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What is of particular importance in view of the development and operation of fast railway
transport is the overhead system vibration excited by pantograph motion. The problems
discussed in the paper are related to continuous system vibration under moving loads. Mo-
delling the catenary-pantograph system is connected with motion of two subsystems, namely:
continuous (contact wire) and discrete (pantograph). In the paper, the results of research
on dynamical phenomena caused by the interaction between the pantograph and catenary
are presented. The stiffness of the catenary wire is taken into account. The dynamical phe-
nomena occurring in the system are described by a set of partial and ordinary differential
equations. The solution to these equations has been obtained using approximate numerical
methods.
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1. Introduction

The theoretical problem discussed in the paper is a technical problem connected with the dyna-
mics of systems under moving loads (Bajer and Dyniewicz, 2012; Bogacz and Szolc, 1993; Fryba,
1999; Szolc, 2003). As a vibrating discrete-continuous structure, the pantograph-catenary system
has been chosen for analysis.
In any high voltage electric traction system, the current needed for operating a train is

collected from an overhead contact system by some form of sliding electrical contact. Such a
system usually consists of a horizontal wire with which the pantograph makes continuous contact,
and a catenary cable slung between the supports from which the contact wire is suspended at
intervals by vertical dropper wires.
The complex behaviour of the catenary-pantograph system has been the focus of attention of

many researchers for several years (Poetsch et al., 1997; Wu and Brennan, 1998). Over the last
sixty years, many studies of the catenary-pantograph dynamic behaviour have been undertaken
(Kumaniecka and Grzyb, 2000; Kumaniecka and Nizioł, 2000; Zhang et al., 2002).
In the past years, many researchers attempted to improve current collection quality in order

to reduce wear and maintenance costs of both the overhead line and pantograph. Numerous
studies on rail vehicles proved that the processes describing their dynamic state have a complex
and non-periodic character (Poetsch et al., 1997; Kumaniecka, 2007). To improve the pantograph-
-catenary interface, it is essential to understand better the complex behaviour of this couple. The
pantograph-catenary interaction at high speed is the critical factor for reliability and safety of
high speed railways. The large amplitudes of transversal vibration of the messenger and contact
wires can result in pantograph strip wear, loss of contact or disturbance of mutual interaction.



936 A. Kumaniecka, M. Prącik

With an increase in the train speed, the catenary-pantograph system with its dynamic beha-
viour proved to be a very important component for new train systems required to run at higher
speed. This speed can be limited by the power supply through the overhead catenary system.
The key point that describes the efficiency of the current collection is the contact force. The
zero value of this force induces the brake in the current collection, but too large value can result
in wear of the contact wire and pantograph strips.
The aim of the paper is to obtain a better understanding of the pantograph-catenary system

dynamics. The emphasis of studies is placed on the description of contact loss and proper
description of contact wire stiffness. A relatively simple analytical model presented in the paper
is appropriate to gain physical insight into the pantograph-catenary system.
In the paper, an analytical method for calculating the response of a catenary to a uniformly

moving pantograph is presented. To the authors’ knowledge, the loss of contact of such a system
has not been investigated so far.
The paper is organized in five Sections. Following Introduction 1, the models of the catenary-

-pantograph system including the contact wire, messenger wire, droppers, supporting towers and
the pantograph itself are described in Section 2. In Section 3 an analytical method for calculating
the response of a catenary to a uniformly moving pantograph is presented. The simulation results
are given in Section 4. Final concluding remarks are formulated in Section 5.

2. Modelling of the catenary-pantograph system

The presented models belong to the class of continuous systems excited by a uniformly moving
load. In the literature, many physical and a lot of different analytical models of the catenary-
-pantograph system have been proposed. Both the contact and carrying wire are one-dimensional
systems. The contact and carrying cables have been modelled by infinite or non-infinite homoge-
nous strings or Bernoulli-Euler beams. The pantograph has been modelled by an oscillator with
two or four degrees of freedom. Such systems were studied in the past by a number of researchers
employing different methods. A review paper describing the pantograph-catenary systems was
presented by Poetsch et al. (1997) and by Kumaniecka (2007). The dynamic interaction between
a discrete oscillator with four degrees of freedom and a continuous beam was also studied by
Kumaniecka and Prącik (2011).
The simplified model of the catenary with one contact point introduced in the paper, shown in

Fig. 1, is composed of two parallel infinitely long homogenous beams (the contact and carrying
cables) connected by lumped elements (suspension rods), which are positioned equidistantly
along the beams. The upper beam (carrying cable) is fixed at periodically spaced elastic supports.
The lower beam (contact wire) is suspended from the upper beam by visco-elastic elements.
These elements are used as a model of suspension rods. They are periodically placed at points
along the beams. It is assumed that the distance between the supports of carrying cable is equal l
and between the droppers 2lw. In the adopted model, the bending stiffness of the contact wire
is taken into account (Wu and Brennan, 1999; Kumaniecka and Prącik, 2011).
The system in question is subjected to a concentrated force (model of pantograph), which is

applied to the lower beam. This load moves along the lower beam at a constant velocity v.
Between the contact wire and pantograph there also appears the friction force. In the pre-

sented study, the friction force is neglected.
The physical model of the catenary with two contact points is presented in Fig. 2.
The mathematical model for a physical model of the catenary system adopted in this paper

and shown in Fig. 2, was discussed in detail and presented in the monograph by Kumaniecka
(2007).
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Fig. 1. Physical model of catenary with one contact point

Fig. 2. Physical model of catenary with two contact points

Motion of the catenary in the vertical plane is governed by equations

E1J1
∂4w1
∂x4
−N1

∂2w1
∂x2
+ ρ1

∂2w1
∂t2
− p+ pF − pm1 = 0

E2J2
∂4w2
∂x4
−N2

∂2w2
∂x2
+ ρ2

∂2w2
∂t2
+ p− pm2 = 0

(2.1)

where the following notation is used: E1, E2 – Young’s modulus of lower and upper beam,
respectively, Ji – cross-sectional moment of inertia (i = 1, 2), Ni – tensile force in the beams,
ρi – mass density, wi(x, t) – transversal displacements, x – spatial coordinate measured along
the non-deformed axis of beams, t – time. The functions w1(x, t) and w2(x, t) describe the lower
and upper beam transversal displacements, respectively.
The loads p(x, t) acting on the beams and caused by internal forces in the springs and

damping elements are treated as continuous. They can be expressed in the form

p(x, t) =
∑

(n)

{cb[w2(x, t)− w1(x, t)] + bb[ẇ2(x, t)− ẇ1(x, t)]}δ(x − xn) (2.2)

where: cb is the coefficient of spring elasticity, bb – damping coefficient, xn – coordinates of
droppers spacing (concentrated masses), xn = 2lw(2s − 1), s ∈ N , 2lw – distance between the
droppers, δ – Dirac’s function.
The interaction force between the pantograph and contact wire pF can be described by the

term

pF (x, t) = F (t)δ(x − vt) (2.3)
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The reaction force pmi (i = 1, 2) that comes from concentrated masses m spaced on the lower
and upper beams acting at points xn can be treated as distributed and written in the form:
— for the lower beam

pm1(x, t) =
∑

(n)

mẅ1(x, t)δ(x − xn) (2.4)

— for the upper beam

pm2(x, t) =
∑

(n)

mẅ2(x, t)δ(x − xn) (2.5)

The boundary and initial conditions adopted for numerical simulation have been based on
the assumed vibration model of a linear system (data from identification research).
In the present paper, the pantograph has been modelled as an oscillator with four degrees

of freedom. The model refers to a real system designed by engineers from Schunk Wien GmbH.
The basic pantograph is the standard WBL-85/3kV. The collector strips are represented by
masses m1L and m1P, the equivalent masses of the frames are denoted by m2 and m3. The
masses are connected by springs c11 and c22 to provide a nominally constant uplift force. The
aerodynamic force is taken into account (Bacciolone et al., 2005). The physical model of the
pantograph investigated in our studies is shown in Fig. 3.

Fig. 3. Model of pantograph

The mathematical model for a physical model of the pantograph adopted in this paper and
shown in Fig. 3 was discussed in detail and presented in the monograph by Kumaniecka (2007).
In many real pantograph systems, the springs are guided in telescopic sliders, which gives reasons
to apply dry friction elements in the physical model. The structure of the simulation model has
been based on the formal notation of motion in form of ordinary differential equations.
Motion of the pantograph in the vertical plane is governed by equations

m1Lẍ1L = m1Lg − |F1| sgn (ẋ1L − ẋ2)− c11(x1L − x2) + PL(x, t)
m1P ẍ1P = m1P g − |F1| sgn (ẋ1P − ẋ2)− c11(x1P − x2) + PP (x, t)
m2ẍ2 = m2g − |F2| sgn (ẋ2 − ẋ3) + |F1|[ sgn (ẋ1P − ẋ2) + sgn (ẋ1L − ẋ2)]
− c22(x2 − x3) + c11(x1P − x2) + c11(x1L − x2)− Faer

m3ẍ3 = m3g − c33x3 − b33ẋ3 − |F3| sgn (ẋ3)− Fstat + c22(x2 − x3) + |F2| sgn (ẋ2 − ẋ3)

(2.6)

where: x1, x2, x3, ẋ1, ẋ2, ẋ3, m1,m2,m3 are displacements, velocities and masses of the ele-
ments, respectively, F1, F2, F3 – friction forces, Faer, Fstat – aerodynamic and static forces,
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PL(x, t), PP (x, t) – excitation forces, interaction forces between the pantograph and contact
wire.
The displacement of the pan-head is the main factor for dynamic performance of the panto-

graph, and it is related to the contact forces directly.

3. Analytical model of the system vibration

The catenary motion can be described by means of partial differential equations (2.1), which
govern small vertical vibrations of each beam in the vicinity of their equilibrium state, induced by
the transversal force moving along the lower beam. Some details are presented in the monograph
by Kumaniecka (2007) and in the paper by Kumaniecka and Prącik (2011). The mathematical
model for a physical model of the pantograph was discussed by Prącik and Furmanik (2000).
The interaction between the pantograph and contact wire is limited to a set of two parallel

forces

PL(x, t)δ(x − vt) PP (x, t)δ(x − vt+ xLP ) (3.1)

In the above equation, x denotes the spatial horizontal co-ordinate, t time, xLP is the distance
between the shoes.
In the case of one contact point, the function describing the contact force can be expressed

as

F (x, t) = PL(x, t) + PP (x, t) (3.2)

According to the results obtained by the authors (2011) and others (Wu and Brennan, 1999),
the forces PL(x, t), PP (x, t) can be connected with harmonic changes of catenary stiffness and
given in the form

PL(x, t) = k0






[
1− α cos

(2πv
L
t
)]
(x1L0 − x1L) for x1L0 > x1L

0 for x1L0 ¬ x1L

PP (x, t) = k0






[
1− α cos

(2π
L
(vt+ xLP )

)]
(x1P0 − x1P ) for x1P0 > x1P

0 for x1P0 ¬ x1P

(3.3)

In equations (3.3), the following notation is used: x1L, x1P denote vertical displacements of
the pantograph contact shoes, x1L0, x1P0 – vertical displacements of two points on the wire that
are in contact with masses m1L and m1P , respectively, k0, α – are stiffness coefficients (Wu and
Brennan, 1999), given by formulae

k0 =
kmax + kmin

2
α =

kmax − kmin
kmax + kmin

(3.4)

where L is the length of one span and kmax, kmin are the largest and the smallest stiffness values
in the span, respectively.
When the model with two contact points is investigated, the contact forces are written as

PL(x, t) = k0





[
1− α cos

(
2πv
l t
)]
[x1L0 − w1(x, t)] for x1L0 > w1(x, t)

0 for x1L0 ¬ w1(x, t)

PP (x, t) = k0






[
1− α cos

(
2π
l (vt+ xLP )

)]
[x1P0 −w1(x+ xLP , t)]

for x1P0 > w1(x+ xLP , t)

0 for x1P0 ¬ w1(x+ xLP , t)

(3.5)
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where w1(x, t) is the transversal displacement of the lower beam, x1L, x1P are coordinates of
strips motion (see Fig. 3), x1L ≡ w1(x, t)δ(x − vt) and x1P ≡ w1(x+ xLP , t)δ(x − vt+ xLP ).
The equations of catenary motion model (2.1) are presented in the monograph by Kuma-

niecka (2007). After substituting relations (3.3) or (3.5), in the case of one or two contact points,
respectively, to the equations of motion, they include some parameters associated with stiffness
of the contact wire k0, α.
In the case of one contact point, the solutions to set of equations (2.1) have been taken in

the form of waves

w1(x, t) =
∑

p1

∑

r1

Ar1
sin x−vtp1lw
x−vt
p1lw

sin(ωr1t− ϕr1)

w2(x, t) =
∑

p2

∑

r2

Ar2
sin x−vtp2lw
x−vt
p2lw

sin(ωr2t− ϕr2)
(3.6)

where pi are associated with the moving modes and ri with the standing modes for i = 1, 2, and
the coefficients Ar1 , Ar2 could be determined numerically using a collocation method.
To solve equations of motion (2.1) and (2.6) for two contact points, it is necessary to employ

another expression for functions which describe transversal displacements of the lower beam

w1(x, t) =
∑

p1

∑

r1

Ar1
sin x−vtp1lw
x−vt
p1lw

sin(ωr1t−ϕr1) +
∑

p1

∑

r1

Br1
sin x+xLP−vtp1lw
x+xLP−vt

p1lw

sin(ωr1t−ϕr1) (3.7)

4. Numerical analysis

On the basis of the given mathematical model, a simulation program applying the package
VisSim Analyze ver. 3.0 has been built. Numerical simulations have been carried out for different
data sets.
The numerical calculations have been done for the following parameters of the system

m1L = m1P = 7.93 kg m2 = 8.73 kg m3 = 10.15 kg

F1 = 2.0N F2 = F3 = 2.5N Faer = 30.0N Fstat = 600N

Faer = 30N c3 = 60Ns/m xLP = 1.0m

The parameters of the system correspond to the parameters of the real overhead power lines
for high speed trains (data set for pantograph WBL 85-3 kV/PKP).
The block schemes of simulation of mass displacements and contact forces of the pantograph

model at Fstat = 600N and 500N, Faer = 30N are presented in Figs. 4 and 5.
To investigate the phenomena of contact loss in the overhead system, numerical simulations

for the contact force less than the limit force were carried out by Kumaniecka and Prącik (2011).
In Fig. 6, the loss of contact between the pantograph and catenary is illustrated.
The results of simulations of the variability of contact forces of the pantograph (with two

contact points), when the vertical displacement amplitude between the contact points spaced
by 1m, is equal 0.03m, are presented in Fig. 7. The simulations have been done for velocity
v = 55.55m/s using the blockscheme of simulation similar to that presented in Fig. 4 but
utilizing a different expression for w1(x, t) (respectively to equation (3.7)).
Based on the results of simulations, we can conclude that the pantograph with two contact

strips guarantees better interaction (strips are detached convertible).
The analysis of the simulation results (see Fig. 7) shows that the response of the system

in question is not harmonic, it consists of standing and moving modes. To conclude, it can be
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Fig. 4. Block scheme of simulation of mass displacements and contact forces of the pantograph model
at Fstat = 600N, Faer = 30N; in the case of one contact point, when x1L ∼= x1P

Fig. 5. Block scheme of simulation of contact forces and contact loss at Fstat = 500N, Faer = 30N; in
the case of one contact point, when x1L ∼= x1P
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Fig. 6. Contact force for uplift force Fstat = 500N; loss of contact in the case of one contact point

Fig. 7. Variability of contact forces of the pantograph with two contact points

stated that the motion of the contact wire has a wavy character. The calculations have confirmed
that the travelling force is a source of waves propagating leftwards and rightwards at different
frequencies (Snamina, 2003; Bogacz and Frischmuth, 2013).
The domination of lower frequency modes is visible (see Fig. 8). The same effect is visible

in the case of a pantograph with one contact point. For a two contact points pantograph, the
modal damping is more effective.

Fig. 8. Spectrum FFT of vibration displacements

In Figs. 9 and 10, some results of the lower beam vibration in the case of one or two con-
tact points are shown. As can be seen in Fig. 10, the critical amplitude value of vibration
displacement, critical as referred to displacement values x1L0 = x1P0 = 0.03m adopted as an
example (for the data set taken for numerical simulations at the velocity v = 55.55m/s), has
been exceeded.
The examples of the results presented above have been obtained with the catenary stiffness

parameters and the velocity of pantograph motion v = 55.55m/s. At higher velocities taken for
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Fig. 9. Results of simulations of the beam displacement function w1(x, t) for p1 = 1, r1 = 1, 2; in the
case of one contact point

Fig. 10. Simulations of lower beam vibration of the catenary model in the case of two contact points

simulations and the analysis of subsequent excited mode vibration frequencies of the catenary
in 3D graphs of displacements. there can be seen a more marked interaction in the case of two
contact points pantograph. Also two maxima and minima of waves moving parallel, positioned
at an angle to the time axis, are visible.

5. Final conclusions

The state-of-the-art of the theoretical and experimental investigations indicates the need for
continuation of the research to improve the modelling of the catenary-pantograph system. In
the present paper, a simplified model of the pantograph and catenary has been proposed. The
equations of motion are based on a beam model with one or two concentrated varying forces
moving along the contact wire at a constant velocity. The structure of the simulation model
is based on a formal notation of motion in form of partial and ordinary differential equations.
For the simulation, software package VisSim has been applied. The paper has discussed the
application of the stiffness formula to the analysis of pantograph-catenary interaction.
On the basis of the results of simulations of the lower beam displacements (Figs. 9 and 10)

the following conclusions can be drawn:

• The wave sequence is associated with the pantograph motion (the compound of three mo-
des of moving waves and three standing ones). The frontal maximum and reverse minimum
of the displacement are visible. The ratio of the absolute value of the maximum to that of
the minimum is equal to 9.
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• Damping of the displacement amplitude excited in the lower beam is time and space
variable. For example, a reduction of the beam displacement maximum by about 20 dB
occurs after approximately 0.6 s, in the case of analysis on the span of length of about 100m.

The results of analysis of the simulation performed on the adopted model of mutual inter-
action between the pantograph and catenary have shown the domination of lower frequencies
components in the spectrum of the lower beam vibration displacements, similarly to the case
of one contact point system (Fig. 8). This fact has been also indicated by others scientists
(Poetsch et al., 1997; Szolc, 2003). On the basis of the simulation results of the lower beam
displacements, it can be concluded that there is a wave sequence associated with the pantograph
motion. Damping of the lower beam vibrations, caused by the moving pantograph, is variable
in time and space. The described phenomena should be taken into account in real applications
in high speed railways.
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