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In this paper, the effect of geometry and impedance on the acoustic behavior of wall and
lined cylindrical ducts is investigated using a numerical model which enables one to compute
the reflection and the transmission coefficients of such ducts using the multimodal scattering
matrix. From this matrix, the acoustic power attenuation is deduced. By using these tools,
the effect of duct diameter increase and duct diameter decrease of the wall or lined duct
section is studied. The numerical results are obtained for two configurations of wall and
lined ducts. Numerical coefficients of transmission and reflection as well as the acoustic
power attenuation show the relative influence of each type of variation.
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1. Introduction

The acoustic performance of duct systems is evaluated with different matrices such as the transfer
matrix, the mobility matrix and the scattering matrix. This later showed its efficiency not
only because it describes the reflection and the transmission phenomena of the studied duct as
presented in Abom (1991), Leroux et al. (2003), Bi et al. (2006), Sitel et al. (2006) and Taktak
et al. (2010), but also because it describes the energetic state of the duct element as presented
in Sitel et al. (2006), Taktak et al. (2010), Aurégan and Starobinski (1998).

In a previous work, Taktak et al. (2010) developed a numerical method based on the finite
element method to compute the multimodal scattering matrix of a lined axisymetric duct element
to investigate the effect of a locally reacting liner. Then, that numerical method was developed
to incorporate the flow effect in Taktak et al. (2012, 2013). Finally, Ben Jdidia et al. (2014) used
the multimodal scattering matrix to evaluate the effect of temperature on acoustic behavior of
the duct element lined with porous materials.

In this work, the effect of discontinuities in duct systems is investigated based on the use of
the multimodal scattering matrix. This objective is achieved by studying two types of cylindrical
ducts having sudden changes of the section. In the present work, it is supposed that these section
changes are lined. Then, the effect of geometrical dimensions and the liner on the acoustic
performances of the studied ducts is investigated by computing the reflection, transmission
coefficients and the acoustic power attenuation of these ducts.

The outline of the paper is as follows. The studied problem and numerical computation of the
multimodal scattering matrix are presented in Section 2. Then, the used acoustic impedance to
model the liner is presented in Section 3. Section 4 presents the computation of acoustic power
attenuation from the multimodal scattering matrix. Finally, numerical results are presented
and discussed in Section 5 to evaluate the influence of duct diameter increase or duct diameter
decrease effects on the reflection and transmission coefficients and the acoustic power attenuation
of the studied ducts.
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2. Numerical computation of the multimodal scattering matrix

In this study, a 1m length cylindrical duct element is studied. Two cases of this duct are
investigated:

• The first case, as presented in Fig. 1, is a cylindrical duct with radius R located between
the two axial coordinates zL and zR and presenting an abrupt stricture of the section
between z1 and z2 with radius ρ. The length of the duct is divided into three parts: two
identical parts with length b and radius R and the third part in the middle with length c
and radius ρ.

Fig. 1. Section having a duct diameter decrease and then a sudden duct diameter increase section

• The second case, as presented in Fig. 2, is a cylindrical duct with radius ρ located between
the two axial coordinates zL and zR and presenting an abrupt expansion of the section
between z1 and z2 with radius R. The length of the duct is divided into three parts: two
identical parts with length b and radius ρ and the third part in the middle with length c
and radius R.

Fig. 2. Section with a duct diameter increase and then a sudden duct diameter decrease section

In the present study, we suppose that the abrupt change of the section is lined by a liner
composed of a perforated plate and an absorbing porous material backed by a rigid plate. This
liner is modeled later by its normalized acoustic impedance Z.
The multimodal scattering matrix is relating the out-coming modal pressures array
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to the incoming modal pressures array
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as follows (Abom et al., 1991; Taktak et al., 2010)

Pout2N = S2N×2NP
in
2N =

[

RIN×N TI→II N×N
TII→I N×N RIIN×N

]

2N×2N

Pin2N (2.1)

where m and n are respectively the circumferential and radial wave numbers, N is the number
of propagating modes in both cross sections.
RImn,pqis the reflection coefficient of the wave incident to the element from side I, TII→I mn,pq is

the transmission coefficient of the wave from side II to side I, RIImn,pq is the reflection coefficient
of the wave incident to the element from side II and TI→II mn,pq is the transmission coefficient
of the wave from side I to side II.
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The acoustical pressure p in the duct is obtained by solving the Helmholtz equation with the
boundary conditions

k2p+∆p = 0 for Ω

∂p

∂nW
= 0 for ΓWD

Z
∂p

∂nL
= iωρp for ΓLD

(2.2)

k is the wave number, Ω is the acoustic domain inside the duct, ΓWD and ΓLD correspond to
the rigid and lined walls, respectively, nW and nL are the normal vectors of these walls.

The corresponding weak variational formulation of the studied problem is

Π = −

∫

Ω

(∇q · ∇p) dΩ + k2
∫

Ω

qp dΩ +

∫

⋃
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q
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∂ni
dΓi = 0 (2.3)

q is the test function, dΩ and dΓi are the integration elements through the duct domain and
boundaries, respectively, and

⋃

Γi presents the whole boundary. The use of modal decomposition
at left and right boundaries (ΓL and ΓR) introduces the modal pressures as additional degrees
of freedom of the model as presented in the following expression
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with a being the duct radius (a = R or ρ) and r the radial coordinate.

The last integral of formulation (2.3) is given by the following expression by adding the
modal incoming and outcoming pressures as additional degrees of freedom to the model

∫

⋃

Γi

q
∂p

∂n
dΓ =

∫

Γt

q
( iωρp

Z

)

dΓLD +
Nr
∑

n

ikmn

[(

nL(P
I+
mn − P

I−
mn)

∫

ΓL

qJm(χmnr) dΓL

)

+

(

nR(P
II+
mn − P

II−
mn )

∫

ΓR

qJm(χmnr) dΓR

)]

(2.5)

Jm is the Bessel function of the first kind of the order m, χmn is the nth root satisfying the
radial hard-wall boundary condition on the wall of the main duct, r is the radial coordinate,
nL and nR are the normal vectors.

For a fixed m, system (2.3) results in the following matrix system by taking into account the
boundary conditions (Taktak et al., 2010)
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M is the node number in the domain Ω, K is a matrix relating the test function to the nodal
pressures in the domain, E1, E2, F1 and F2 are matrices relating the test function to the modal
pressures on ΓL and ΓR, G1, G2 and G3 are matrices relating the nodal acoustic pressures in Ω
to different modal pressures on the boundary ΓL,H1,H2 andH3 are matrices relating the nodal
acoustic pressures to different modal pressures on the boundary ΓR.
The azimutal scattering matrix is written as

∆ =
(

V−CK−1B−1
)(

U−CK−1A−1
)

(2.7)

where A, B, C, U and V are defined as

A =
[

E1 F2

]

B =
[

E2 F1

]

C = G1 +H1

U =
[

G2 H3

]

V =
[

G3 H2

] (2.8)

The total scattering matrix S2N×2N is achieved by repeating this operation for each m and by
gathering the azimutal matrices ∆2Nr×2Nr .

3. Normalized acoustic impedance of the liner

In this study, a liner composed of a perforated plate and an absorbing porous material backed
by a rigid plate is used. The normalized acoustic impedance of the liner is obtained as follows

Z = Zporous material + Zperforated plate (3.1)

with

Zporous material = Zc coth(jkcdm) (3.2)

Zc and kc are the surface characteristic impedance and propagation constant of the porous
material, respectively, and dm is the material depth. The values of Zc and kc are estimated by
the Delany-Bazley model (Delany and Bazley, 1970) expressed as follows

Zc = Z0
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]

(3.3)

where f is the frequency, σ is the flow resistivity, Z0 = ρ0c0 is the characteristic impedance of
the air, ρ0 is the air density, c0 is the sound celerity in the air and ω is the pulsation (ω = 2πf).
For the perforated plate, the acoustic impedance model of Elnady and Boden (2003) is used

ZE = Re
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(3.4)

with CD being the discharge coefficient, dp – pore diameter, t – plate thickness, σp – plate
porosity, δre and δim – correction coefficients
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with ν as the kinematic viscosity and

ν ′ = 2.179
µ

ρm
(3.6)

where µ is the dynamic viscosity and ρm is the material density.

4. Computation of the acoustic power attenuation

The acoustic power attenuation Watt which is defined by the ratio between the incoming acoustic
powerW in and the outcoming acoustic powerW out of the duct can be written as follows (Taktak
et al., 2010)

Watt(dB) = 10 log
W in

W out
= 10 log

2N
∑
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2
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∑
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(4.1)

where λi and di are respectively the eigenvalues and the components of eigenvectors of the
matrix H defined as follows

H2N×2N = S
′T∗
2N×2NS

′

2N×2N S′2N×2N = X2N×2NS2N×2NX
−1
2N×2N

X2N×2N =





[

diag (
√

Nmnkmn/(2ρ0c0k)
]

N×N
0N×N

0N×N

[

diag (
√

Nmnkmn/(2ρ0c0k)
]

N×N





(4.2)

with
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(4.3)

where S = πa2 is the cross section area, and

kmn =

√

k2 −
(χmn
a

)2
(4.4)

where kmn is the axial wave number associated to the mode (m,n) in the main duct.

5. Numerical results

The characteristics of the used liner are:

• The perforated plate: thickness e = 1mm, hole diameter dp = 1mm with a perforation
ratio σp = 2.5%.

• The porous material: thickness dm = 20mm and the flow resistivity σ = 26000 Nsm
−1.

• The rigid wall plate.

The acoustic impedance computed using these characteristics according to the Delany and Bazley
(1970) model is then used as an input for computation of the numerical multimodal scattering
matrix and the acoustic power attenuation of the studied ducts. The effect of two geometrical
parameters is studied: the length and the radius of the section change.
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5.1. Duct having a diameter decrease

In this part, the case presented in Fig. 1 is treated: the duct presents a diameter decrease
characterized with length equal to c and radius equal to ρ. This part of the duct is lined with
the studied liner. In the following, the ffect of change of these parameters is investigated.

5.1.1. Effect of change in length

The scattering matrix coefficients and the acoustic power attenuation are calculated in the
cases of wall and lined ducts having a duct diameter decrease in order to determine the influence
of duct diameter decrease part length on its acoustic behavior. The duct has 0.05m radius and
length of 1m. The duct diameter decrease is 0.025m. Fourth configurations of the ducts are
studied:

• First configuration: the length of the duct is divided into three portions: b = 0.4m and
c = 0.2m, which makes the percentage of the duct diameter decrease portion equal to 20%.

• Second configuration: the length of the duct is divided into three portions: b = 0.3m and
c = 0.4m, which makes the percentage of the duct diameter decrease portion equal to 40%.

• Third configuration: the length of the duct is divided into three portions: b = 0.2m,
c = 0.6m, which makes the percentage of the duct diameter decrease portion equal to 60%.

• Fourth configuration: the length of the duct is divided into three portions: b = 0.1m,
c = 0.8m, which makes the percentage of the duct diameter decrease portion equal to 80%.

The reflection coefficients R00,00 with and without the liner have the same shape (Fig. 3),
except that in the treated length these coefficients are significantly attenuated. Note that all
R10,10 (Fig. 4) are equal to zero except for the forth configuration for values of ka ranging 2.5
to 3.8 when not treated. On the other hand, R20,20 reflection coefficients do not show a difference
for the treated or not treated length.

Fig. 3. Reflection coefficient R00,00 versus ka for several configurations. Duct diameter decrease case
(a) without liner, (b) with liner

The more the length of the duct diameter decrease increases, the more the transmission de-
creases and the transmission decreases as the attenuation increases. Note that all transmissions
T10,10 and T20,20 in the free driving material are equal to zero throughout the frequency range
studied (no transmission according to both directions of wave propagation) except for T00,00
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Fig. 4. Modulus of the reflection coefficient R10,10 versus ka for several configurations. Duct diameter
decrease case (a) without liner, (b) with liner

Fig. 5. Modulus of the transmission coefficient T00,00 versus ka for several configurations. Duct diameter
decrease case (a) without liner, (b) with liner

transmission submitting a response for values of ka ranging [0, 4]. For T00,00 (Fig. 5), all confi-
gurations exhibit harmony behavior for ka ranging from 0 to 4. Figure 6 presents the acoustic
power attenuation of the studied cylindrical duct versus ka for different studied configurations.
The results show that attenuation reaches a maximum near ka equal 2.5. The amplitude of this
maximum is about 4.8 dB, 4.3 dB, 4 dB and 3 dB for the fourth, third, second and first con-
figuration, respectively. These figures show more clearly that the length of the duct diameter
decrease increases more than the attenuation increases. In terms of materials without reflection,
the more the length of the duct diameter decrease increases, the more the reflections decrease.
The unreflective wave will be absorbed. For the treated length, the unreflective wave will be
partly absorbed and the rest part refracted. The more the length of the duct diameter decrease
increases (from the fourth to first configuration), the more the large part of the wave will be
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Fig. 6. Acoustic attenuation versus ka for several configurations. Duct diameter decrease with liner

absorbed. This seems logical as the more the length of the duct diameter decrease increases, the
more the surface of the material increases, and the absorption is greater.

5.1.2. Effect of the variation of the radius

The scattering matrix coefficients and the acoustic power attenuation are calculated in the
cases of wall and lined ducts having a duct diameter decrease in order to determine the influence
of the duct diameter decrease part radius on its acoustic behavior. The duct has 0.05m in radius
and length of 1m. The length of the duct is divided into three portions: the rigid length is equal
to 0.35m, the length treated is 0.3m, the rigid length is equal to 0.35m. Fourth configurations
of ducts are studied:

• First configuration: the radius of duct diameter decrease is 0.04m, which makes a radius
reduction of 20%.

• Second configuration: the radius of duct diameter decrease is 0.03m, which makes a radius
reduction of 40%.

• Third configuration: the radius of duct diameter decrease is 0.02m, which makes a radius
reduction of 60%.

• Fourth configuration: the radius of duct diameter decrease is 0.01m, which makes a radius
reduction of 80%.

The radius variation affects the amplitude of the reflection coefficients. The reflection modules
have a good harmony for all configurations for ka values [0, 4]. It is noted that configurations
3 and 4 (Fig. 7) show good attenuation in the case of treated conduct. The reflection module
R10,10 shows no change for the first configuration (with and without material), for configuration 3
against improved significantly in the case of the treated conduct going from ka = 0 to 2.6 (Fig. 8).
For a more increase of the duct diameter decrease, the transmission decreases (0.9 dB to 0.1 dB).
For the fourth configuration, the attenuation of the transmission is 65% near ka equal 0.75
(Fig. 9). The four configurations have a good harmony for ka ranging from 0 to 4. The modulus
of transmission T10,10 and T20,20 is zero for the second and third configuration, leading to say
that the length treated has no effect contrary to configurations 1 and 2 (Fig. 10) in with the
liner of conduct has a considerable effect.
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Fig. 7. Modulus of the reflection coefficient R00,00 versus ka for several configurations. Duct diameter
decrease case (a) without liner, (b) with liner

Fig. 8. Modulus of the reflection coefficient R10,10 versus ka for several configurations. Duct diameter
decrease case (a) without liner, (b) with liner

5.2. Duct with a diameter increase

In this part, the case presented in Fig. 2 is treated: the duct presents a diameter increase
characterized with length equal to c and radius equal to ρ. This part of the duct is lined with
the studied liner. In the following, the effect of changing these parameters is investigated.

5.2.1. Effect of change in length

The scattering matrix coefficients and the acoustic power attenuation are calculated in the
cases of rigid and lined ducts having a diameter increase in order to determine the influence of
duct diameter increase part length on its acoustic behavior. The duct is 0.05m in radius and
length of 1m. The duct diameter increase amounts to 0.1m. Fourth configurations of ducts are
studied:
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Fig. 9. Modulus of the transmission coefficient T00,00 versus ka for several configurations. Duct diameter
decrease case (a) without liner, (b) with liner

Fig. 10. Acoustic attenuation versus ka for several configurations

• First configuration: the length of the duct is divided into three portions: b = 0.4m and
c = 0.2m, which makes the percentage of the duct diameter decrease portion equal to 20%.

• Second configuration: the length of the duct is divided into three portions: b = 0.3m and
c = 0.4m, which makes the percentage of the duct diameter decrease portion equal to 40%.

• Third configuration: the length of the duct is divided into three portions: b = 0.2m,
c = 0.6m, which makes the percentage of the duct diameter decrease portion equal to 60%.

• Fourth configuration: the length of the duct is divided into three portions: b = 0.1m,
c = 0.8m, which makes the percentage of the duct diameter decrease portion equal to 80%.

Figures 11 and 12 present the variation of the modulus of reflection coefficients R00,00 and
R10,10 versus ka, whereas Figs, 13 and 14 present the variation of the modulus of transmission
coefficients T00,00 and T10,10 versus ka for several studied configurations. One can observe that
the more the length of duct diameter decrease increases, the more transmission decreases and the
transmission decreases as the attenuation increases. This is presented in Fig. 15 which shows that
the attenuation has a maximum when the transmission is low. Indeed, the fourth configuration
has an attenuation of 2 dB for ka = 2.5. In the case without materials, there is no attenuation.
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Fig. 11. Modulus of the reflection coefficient R00,00 versus ka for several configurations. Duct diameter
increase case (a) without liner, (b) with liner

Fig. 12. Modulus of the reflection coefficient R10,10 versus ka for several configurations. Duct diameter
increase case (a) without liner, (b) with liner

Fig. 13. Modulus of the transmission coefficient T00,00 versus ka for several configurations. Duct
diameter increase case (a) without liner, (b) with liner
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Fig. 14. Modulus of the transmission coefficient T10,10 versus ka for several configurations. Duct
diameter increase case (a) without liner, (b) with liner

Fig. 15. Acoustic attenuation versus ka for several configurations (duct diameter increase with liner)

5.2.2. Effect of variation of radius

The scattering matrix coefficients and the acoustic power attenuation are calculated in the
cases of rigid and lined ducts having a diameter increase in order to determine the influence of
the duct diameter increase on its acoustic behavior. The duct has radius of 0.05m and length of
1m. The length of the duct is divided into three portions. The rigid length is equal to 0.35m,
the length treated is 0.3m and the rest rigid length is equal to 0.35m. Fourth configurations of
ducts are studied:

• First configuration: the duct diameter increase is 0.06m which makes an increase in radius
equal to 20%.

• Second configuration: the duct diameter increase is 0.07m which makes an increase in
radius equal to 40%.

• Third configuration: the duct diameter increase is 0.08m which makes an increasee in
radius equal to 60%.
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• Fourth configuration: the duct diameter increase is 0.09m which makes an increase in
radius equal to 80%.

Figures 16, 17 present the variation of the modulus of reflection coefficients R00,00 and R10,10
versus ka, whereas Figs. 18 and 19 present the variation of the modulus of transmission coef-
ficients T00,00 and T10,10 versus ka for several studied configurations. From these figures it can
be concluded that the more the duct diameter increases, the more transmission decreases and
the reflection increases. There is not much difference in the transmission in the case of conduct
treated materials (it falls slightly from 1 to 0.9). Figure 20 presents the acoustic attenuation of
the four studied cases. The fourth configuration is the more absorbent with a maximum of 2 dB
at ka = 2.5. This leads to say that the duct diameter decrease configuration is more absorbent,
therefore, more efficient than the configuration with the duct diameter increase. Indeed, the
configuration with the duct diameter increase section shows no great reflection (low values for
R00,00 and R10,10).

Fig. 16. Modulus of the reflection coefficient R00,00 versus ka for several configurations. Duct diameter
increase case (a) without liner, (b) with liner

Fig. 17. Modulus of the reflection coefficient R10,10 versus ka for several configurations. Duct diameter
increase case (a) without liner, (b) with liner
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Fig. 18. Modulus of the transmission coefficient T00,00 versus ka for several configurations. Duct
diameter increase case (a) without liner, (b) with liner

Fig. 19. Modulus of the transmission coefficient T10,10 versus ka for several configurations. Duct
diameter increase case (a) without liner, (b) with liner

Fig. 20. Acoustic attenuation versus ka for several configurations (duct diameter increase with liner)
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6. Conclusions

In this paper, effect of geometry and impedance variation on the Acoustic Performance of Porous
Material Lined Duct is studied. The main conclusions drawn from the study are as follows:

For the case of duct diameter decrease:

• The more the length of the duct diameter decrease increases, the more attenuation incre-
ases.

• In terms of materials, the more the length of duct diameter decrease increases, the more
reflections decreases and the unreflective wave is absorbed.

• For the treated length, the unreflective wave will be partly absorbed and the rest part
refracted. The more the length of duct diameter decrease increases, the more the wave is
absorbed.

• The more the length of the duct diameter decrease increases, the more the surface of the
material increases, and the absorption is greater.

• The radius variation affects the amplitude of the reflection coefficients. The more the duct
diameter decrease increases, the more the transmission decreases.

For the case of duct diameter increase:

• The more the length of the duct diameter increase increases, the more the transmission
decreases and the transmission decreases, the more the attenuation increases.

• With the treated length, the more the radius of the duct diameter increase increases, the
more reflection increases and the reflection increases, the more the transmission decreases.
There is not much difference transmission.

It is concluded from the results presented above that the duct diameter decrease configuration is
more absorbent, therefore, more efficient than the configuration with the duct diameter increase.
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