows the behavior of the peeling stresses p(x) for ξ = hA/hB = 1 and five

different values of the temperature loading ∆T . The peeling stress increases with an increase in
the temperature ∆T and reaches values exceeding the critical shear stress τ I(x∗) = τ

cr. This
initiates degradation of structural integrity and peeling of the interface. When the temperature
loading ∆T tends towards ∆T cr (Nikolova et al., 2006;, Nikolova, 2008), the full delamination
process occurs.
Figure 4 shows that the peeling stresses p(x) depend on the geometry of the structure,

including the parameter ξ = hA/hB ∈ [0.2, 1], i.e. p(x) increases with an decrease in the
parameter ξ (very thin first plate A). This dependence is sensitive to the material properties
and geometry of the bi-material structure. It can be seen that for given values of parameter ξ,
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Fig. 2. Calculated interfacial stresses

Fig. 3. Dependence of p(x) on x∗ for different temperature loadings ∆T

the thickness of the first plate and the material properties of the second plate play an important
role.

When the thickness of the first plate is very small, i.e. the peeling stress grows extremely
rapidly and induces large and irreversible damages to structural integrity, cracking, irregularities
and peeling of the interface.
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Fig. 4. Dependence of the peeling stresses p(x) on x∗ for five different values of the parameter ξ

5. Conclusions

In this paper, an analytical accurate and quick procedure based on the shear lag method and
classical plate theory formulation for calculating the lengths of elastic and plastic (inelastic)
zones, interfacial shear and peeling stresses of a two-plate structure subjected to monotonic
thermal loading is presented.
The peeling stress is sensitive to material properties, geometry of the bi-material structure

and applied thermal loading. The peeling stress reaches to values exceeding the critical shear
stress at a very high temperature and for a structure with a very small thickness of the first plate,
which induces large and irreversible damage to structural integrity, cracking, irregularities and
peeling of the interface. Therefore, the thermally induced interfacial shear and peeling stresses
in different ceramic-metal composites are preferable to be of low values.
The interfacial shear stress, peeling stress, and die cracking stress due to thermal and elastic

mismatch in layered structures are one of the major reasons of the mechanical failure and
delamination in multilayered structures. The results were illustrated in figures and discussed.
The results of the analysis can be used for the assessment of thermally induced stresses in

different ceramic-metal composites and in manufacturing of new ideally designed ceramic-metal
composites with optimal properties of both – the ceramic, such as high temperature resistance
and hardness – and the metal, such as the ability to undergo plastic deformation.
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