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The paper presents new multi-domain algorithms based on the influen-
ce matrix technique applied together with the non-overlapping iterative
domain decomposition method for solution of the incompressible Navier-
Stokes equations in vorticity-streamfunction formulation. The spectral
Chebyshev collocation method and the influence matrix algorithm are
applied for solution of the Stokes problem in each subdomain resulting
from time discretization of the Navier-Stokes equations, while the pat-
ching conditions (continuity of the solution and continuity of its first or-
der derivative) at the interfaces between subdomains are satisfied using
the iterative domain decomposition algorithm.
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1. Introduction

The spectral methods can be effectively used for accurately solution of many
complex flows involving evolution of very fine structures and instabilities at
sufficiently low Reynolds numbers. Application of these methods to solution
of many technical problems is however limited as simple geometry flows can
only be considered.
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The multi-domain algorithms allows one to extend the applicability of
spectral methods to more complex geometry problems where the original com-
putational geometry can be decomposed into smaller subdomains which can
be easily transformed into rectangular geometries in the computational spa-
ce. The accuracy of the solution can also be improved in the case of stiff or
singular problems (Peyret, 2002), where the local size of subdomains and de-
gree of polynomial can be adapted to the local level of stiffness, while the
singular problems can easily be handled by shifting the singularity points to
the corners of the subdomains. On the other hand, one has to solve complex
physical problems like development of flow instabilities in geometries of high
aspect ratio (e.g. thermohaline convection in tall cavities), where application
of a high-order approximation is strictly recommended (Peyret, 2002). The
present paper is devoted to development of a multi-domain algorithm for so-
lution of problems involving computational geometries of a high aspect ratio.
Furthermore, an application of the multi-domain technique allows for efficient
solution of such problems on parallel computers.

Sabbah and Pasquetti (1998) developed a direct algorithm for multi-
domain solution of the Navier-Stokes equations in velocity-pressure variables
splitting the computational domain in one space direction into a given num-
ber of subdomains Nel. The solution to the Rayleigh-Bènard convection in
2D and 3D cavities of a high aspect ratio was considered. Application of the
spectral multi-domain algorithm for solution to the 3D problem was presen-
ted with one homogeneous direction. The multi-domain procedure was based
on the direct influence matrix technique. In order to obtain the solution to
the Stokes problem in each subdomain, the ”extended influence matrix” me-
thod was implemented for computation of the pressure and correction term
at the physical boundary of the computational domain as described in Kle-
iser and Schumann (1980) and Tuckerman (1989). The correction term was
introduced into the solution to the Poisson equation for pressure in order to
recover the divergence-free velocity field at the boundary of the computatio-
nal domain. The continuity conditions at the interfaces between subdomains
were enforced using the interface influence matrix technique (detailed descrip-
tion of the algorithm can also be found in Peyret (2002)). Since the system
of equations resulting from the continuity conditions at the interfaces betwe-
en subdomains was very large, it was finally solved at each time step using
the block-tridiagonal version of the LU decomposition algorithm proposed by
Isaacson and Keller (1966).

In Forestier et al. (2000), the method presented above was applied for solu-
tion of the wakes development in a stratified fluid. Some modifications to the
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multi-domain algorithm were presented allowing one to impose free-slip and
soft outflow boundary conditions. Application of the multi-domain technique
was justified by the necessity of accurate resolution of the flow equations in
geometries of high aspect ratio.

Further application of the multi-domain algorithm proposed by Sabbah
and Pasquetti (1998) can also be found in Sabbah et al. (2001) for solution
of the thermohaline convection in the cavity of a high aspect ratio where one
of the vertical walls was heated. The multi-domain approach together with
the spectral Chebyshev approximation allows one to capture complex physical
phenomena like evolution and merging of convective cells in an enclosure.

Raspo (2003) shows application of the direct multi-domain technique for
solution to the Navier-Stokes equations in vorticity-streamfunction formula-
tion. The algorithm was applied for solution of the flow in a rotating channel-
cavity system of T -shape. The influence matrix method was used for solution
to the Stokes problem in each subdomain coupling the vorticity and the stre-
amfunction as well as to impose the continuity conditions at the interfaces.
The method was applied for decomposition of the computational domain in-
to four subdomains, and the interface influence matrix was constructed and
inverted in the preprocessing step. The algorithm allowed one to extend the
applicability of the spectral methods to nonrectangular geometries, where the
vorticity singularities were shifted to the corners of subdomains.

In the present paper, two multi-domain applications of the influence matrix
method for the solution to the Stokes problem are considered, and they are
used together with the iterative domain decomposition method proposed by
Louchart et al. (1998). In Louchart et al. (1998) the iterative algorithm was
showed for solution to the natural convection problem and the flow in the
inverted Bridgman configuration. Motion of the Boussinesq fluid and the heat
transfer process were governed by the Navier-Stokes and energy equations.

The first approach is based on the solution to the Stokes problem at each
time step where the global system of equations is used to treat the lack of
vorticity boundary conditions at no-slip walls. The system of equations is
inverted in the preprocessing step on one processor, while at each time-cycle
the solution is obtained from simple matrix products. In the second case, the
iterative influence matrix method is considered based on the solution of the
local system of equations in each subdomain. The latter approach seems to be
well suited for parallel computing using distributed memory systems.

The influence matrix techniques will be applied for solution to the in-
compressible Navier-Stokes equations in vorticity-streamfunction formulation.
This approach has some advantages over the velocity-pressure formulation in
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the case of two-dimensional flows as the incompressibility condition is auto-
matically satisfied and the number of variables is smaller.

2. Solution of the Navier-Stokes equations

Motion of a fluid is governed by the incompressible Navier-Stokes equations
expressed in the vorticity-streamfunction formulation

∂tω +A(V , ω) = F + ν∇
2ω

(2.1)

∇2ψ + ω = 0

where ν is the kinematic viscosity, A(V , ω) = V · ∇ω, V = [u, v] is the
velocity vector and F is the forcing term. The velocity components u and v
are related to the streamfunction ψ by

u =
∂ψ

∂y
v = −

∂ψ

∂x
(2.2)

and the vorticity ω is defined as

ω =
∂v

∂x
−
∂u

∂y
(2.3)

Equations (2.1) are discretized in time using the semi-implicit second order
Adams-Bashforth/Backward Differentiation scheme (Peyret, 2002)

3ω(n+1) − 4ω(n) + ω(n−1)

2∆t
+ 2A(n) −A(n−1) = F (n+1) + ν∇2ω(n+1)

(2.4)

∇2ψ(n+1) + ω(n+1) = 0

where n denotes the number of time step.

Equations (2.4) consist of the Stokes problem in Ω

∇2ω − σω = f ∇2ψ = −ω (2.5)

with the boundary conditions on ∂Ω

ψ = g
∂ψ

∂n
= h (2.6)
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where

ω = ω(n+1) ψ = ψ(n+1)

(2.7)

f =
1

ν

(
−F (n+1) −

4ω(n) − ω(n−1)

2∆t
+ 2A(n) −A(n−1)

)

with σ = 3/(2ν∆t). Note that F (n+1) term in Eq. (2.7) has only non-zero
value for the solution to the natural convection problem discussed later. The
values of g and h are defined by

g =

s∫

s0

V ∂Ω · n ds h = V ∂Ω · t (2.8)

where s is the curviliniear abscissa along ∂Ω and s0 corresponds to a given
arbitrary fixed point on ∂Ω. n is the outward unit vector normal to boun-
dary ∂Ω and t is the unit vector tangent to boundary ∂Ω with clockwise
orientation.
For spatial approximation of Eq. (2.5) with boundary conditions (2.6) the

spectral collocation method is applied (Canuto et al., 1988; Peyret, 2002) whe-
re the Bayliss et al. (1994) algorithm is used in order to reduce the round-off
errors appearing in calculation of the derivatives using the matrix-vector pro-
ducts. The matrix diagonalization algorithm was applied (Haidvogel and Zang,
1979; Haldenwang et al., 1984) for solution of the algebraic system of equations
resulting from time discretization of the Navier-Stokes equations.

3. Influence matrix method for solution of the monodomain

problem

The influence matrix technique is applied to treat the lack of boundary con-
ditions for the vorticity at the boundary ∂Ω of the computational domain Ω
where the solution (ω,ψ) is expressed as a linear combination of the elemen-
tary solutions (ω̃, ψ̃) and (ω,ψ) (Peyret, 2002)

ω = ω̃ + ω ψ = ψ̃ + ψ (3.1)

where (ω̃, ψ̃) are the solutions to the following P̃ -problem

∇2ω̃ − σω̃ = f in Ω

ω̃ = 0 on ∂Ωc
(3.2)
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and
∇2ψ̃ = −ω̃ in Ω

ψ̃ = g on ∂Ωc
(3.3)

where ∂Ωc denotes the boundary of the domain Ω without four corner points.
The pair (ω,ψ) is the solution to the P -problem

∇2ω − σω = 0

∇2ψ + ω = 0

}
in Ω

ψ = 0

∂nψ = h− ∂nψ̃



 on ∂Ωc (3.4)

which can be subsequently defined as the P 0-problem

∇2ω − σω = 0

∇2ψ + ω = 0

}
in Ω

ω = ξ

ψ = 0

}
on ∂Ωc (3.5)

where the unknown values of ξ (values of ω on the boundary ∂Ωc) should be
determined in such a way that the Neumann condition on ψ will be satisfied
in Eq. (3.4).
The solutions to (3.5) can be expressed as linear combinations of the ele-

mentary solutions (ωl, ψl), l = 1, . . . , L

ω =
L∑

l=1

ξlωl ψ =
L∑

l=1

ξlψl (3.6)

where (ωl, ψl), l = 1, . . . , L are the solutions to the following P l-problem

∇2ωl − σωl = 0 in Ω

ωl|ηj = δjl for ηj ∈ ∂Ω
c

(3.7)

and
∇2ψl = −ωl in Ω

ψl|ηj = 0 for ηj ∈ ∂Ω
c

(3.8)

where ηj, j = 1, . . . , 2(N +M − 2) are related to the collocation points on the
boundary ∂Ωc while N and M denote the number of Chebyshev modes in
the x- and y-directions, respectively.
Solution to problems (3.7) and (3.8), taking into account Eq. (3.6) and

Neumann condition in (3.4), allows one to define the following system of equ-
ations for evaluation of the unknown coefficients ξ

L∑

l=1

(∂nψl|ηj )ξl = (h− ∂nψ̃)ηj ηj ∈ ∂Ω
c−4 ⊂ ∂Ωc (3.9)
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for j = 1, . . . , L. The system of equations (3.9) can also be written in the
matrix form

MΞ = E (3.10)

where M is the influence matrix, Ξ = [ξ1, . . . , ξL]
⊤ and ∂Ωc−4 denote the

boundary ∂Ωc without four collocation points. The four equations are elimi-
nated from the system of equations in order to invert the influence matrix M
(Ehrenstein and Peyret, 1989).

It should be noted that the first application of the influence matrix me-
thod for solution of the two-dimensional problems was presented by Vanel et
al. (1986) and Ehrenstein and Peyret (1986). A detailed description of this
algorithm can also be found in Peyret (2002).

4. Multi-domain formulation

Taking into account Eq. (3.2) and assuming decomposition of the compu-
tational domain into Nel subdomains in the x-direction (Fig. 1), the solu-
tions (ωm, ψm) can be expressed in each subdomain Ωm, m = {L, Ik, R}, for
k = 1, . . . , N Iel (where N

I
el = Nel − 2) as follows

ωm = ω̃m + ωm ψm = ψ̃m + ψm (4.1)

where (ω̃m, ψ̃m) are solutions to the P̃m-problem

∇2ω̃m − σω̃m = f in Ωm

ω̃m = 0 on ∂Ωcm
(4.2)

and
∇2ψ̃m = −ω̃m in Ωm

ψ̃m = g on ∂Ωcm
(4.3)

where ∂Ωcm denotes physical boundaries of the subdomains Ω,m = {L, Ik, R},
for k = 1, . . . , N Iel without four corner points, while at the interfaces ΓL,I1,
Γk,k+1, k = 1, . . . , N

I
el−1, ΓINI

el

,R between subdomains the following patching

conditions are specified

∂ϕ

∂nm
=
∂ϕ

∂n q
and ϕm = ϕq (4.4)
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where ϕ = ω̃, ψ̃, n is the normal to the interface between the subdomains Ωm
and Ωq where m = {L, Ik, INI

el
} and q = {I1, Ik+1, R} for k = 1, . . . , N

I
el − 1

(as shown in Fig. 1). Patching requirements (4.4) are satisfied applying the
iterative domain decomposition algorithm proposed by Louchart et al. (1998).

Fig. 1. Scheme of domain decomposition into Nel subdomains

The solutions ωm can be expressed in each subdomain Ωm,m = {L, Ik, R},
for k = 1, . . . , N Iel as a linear combination of the elementary solutions
(ωpm,l, ψ

p
m,l), p = {L, Ik, R} for k = 1, . . . , N

I
el (Kubacki, 2005)

ωm =
LL∑

l=1

ξLl ω
L
m,l +

NI
el∑

k=1

LIk∑

l=1

ξIkl ω
Ik
m,l +

LR∑

l=1

ξRl ω
R
m,l

(4.5)

ψm =
LL∑

l=1

ξLl ψ
L
m,l +

NI
el∑

k=1

LIk∑

l=1

ξIkl ψ
Ik
m,l +

LR∑

l=1

ξRl ψ
R
m,l

where LL = LR = 2(N − 1) + (M − 1) and LIk = 2(N − 1) are related to
the collocation points respectively on the boundaries ∂ΩcL, ∂Ω

c
R and ∂Ω

c
Ik
for

k = 1, . . . , N Iel, and the elementary solutions (ω
p
m,l, ψ

p
m,l) satisfy the following

problems
∇2ωpm,l − σω

p
m,l = 0 in Ωm

ωpm,l|ηLp
j

= δjl for η
Lp
j ∈ ∂Ω

c
p

(4.6)

and
∇2ψ

p
m,l = −ω

p
m,l in Ωm

ψ
p
m,l|ηLp

j

= 0 for η
Lp
j ∈ ∂Ω

c
p

(4.7)
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where: p = {L, Ik, R} for k = 1, . . . , N
I
el, while j = 1, . . . , L∗ assuming that

L∗ = LL if p = L, L∗ = LIk if p = Ik for k = 1, . . . , N
I
el and L∗ = LR

if p = R, where at the interfaces ΓL,I1, Γk,k+1, k = 1, . . . , N
I
el − 1, ΓINI

el

,R

patching conditions (4.4) should be satisfied taking ϕ = ωpm,l, ψ
p
m,l. As it is

seen, the number of solutions (4.6) and (4.7) becomes very large splitting the
computational domain into a higher number of subdomains, however it should
be noted that these solutions can be set up in the preliminary calculation
before time integration, and can be stored in memory until the influence matrix
is formulated.
Finally, assuming that the Neumann boundary condition should be fulfilled

in Eq. (3.4) and knowing that ψm is defined by Eq. (4.5)2, the unknown
values of the coefficients ξ can be obtained by solving the following system of
equations

LL∑

l=1

(
∂nψ

L
m,l

∣∣
η
Lm
j

)
ξLl +

NI
el∑

k=1

LIk∑

l=1

(
∂nψ

Ik
m,l

∣∣
η
Lm
j

)
ξIkl +

LR∑

l=1

(
∂nψ

R
m,l

∣∣
η
Lm
j

)
ξRl =

(4.8)

= (hm − ∂nψ̃m)ηLm
j

ηLmj ∈ ∂Ω
c
G−4 ⊂ ∂Ω

c
G

for j = 1, . . . , Lm, m = {L, Ik, R}, k = 1, . . . , N
I
el.

System (4.8) can also be written in the following matrix form

MGΞG = EG (4.9)

where MG is the influence matrix, ΞG = [ξ1, . . . , ξLG ]
⊤ and ∂ΩG−4 denotes

the physical boundary ∂ΩG without four collocation points which are removed
from the system of equations in order to invert the influence matrix MG.
The singular nature of the influence matrix was discussed in Ehrenstein and
Peyret (1989). In the present algorithm, the singularity of system (4.8) was
removed eliminating four collocation points located close to the corners of
the domain Ω (Ehrenstein and Peyret, 1989). As algorithm (4.9) involves all
collocation points on the boundary ∂Ω it will be named the global influence
matrix method (for short GIM method).

Summing up, the multi-domain algorithm based on the global influence
matrix is as follows:

1. Preprocessing stage:

(a) Solution to problems (4.6) and (4.7) using the iterative domain de-
composition method (Louchart et al., 1998) taking into account
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patching conditions (4.4) and storing the solutions (ωpm,l, ψ
p
m,l),

p = {L, Ik, R}, k = 1, ..., N Iel in each subdomain Ωm,
m = {L, Ik, R}, for k = 1, . . . , N

I
el.

(b) Formulation of the global influence matrix MG on the master pro-
cessor, inversion of this matrix and storage of the inverse.

2. At each time step:

(a) Calculation of the right-hand side f in Eq. (4.2).

(b) Solution to the P̃m-problem (Eqs. (4.2) and (4.3)) using the itera-
tive domain decomposition method (Louchart et al., 1998) taking
into account patching conditions (4.4).

(c) Calculation of the right-hand side of Eq. (4.9) – transmission of the
data from all processors to the master one.

(d) Computation of the coefficients ξ (Eq. (4.9)) on the master proces-
sor by simple matrix-vector multiplication.

(e) Transmission of the coefficients ξ from the master processor to the
other ones.

(f) Calculation of the final solution using Eqs. (4.5) and (4.1).

It should be noted that in the present algorithm the influence matrix MG
was inverted on one processor before time integration, and at each time step
an evaluation of the unknown coefficients ξ was obtained by simple matrix-
vector multiplication. This method can be however applied for solution of the
problems where the decomposition into a limited number of subdomains will be
considered, otherwise the communication overheads can increase substantially.

As an alternative, the iterative influence matrix algorithm is proposed
based on the solution to the local system of equations in each subdomain Ωm,
m = {L, Ik, R}, for k = 1, . . . , N

I
el. The solution to problems (4.2)-(4.3) and

(4.6)-(4.7) is the same as before requiring that patching conditions (4.4) should
be fulfilled at the interfaces between subdomains, while Eqs. (4.5) can be
defined for the subdomain (m = L) in the following way

ωL ≡
LL∑

l=1

γ
L,(n)
l ωLL,l +

NI
el∑

k=1

LIk∑

l=1

γ
Ik,(n−1)
l ωIkL,l +

LR∑

l=1

γ
R,(n−1)
l ωRL,l

(4.10)

ψL ≡
LL∑

l=1

γ
L,(n)
l ψ

L
L,l +

NI
el∑

k=1

LIk∑

l=1

γ
Ik,(n−1)
l ψ

Ik
L,l +

LR∑

l=1

γ
R,(n−1)
l ψ

R
L,l
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where (n) is the number of iteration steps assuming that the coefficients
γp,(n) = γp, p = {L, Ik, R}, k = 1, . . . , N

I
el as n→∞. In Eqs. (4.10), the coeffi-

cients γIk,(n−1) and γR,(n−1) related to the subdomains ΩIk for k = 1, . . . , N
I
el

and ΩR will be taken from the previous iterative step (n − 1). Taking into
account Eq. (4.10)2 and the Neumann condition in Eq. (3.4), the following
system of equations is defined for n ­ 1 allowing one to obtain the unknown
coefficients γL,(n)

LL∑

l=1

(
∂nψ

L
L,l

∣∣
η
LL
j

)
γ
L,(n)
l = (hL − ∂nψ̃L)ηLL

j

−

NI
el∑

k=1

LIk∑

l=1

(
∂nψ

Ik
L,l

∣∣
η
LL
j

)
γ
Ik,(n−1)
l +

(4.11)

−
LR∑

l=1

(
∂nψ

R
L,l

∣∣
η
LL
j

)
γ
R,(n−1)
l

ηLLj ∈ ∂Ω
c
L−2 ⊂ ∂Ω

c
L

j = 1, . . . , LL

which can also be written in the matrix form

MLΞL = EL (4.12)

where ΞL = [γ1, . . . , γLL ]
⊤. In Eq. (4.12), the number of collocation points

related to the boundary ∂ΩcL is equal to LL = 2(N−1)+(M−1) (see Fig. 1),
while two collocation points should be removed from the system of equations
in order to invert the influence matrix ML. The singularity of the system is
removed in a similar way as proposed by Ehrenstein and Peyret (1989) for
solution of the monodomain problem.
Equations (4.10) can be readily defined for other subdomains ΩIk ,

k = 1, . . . , N Iel and ΩR, while here the systems of equations for computa-
tion of the coefficients γp,(n), p = {L, Ik, R}, k = 1, . . . , N

I
el will be mainly

shown.
Next, for each subdomain ΩIk , k = 1, . . . , N

I
el, the following local system

of equations is defined

LIk∑

l=1

(
∂nψ

Ik
Ik,l

∣∣
η
LIk
j

)
γ
Ik,(n)
l = (hIk − ∂nψ̃Ik)

η
LIk
j

−
LL∑

l=1

(
∂nψ

L
Ik,l

∣∣
η
LIk
j

)
γ
L,(n−1)
l +

−

NI
el∑

p=1
(p6=k)

LIp∑

l=1

(
∂nψ

Ip
Ik,l

∣∣
η
LIk
j

)
γ
Ip,(n−1)
l −

LR∑

l=1

(
∂nψ

R
Ik,l

∣∣
η
LIk
j

)
γ
R,(n−1)
l (4.13)

η
LIk
j ∈ ∂ΩcIk j = 1, . . . , LIk

which can also be written in the matrix form

MIkΞIk = EIk (4.14)
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where ΞIk = [γ1, . . . , γLIk ]
⊤. It should be stressed that the influence ma-

trix MIk is not singular as only one Neumann boundary condition can be de-
fined at the physical boundary ∂ΩcIk , thus the resulting number of equations
is equal to LIk = 2(N − 1).

Finally, the following system of equations is defined in the subdomain ΩR
for evaluation of the coefficients γR,(n)

LR∑

l=1

(
∂nψ

R
R,l

∣∣
η
LR
j

)
γ
R,(n)
l = (hR − ∂nψ̃R)ηLR

j

−
LL∑

l=1

(
∂nψ

L
R,l

∣∣
η
LR
j

)
γ
L,(n−1)
l +

(4.15)

−

NI
el∑

k=1

LIk∑

l=1

(
∂nψ

Ik
R,l

∣∣
η
LR
j

)
γ
Ik,(n−1)
l

ηLRj ∈ ∂Ω
c
R−2 ⊂ ∂Ω

c
R

j = 1, . . . , LR

or equivalently

MRΞR = ER (4.16)

where ΞR = [γ1, . . . , γR]
⊤ knowing that the number of collocation points on

the boundary ∂ΩcR is equal to LR = 2(N − 1)+ (M − 1). Similarly as for ΩL,
the influence matrix MR is singular as two eigenvalues are equal to zero. The
singularity was removed by removing two equations related to the collocation
points located close to the corners of the physical boundary ∂ΩcR (Ehrenstein
and Peyret, 1989).

Further, in order to avoid some convergence difficulties using the iterative
influence matrix method, new coefficients γ̂p,(n), p = {L, Ik, R} can be com-
puted for the next iterative step (n + 1) using the relaxation formula shown
below (after solving of Eqs. (4.12), (4.14) and (4.16))

γ̂p,(n+1) = θγp,(n) + (1− θ)γ̂p,(n) (4.17)

where 0 < θ ¬ 1 is the relaxation factor.

Summing up, the multi-domain algorithm based on the iterative influence
matrix method is as follows:

1. Preprocessing stage:

(a) Solution to problems (4.6) and (4.7) using the iterative domain de-
composition method (Louchart et al., 1998) taking into account
patching conditions (4.4) and storing the solutions (ωpm,l, ψ

p
m,l),

p = {L, Ik, R}, k = 1, . . . , N Iel in each subdomain Ωm,
m = {L, Ik, R}, for k = 1, . . . , N

I
el.



An influence matrix technique... 29

(b) Formulation of the local influence matrices ML, MIk for
k = 1, . . . , N Iel and MR in each subdomain Ωm, m = {L, Ik, R}, for
k = 1, . . . , N Iel (Eqs. (4.12), (4.14) and (4.16)), their inversion and
storing the inverses.

2. At each time step:

(a) Calculation of the right-hand side f in Eqs. (4.2).

(b) Solution to the P̃m-problem (Eqs. (4.2) and (4.3)) using the itera-
tive domain decomposition method (Louchart et al., 1998) taking
into account patching conditions (4.4).

(c) Computation of the coefficients γ̂p for p = {L, Ik, R},
k = 1, . . . , N Iel using the iterative influence matrix method sum-
marized below.

(d) Setting ξp = γ̂p and computing the final solution using Eqs. (4.5)
and (4.1).

The iterative influence matrix method based on the local influence matrices
can be summarized as follows:

1. Evaluation of the right-hand side of the Eqs. (4.12), (4.14) and (4.16)
setting at the first time step the initial values of γp,(n−1), p = {L, Ik, R},
k = 1, . . . , N Iel equal to zero.

2. Solution to Eqs. (4.12), (4.14) and (4.16) in each subdomain Ωm,
m = {L, Ik, R}, for k = 1, . . . , N

I
el.

3. Computation of the coefficients γ̂p,(n), p = {L, Ik, R}, k = 1, . . . , N
I
el

using formula (4.17).

4. Transmission of the data (γ̂p,(n), p = {L, Ik, R}, k = 1, . . . , N
I
el) between

the subdomains (processors).

5. Computation of the right-hand side of Eqs. (4.12), (4.14) and (4.16)
for the next iteration step replacing the values of γp,(n) by γ̂p,(n),
p = {L, Ik, R}, k = 1, . . . , N

I
el.

6. Repeating steps from 2 to 5 until convergence is obtained.

The iterative algorithm based on the solution to the local influence matrices
will be named the local influence matrix method (LIM).
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5. Results

The numerical results will be presented for solving two-dimensional problems
including driven cavity flows and the natural convection problem in the cavity
of a hight aspect ratio. First, the accuracy of the Navier-Stokes solver will
be checked for the solution to the lid- and regularized driven cavity flows in
the monodomain case. Next, the accuracy of multi-domain algorithms imple-
mentation will be analysed for solution of the driven cavity problems splitting
the computational domain into a few subdomains in one space direction co-
upling the influence matrix method (GIM and LIM methods) and the domain
decomposition algorithm by Louchart et al. (1998). The application of the
multi-domain techniques will also be presented for solving the natural convec-
tion problem using the iterative influence matrix method. Lastly, some results
concerning the implementation of the algorithms on parallel computers will
be presented.

The following error ǫΓ is computed based on the errors ǫ
m
Γ computed at

the interfaces between subdomains using the iterative domain decomposition
algorithm by Louchart et al. (1998)

ǫΓ = max(ǫ
m,q
Γ )

(5.1)

ǫm,qΓ =
max[ϕ(n)(Γm,q)− ϕ

(n−1)(Γm,q)]

max[ϕ(n)(Γm,q)]

where ϕ denotes the corresponding solution, m = {L, Ik, INI
el
},

q = {I1, Ik+1, R}, k = 1, . . . , N
I
el − 1, while for the iterative influence ma-

trix method based on the solution to the local influence matrices the error
ǫinfl is computed

ǫinfl = max(ǫ
m
infl) ǫminfl =

max[γ
(n)
m − γ

(n−1)
m ]

max[γ
(n)
m ]

(5.2)

where m = {L, Ik, R}, k = 1, . . . , N
I
el. The convergence of the iterative domain

decomposition algorithm was obtained assuming ǫΓ < 10
−8.

5.1. Driven cavity problems

In order to check correctness of the present solver implementation using
monodomain and multi-domain approaches, mainly two test cases are conside-
red. The first problem concerns the lid-driven cavity flow (Ω = [0, a]2, a = 1)
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where the velocity components at the moving side of the cavity are equal to
u = 1 and v = 0, and the second one considers the regularized driven cavity
test case where u and v are defined as below (Ehrenstein and Peyret, 1989)

u(x, 1) = −16x2(1− x)2 v(x, 1) = 0 (5.3)

while on the other sides of the cavity u = 0 and v = 0. Equations (2.1)
are made dimensionless by using lref = a, uref = max[abs(u(x, a))] = 1 and
tref = lref/uref as the reference length, velocity and time, respectively.
Figure 2 shows the profiles of two velocity components at the vertical and

horizontal centrelines of the cavity obtained for the solution to the lid-driven
cavity flow at various Reynolds numbers. The present results obtained using
the spectral collocation method are compared with the benchmark results of
Ghia et al. (1982), where the central-difference scheme was applied. In the
computations by Ghia et al. (1982) a fine computational mesh was used con-
sisting of N = M = 129 grid points, while in the current computations the
number of collocation points was equal to N = M = 24 for Re = 100 and
Re = 400, while for Re = 1000, N = M = 30. Both results are in good
agreement.

Fig. 2. Velocity profiles of u- (left) and v-velocity (right) components at centrelines
of the cavity (lid-driven cavity problem)

For the regularized driven cavity problem, the following parameters
M1 = max(ψi,j) and M2 = max(ωi,j) are determined at the collocation points.
Table 1 shows a comparison of these parameters as well as their localization in
the computational domain with the literature data of Ehrenstein and Peyret
(1989) and Hugues and Randriamampianina (1998). It should be noted that
in Ehrenstein and Peyret (1989), the similar influence matrix method was ap-
plied for solution of the ψ−ω equations as in the present case, while in Hugues
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and Randriamampianina (1998), the projection method was used for solution
of the incompressible Navier-Stokes equations in the velocity-pressure formu-
lation. The values of M1 and M2 obtained using the present algorithm agree

Table 1. Influence of the grid resolution (N = M) on M1 and M2 for the
regularized driven cavity problem (Re = 400). Localization of these quantities
is shown in brackets (for M2 on the top side of the cavity y = 1). The literature
data of Ehrenstein and Peyret (1989) and Hugues and Randriamampianina
(1998) are denoted respectively by EP and HR

N =M M1 M2 MEP
1

MEP
2

MHR
1

MHR
2

16 8.5379E-02 25.2328 8.5378E-02 25.2329 8.5979E-02 25.0387
(0.40, 0.60) (0.60) (0.40, 0.60) (0.60) (0.40, 0.60) (0.60)

20 8.5213E-02 24.6692 8.5213E-02 24.6693 8.5185E-02 24.6404
(0.42, 0.58) (0.65) (0.43, 0.58) (0.65) (0.42, 0.58) (0.65)

24 8.5716E-02 24.9343 8.5716E-02 24.9344 8.5718E-02 24.9333
(0.43, 0.63) (0.63) (0.43, 0.63) (0.63) (0.43, 0.63) (0.63)

32 8.5481E-02 24.7844 8.5480E-02 24.7845 8.5481E-02 24.7844
(0.40, 0.60) (0.65) (0.40, 0.60) (0.60) (0.40, 0.60) (0.65)

within 0.001% with the results of Ehrenstein and Peyret (1989) and within
0.8% with the data of Hugues and Randriamampianina (1998). Localizations
of the maxima are the same as shown in Ehrenstein and Peyret (1989) and
Hugues and Randriamampianina (1998). This confirms the correctness of the
influence matrix implementation in the monodomain case.

For the lid-driven cavity problem, a comparison of the profiles of the u-
velocity components at the vertical centreline of the cavity for monodomain
and multi-domain cases assuming various Reynolds numbers is shown in Fig. 3.
In the multi-domain case, the domain decomposition algorithm together with
the GIM method was used by splitting the domain Ω into two and four subdo-
mains. The results obtained for the solution of the monodomain problem and
using the multi-domain technique are in good agreement and confirm the cor-
rectness of the iterative domain decomposition and influence matrix methods
implementation.

Table 2 shows values of M1 and M2 and their localization in the compu-
tational domain Ω applying the GIM and LIM methods splitting the compu-
tational domain into three subdomains. The solutions were obtained assuming
different numbers of Chebyshev modes (N) in the x-direction. For the itera-
tive influence matrix method, the value of ǫinfl < 10

−5. As it can be seen, the
values of these quantities are close to each other and their localizations are
identical.
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Fig. 3. Velocity profiles of the u-velocity component at the vertical centreline of the
cavity for various Reynolds numbers (left) and magnified view (right). Solid line –
one domain; dashed line – two subdomains; dased-dotted line – four subdomains

Table 2. Values of M1 and M2 and localization of these quantities (in brac-
kets) for solution of the regularized driven cavity flow applying the GIM and
LIM algorithms splitting the computational domain into three subdomains
(Re = 400)

M N MGIM
1

MGIM
2

MLIM
1

MLIM
2

24 8 8.4723E-02 24.9272 8.4723E-02 24.9286
(0.44, 0.63) (0.62) (0.44, 0.63) (0.62)

24 10 8.6075E-02 24.8974 8.6074E-02 24.8999
(0.40, 0.63) (0.63) (0.40, 0.63) (0.63)

24 12 8.5848E-02 24.8932 8.5848E-02 24.8951
(0.42, 0.63) (0.62) (0.42, 0.63) (0.62)

5.2. Natural convection in tall cavity

As the next example, the solution to the natural convection in the compu-
tational geometry of high aspect ratio is considered, where the multi-domain
approach is implemented along the direction of high length. The heat transfer
process and fluid motion are governed by the following energy and Navier-
Stokes equations within the Boussinesq approximation

∂tT + V · ∇T = ∇
2T

∂tω +A(V , ω) = F + Pr∇
2ω (5.4)

∇2ψ + ω = 0
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where the dimensionless temperature is defined as T = (T̂ − T̂cold)/∆T̂ ,
∆T̂ = (T̂hot − T̂cold) > 0 and the body force F = −RaPr∂xT where Ra
and Pr are the Rayleigh and Prandtl numbers

Ra =
gαT∆T̂ l

3
ref

κT ν
Pr =

ν

κT
(5.5)

The Navier-Stokes equations are normalized by taking as the reference
length, time and velocity the following values respectively lref =W/2, where
W is the width of the cavity, and tref = l2ref/κT and uref = κT /lref . κT is
the thermal diffusivity, αT is the thermal expansion coefficient and g is the
gravitational acceleration. The scheme of computational geometry is shown in
Fig. 4, where the horizontal walls are assumed to be adiabatic and the vertical
ones are maintained at constant temperatures set to zero at the left side and
to one at the right one. The gravitational acceleration acts parallelly to the
walls kept at constant temperatures. All velocity components are equal to zero
at the boundaries of the computational domain. The value of ǫinfl was set to
be ǫinfl < 10

−4 and θ = 0.9 in Eq. (4.17).

Fig. 4. Scheme of the computational domain for natural convection problem and the
boundary conditions for temperature

Figure 5 shows the results obtained using the LIM method, where the
computational domain was split into Nel = 10 subdomains following the y-
direction (taking the same number of processors). Temporal evolution of the
flow structures can be observed during transient stages where the flow starts
to develop from the monocellular case characterised by the conduction regime.
In the successive time steps, when the convection becomes dominant, different
flow behavior can be seen before the five-cell structure is formed at the final
state.
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Fig. 5. (a-f) Iso-stream function contours during the transient stage and (g) the
temperature field at the final stage for AR = 10 and Nel = 10, using N =M = 20

in each subdomain, ∆t = 0.0005 at Ra = 1000, Pr = 0.01

It should be stressed that only few iterative steps were necessary in order
to obtain converged solutions for ψ̃ and T at each time step, while about 30
iterative steps were necessary for ω̃ using the iterative domain decomposition
algorithm (Louchart et al., 1998). This confirms the observations reported in
Louchart et al. (1998) and in Louchart and Randriamampianina (2000) where
the same iterative algorithm was applied for solution of the Navier-Stokes
equations in the velocity-pressure formulation. It was showed in Louchart and
Randriamampianina (2000) that only two iteration steps were necessary in
order to obtain a converged solution for the variables having Dirichlet or mixed
boundary conditions, while for the pressure the number of iteration steps was
higher increasing the number of subdomains due to the Neumann boundary
conditions. In the present work, the number of iteration steps does not change
significantly increasing the number of subdomains as the Dirichlet and mixed
boundary conditions were only involved for solution of the energy and the
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Navier-Stokes equations in the vorticity-streamfunction formulation, however
a much higher number of iterations was required for ω̃ than for the other
variables.

5.3. Parallel performance

Figure 6 (left) shows the speed-up (S) obtained running the iterative do-
main decomposition algorithm on Np processors. It is defined as the ratio of
the computational time t1 executing the parallel program on a single processor
to the time tp obtained on Np processors, S = t1/tp. The speed-up obtained
applying the iterative domain decomposition algorithm proposed by Louchart
et al. (1998) was measured for solving of the 2D Helmholtz equation

−∇2um + σum = f in Ωm

um = 0 on ∂Ωm\Γ
(5.6)

since the same type of equation is solved at each time-cycle using the presen-
ted above time discretization scheme (Eqs. (4.2)-(4.3), (4.6)-(4.7)), with the
same patching conditions (4.4) specified at the interfaces between subdoma-
ins Ωm. The constant σ was equal to unity, while the right-hand side of the
Eq. (5.6) was computed in such a way that u = sin(πx/(a + b)) sin(πy) for
Ω = (a, b) × (0, 1), a = 0, b = 0.5Nel. The tests have been performed on the
PC-cluster of the Linux system with the Fast Ethernet network. The commu-
nication between processors was established using MPI standard libraries.

Fig. 6. (left) Speed-up obtained using the Louchart et al. (1998) algorithm and
(right) ratio of the computational time obtained using the LIM and GIM algorithms

As shown, the speed-up obtained running the parallel algorithm on 12
processors is about S = 8 for N =M = 40 and S = 10 for N =M = 80. This
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confirms good performance of the iterative algorithm proposed by Louchart et
al. (1998) for solution of the Helmholtz equation on parallel computers.

Comparison of computational costs between the LIM and GIM methods is
performed for the natural convection problem running the parallel algorithm
on a different number of processors assuming that the number of processors
is equal to the number of subdomains. Figure 6 (right) shows the ratio of the
computational time obtained using both influence matrix methods assuming a
different problem size (N =M) in each subdomain. As it can be seen, running
the parallel code on four processors, a smaller computational time is necessary
using the GIM method than applying the LIM algorithm if the local problem
size is small enough (N = M = 16). It can be explained by the fact that
using the GIM algorithm, the unknown coefficients ξ are obtained by simple
matrix-vector multiplication which can be performed in an efficient way using
the Fortran Library routine. On the other hand, increasing the number of
collocation points and the number of subdomains, the execution time can be
considerably reduced by applying the iterative method. Running the problem
on a higher number of processors (for N =M = 30), the time obtained using
the LIM method is about 40% smaller than using the GIM algorithm.
The present LIM approach based on solution of the local influence matrices

in each subdomain can be therefore considered as a good alternative to other
influence matrix algorithms based on the global influence matrix formulation
(GIM method or algorithm of Raspo (2003)) if decomposition into a higher
number of subdomains is considered.

6. Summary

New multi-domain algorithms were presented for solution of the energy and
Navier-Stokes equations using the vorticity-streamfunction formulation based
on the iterative domain decomposition scheme and the influence matrix tech-
nique. The influence matrix method was applied to treat the lack of boundary
condition for vorticity at the physical boundary ∂Ω of the computational
domain Ω.

The unknown coefficients ξ (unknown values of vorticity) were evaluated
at the boundary of the computational domain applying the following algori-
thms: the global influence matrix technique (GIM method) and the iterative
method based on the solution to the local system of equations in each sub-
domain (LIM method). The first method based on formulation of the global
system of equations can be effectively applied for solution of the problems
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where decomposition into a small number of subdomains is considered. The
inversion of the global influence matrix can be done in the preprocessing stage
on the master processor allowing one to evaluate the unknown coefficients at
each time-cycle by simple matrix multiplication. The collective communica-
tion between the master and other processors was applied in that case. In the
second algorithm, the local influence matrices were formulated and inversed
locally in each subdomain in the preprocessing stage, while at each time-cycle
the unknown coefficients were obtained using the iterative influence matrix
where the ”point-to-point” communication procedures were applied for data
transmission between the processors.

The accuracy of both algorithms was checked for solution of the benchmark
driven cavity problems, and finally some solutions to the natural convection
problem in tall cavity were presented splitting the computational domain into
Nel = 10 subdomains in one space direction. Good agreement with the bench-
mark results were obtained for the solution to the monodomain and multi-
domain problems confirming correctness of the influence matrix and domain
decomposition methods implementation.

The parallel performance of the iterative influence matrix methods were
analysed for solution of the natural convection problem, and it was shown
that the computational time obtained using the LIM method was smaller
than applying the GIM algorithm if the decomposition into a higher number
of subdomains was considered (running the algorithm on a higher number of
processors). The former algorithm can be then considered as a good alternati-
ve to the global influence matrix formulations if the solution to the problems
involving both spectral approximation and the multi-domain technique is con-
sidered.
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Zastosowanie metody macierzy wpływu w połączeniu z metodą

dekompozycji obszaru obliczeniowego do rozwiązania równań

Naviera-Stokesa sformułowanych w postaci wirowość-funkcja prądu

Streszczenie

W pracy przedstawiono nowy iteracyjny algorytm dekompozycji obszaru oblicze-
niowego oparty na metodzie macierzy wpływu w zastosowaniu do równań Naviera-
-Stokesa dla przepływu czynnika nieściśliwego w sformułowaniu wirowość-funkcja
prądu. Spektralna metoda kolokacji wykorzystująca szeregi wielomianów Czebysze-
wa oraz metoda macierzy wpływu została zastosowana do rozwiązania zagadnienia
Stokesa, będącego rezultatem dyskretyzacji równań Naviera-Stokesa w funkcji cza-
su, w każdym z podobszarów obszaru obliczeniowego, natomiast warunek ciągłości
rozwiązania i jego pierwszej pochodnej na powierzchniach rozdziału pomiędzy pod-
obszarami został uzyskany przy pomocy metody iteracyjnej.
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