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The problem of a crack in a piezomagnetic material under magneto-
mechanical loading is considered. The exact solution, obtained in this
work, includes the unknown a priori normal component of the magnetic
induction vector inside the crack. Several different physical assumptions
associated with limited magnetic permeability of the crack are utilized
to determine those unknown magnetic inductions through the crack bo-
undaries. Analytical formulae for the stress and magnetic induction in-
tensity factors are derived. The effects of magnetic boundary conditions
(limited permeability) at the crack surface on the basic parameters of
fracture mechanics are analysed and some features of the solution are
discussed. If the permeability of the medium inside the crack tends to
zero or is very large, extreme results i.e. impermeable or permeable crack
solutions are obtained.
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1. Introduction

Magneto-mechanical modelling of the piezomagnetic fracture is complicated
by the fact that piezomagnetic materials exhibit magneto-elastic coupling be-
haviour as well as anisotropy.

The attractive property of piezomagnetic materials, that become strained
when subjected to a magnetic field, is the underlying foundation for achieving
numerous types of smart structures. When subjected to mechanical and ma-
gnetical loads in service, piezomagnetic materials may fail prematurely due to
their brittleness or due to the presence of defects or flaws produced during
their manufacturing process. Therefore, it is important to study the fracture
behaviour of piezomagnetic materials.
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Among theoretical studies on piezomagnetic bodies, magnetic permeable
and impermeable conditions on crack faces are most commonly adopted. For
permeable cracks, there is a nonzero magnetic field in the free space inside
voids, while for impermeable cracks the magnetic field inside the voids is always
Zero.

In recent years, the study on magneto-electro-elastic materials with de-
fects or crack has received considerable interest. The magneto-elastic problem
of straight cracks lying along the interface of two dissimilar soft ferromagne-
tic materials subjected to a remote uniform magnetic induction was consi-
dered by Lin and Lin (2002). The magneto-elastic coupling effect in an in-
finite soft ferromagnetic material with a crack was also studied by Liang et
al. (2002), where the nonlinear effect of magnetic field upon stress and the
effect of deformed crack configuration were taken into consideration. Tho-
se papers considered the coupling between magnetic and elastic fields. The
electro-elastic field inside a piezoelectric material, where the limited elec-
trical permeability inside the crack was taken into account, were conside-
red, and closed form solutions were derived by Rogowski (2007). Rogow-
ski (2008) discussed the limited electric boundary conditions on the crack
faces in electro-elastic materials under transient thermal loading and also
mechanic and electric (two cases) loadings, and closed form solutions were
obtained.

In this paper, a limited permeable crack model is considered. The effects
of magnetic boundary conditions (limited permeability) at the crack surfaces
on the fracture mechanics of piezomagnetic materials are analysed and some
features of the solutions are discussed. In two limiting cases (infinitely large
or zero magnetic permeablities of the medium inside the crack) we can obtain
the limiting solutions from the general results presented here. For piezoelectric
materials, there are two kinds of ideal electric boundary conditions for the
crack faces, that is, electrically impermeable crack and electrically permeable
crack (Zhang et al., 2002).

Although this paper is a generalisation to magnetoelasticity described by
Zhang et al. (2002) who dealt with a piezoelectric medium in addition to
different results regarding expressions for elastic and magnetic fields, there
exists one distinct difference, namely the limited permeable crack boundary
conditions are considered.

The physical laws for piezomagnetic materials were explored by Nowacki
(1983). Many theoretical problems can be found in the book by Purcell (1965)
and Parkus (1972).
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2. Fundamental equations for piezomagnetic medium

We consider an axi-symmetric problem. Assume that field variables are func-
tions of r and z in the cylindrical coordinate system (r,6,z). Constitutive
equations for a piezomagnetic material polarised along the z direction subjec-
ted to mechanical and magnetic fields can be written as

(Urra 009,022, 0rz, By, Bz)T = C(€7«, €0,E2,Erz, Hy, HZ)T (2'1)

where (-)" denotes the transpose of a matrix and

cin ci2 cz3 0 0 —g31]
crz2 c1 ¢z 0 0  —gn
c_ |as cs ez 00 —gss (2.2)

0 0 0 C44 —Aq15 0
0 0 0 q5 pnn 0
lg31 g31 q33 O 0 133 ]

Here 05, B; and H; are stresses, components of the magnetic induction vec-
tor and components of the magnetic field vector; c¢;;, ¢;; and p;; are elastic
constants, piezomagnetic constants and magnetic permeabilities, respectively.
The strain is related to the mechanical displacements wu,., u, as follows

. ou, . Uy . ou,
or r 0z (2.3)
ou, Ou,
T o
The equilibrium equations for stresses and magnetic flux are
agrr + agrz + Orr — 000 —0 agzr a;'zz Ozr —0
r z r r z r (2.4)

0B, n B, n 0B,
or r 0z
Here we neglect the body forces and magnetic sources in piezomagnetic
ceramics.
The Maxwell equations in the quasi-static approximation are
oo} P

T H, = - (2.5)

where ¢(r, z) is the magnetic potential.

=0

H, =
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Substituting equations (2.1), (2.2) and (2.3) into equations (2.4) and using
relations (2.5), we obtain the following equilibrium equations

ou 0
c11Biuy + caaD?up + (c13 + 044)D8—TZ + (g31 + Q15)Da—(f =0
9 d(ru,) 9,
casBou, + c33D*u, + (c13 + caa) D + q15B0¢ + q33D"p =0 (2.6)

ror

o(ru,
(ruy) + q15Bous + gs3D*us — 11 Bod — sz D?*¢ =0

ror

(g31 +q15)D
where the following differential operators have been introduced

92 10 k 0

B=2 4+-2_F
K 87‘2+r8r r2

The quasi-harmonic functions ¢;(r, z), such that

2 2
(a L9 18)902-(7‘,,2):0 i=1,2,3 (2.8)

ozt ror T Moz

determine all field variables as follows

& i 1 Jp;
UT(T7Z) :Zail)\iﬁ UZ(T,Z) :Z)\_ 9z
i=1 =1 M
3 3 2
a; a% a; 0 ©i Uy
o(r,z) = — Z )\3 P O'rr:_z)\_% 5.2 —(011—012)7
—1 i=1
3 2
i1 0% aiq 0% p; ou,
Uzz:;ﬁ 822 UGG:_;EW_(CH_CH) o
Q4 0? Pi _ _% a;3 0? Pi
Tar = Z \; Oroz Hy = or Z \; Oroz (2.9)
aiy O p; R '02%
az Z \i 022 By = ; aisAi oroz

82 Pi
072

3 .
Bzz;‘;—f
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where
L aM cig e 1 — e
a;1 = 1 P) ;3 = -
ag Ay + bo A7 + co q31 + q15 q31 + q15
C@s1ea? + qisen C44431 — C13Q15
A4 = 41
q31 + q15 q31 + q15
2
g330411 — Q15133 Q3111 — Q15133
Aj5 = 5 — 5 La; (2.10)
H11 — M33AS H11 — M33AS
a1 = c33(g31 + qi5) — (€13 + ca4)g33 az = C44933
b1 = c13q15 — C44G31
by = (c13 + c44)g31 + C13q15 — 11433 c2 = C11q15

and )\22 (1 = 1,2,3) are the roots of the following cubic algebraic equation
in \?

ao)\ﬁ + bo)\4 + C(]/\2 +dy=0 (2.11)
with the coefficients defined by

ap = caa(cazpss + qgg)

bo = (g31 + q15)[2¢13q33 — c33(q31 + q15)] + 2€44G33931 — 011Q§3 +
—H11€33C44 — ,u3302

co = 2qis[c11q33 — c13(g31 + qu5)] + c1aq3y + pscricas + pic® (2.12)

do = —c11(caapinr + qis)

¢® = criesy — ciz(cis + 2ca4)

The roots of the above equation for a real material can be expressed for
two cases:

(a) +R17 _R17 +R27 _R27 +R37 _R3
(b) +Ry, —Ri1, Ry +1iR3, Ry —iR3, —Ry +iR3, —Ry — iR3

where R, Rs, R3 are positive real numbers and i =/ —1.

3. Formulation of the problem

Consider a crack with a finite dimension in a transversely isotropic piezoma-
gnetic solid under combined mechanical (04,) and pure magnetical loads (Bs
or Hy) applied at infinity (Fig. 1).
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Fig. 1. A crack in a magnetoelastic medium and loading conditions

To solve the crack problem in linear elastic solids, the superposition techni-
que is usually used. Thus, we first solve the stress and magnetic field problem
without the cracks in the medium under magnetical and/or mechanical lo-
ads. Then, we use equal and opposite stresses and magnetic inductions as the
crack surface tractions and solve the crack problem (the so called perturbation
problem, Fig. 2)

{ (14 qo)oo — c1 B case |
oo =

oo — q3H case 11
B case |
-O0co B* == o
< By > Hooo + p3H oo case 11
-B" +B, 7 — —q200 + C3Boo case |
H, case 11
~ c11 + c12 ~
3= —"— q2 = C3lo
q1

Fig. 2. Crack loading in the perturbation problem

The material parameters in the above solution are

- ~ _
2 &) C2/40 C2
q1 = p33(ci1 + c12) + 2¢ Go==5—=— o = =
( ) 31 E(Q)ql T Eé
_ _ &
Co = qa3(c11 + c12) — 2g31013 a= (3.1)
243 2c13
M3=M33+¢ q3 = q33 —

— 431
c11 + c12 C11 + €12
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Note that g is the uniform normal stress at zero magnetical loads.

FEmploying the superposition principle, one arrives at an equivalent pro-
blem with the loading 0, = —04, B, = By — B* being applied on both
surfaces of the crack.

Inside the crack there is often air or vacuum, and the magnetic induction
is usually considered constant under a uniform remote applied load. This unk-
nown component is denoted by By and the following assumption is stated to
determine By

Bo = poHC (3.2)

where p, is the magnetic permeability of the medium inside the crack and
HY is the component of the magnetic field vector in the z-direction inside the
crack.

The quasi-harmonic function needed for the solution is

pi(r.2) = [ Ad©) exp(-N2)To(6r) d (3.3)
0

4. Solution for a limited magnetically permeable crack problem

The boundary conditions along the crack plane z = 0 are stated as follows

uy(r,0) =0 ¢(r,0) =0 r>a
2r(r,0) =0 >0
o.r(r,0) T (4.1)
B.(p,0) = By — B* 0<r<a
0.:(r,0) = =000 0<r<a
The mechanical crack boundary conditions give
3 an ¥

3 )\LA‘/ng,-(g)Jo(rf) dé = 0 0<r<a

i=1 "y
3 (o]

=3 [€Ai©a(re) de =0 r>a (42)

i=1 0

WV
o

3 00
Zai4/§2Ai(§)J1(7’f) d¢ =0 ,
0

i=1
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The magnetical crack boundary conditions are

3

Za,g/gA €)Jo(ré) d¢ =0 r>a
o (4.3)
S aishi /5A )Jo(r€) dé = By — B* 0<r<a
=1
Substituting
A1(§) + A2(8) + A3(§) = D1(§)
a13A1(§) + asAz(§) + azzAz(§) = ( ) (4.4)

(
a14A1(§) + agaAz(§) + azg Az(§) =

and solving this system of algebraic equations, we obtain

maA;i(§) = d;iD1(§) + 1;D2(€) (4.5)
where
= d; di = azsa3z — azsaz3
' (4.6)
do = a13a34 — a14a33 d3 = ajsa23 — a13a24
li = azs — asy lo =a1s —ass I3 =a214 — ais

The boundary conditions lead to two pairs of simultaneous dual integral equ-
ations

m / 2Dy (€)Jo(r€) dé + mg / €Dy (€)Jo(r€) dE = — s 0<r<a
0
[ €D1(€)ao(r6) de =0 r>a

0

ms / 2D, (€)Jo(r€) dé +my / €2D,(6)Jo(r€) d€ = (By— B*)ms 0 <r < a
0 0

/ £Ds(€)Jo(r€) d€ =0 r>a
0

(4.7)
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The solution to those equations is

 2me w1 d ssinéa
P = 25 v+ ma(Bo = g e () m
2 mg a1 d ssinéa .
D2(§)——;%[m50m+m(30—3 )]Ed_f( ¢ )
where
3 3 aul
m = mmy — MsMg ms = Zam)\,dz meg = Z %
i=1 i=1 3 (4 9)
3 3 aiad; .
m7:Zai5/\ili m:Z e
i=1 P
The physical quantities are obtained as follows
rs (T 1 Gi
up(r,z) = — ;ailAidi(E —tan™ "¢ — T CE) + rEroo
20 a - T
- = 1 (D -1,
Z) R~ ;dﬂ?z [1 Cz(z tan Cz)} + 2€200
2a S T
- _= odom |1 — (2 =13\ _ g
(;5(7‘,2) = T am < az3dz772 [1 CZ(2 tan Cz)} oz
(r,z) = 2r ia d; 1l
Ozr\T, i
i = (T )G )
0.2(1, 2) —ii%cfi il —tan~ !¢ — G )—i—aoo (4.10)
’ w2 G+
3
T i Ur
UTT(T Z) T;am)\zdz(z tan Cz 4224_ 22) ( 11 612)( Eroo)
2 3 ~ /T 1 G ou,
og(r, 2) —m;az4>\idi(§—tan Gi <i2+m2) (c11 612)( 5 Eroo)
H,(r,2) —ifia d; 1
e = A+ DG+ )
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2 r
B?‘ ) = 1
) = wmaZ“”uH%(@w)
B,(r,z) = —iN Zai{s/\idNi(E —tan"'¢; — L) + B*
e 2 G+

where

di = (mrd; — msly)ose — (B* — Bo)(mgd; — ml;)

c

( }23 + @,uo) oo + @Boo case |
— ) q1 q1

S €13 431 H
——=o00+———Hy case 11

& c11 + €12 (4 11)
€r00 = %ﬂao for case I and case 11

0

~2 2
Cco = 633(011 + c12) — 2¢15

Closed form solutions (4.10) for elastic and magnetic fields are obtained
according to the improper integrals presented analytically by oblate spheroidal
co-ordinates (Rogowski, 2007)

2 =a*(1+ A1 —n?) \iz = alin; i=1,2,3 (4.12)

5. Solutions for different assumptins on magnetic boundary
conditions

Two different assumptions on the magnetic boundary condition on crack sur-
faces are analysed as described below.

5.1. The notch solution

We assume that the potential at the crack-notch interface is continuous
and that along the z direction the magnetic field HY and the magnetic induc-
tion By on the upper notch surface can be written as

L (5.1)

where 0(r) describes the shape of the notch.
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Thus

4 mgy a? — r?

T om e o(r)

From this equation, we may determine the unknown By.
If we assume an elliptic notch, such that

BO = — [777,50'00 - m(B* - BO)] (52)

or) = 2 /am (5.3

where Jg is the thickness of the notch at r = 0, then we obtain

B*
By = — %00 7 M7 (5.4)

T m do
m+4m2l1#a

The magnetic induction intensity factor is obtained as follows

Kp = 2\/a(B* — By) = ~\Ja— = 4m2 ata (5.5)
T T m+z m do
1ms apq

If the notch interior is filled with a conductive medium such that pu, tends to
infinity, then Kp and Bj are

2
ngrm o _%O_OO\/* Bperm _ _%O_OO + B* (56)
m

which is the permeable crack solution. In this case, H, = 0 and ¢(r,0) = 0
on the whole crack plane. Therefore, the solution for the permeable crack is
dependent on the magnetic induction By, (case I) and magnetic field H
(case II) and on the stress in both cases of loading, since

1+ — 1B I
o — { (1+qo)og — 1 case (5.7)

o0 — q3H case 11

The values of ms/m are 17.84-107* m/A and 11.58-1071%m/A for CoFesO4
and composite, respectively. This implies that a tensile stress will produce a
negative induction inside the notch (for B* = 0) in a single material and com-
posite. The permeable magnetic induction intensity factor assumes positive
values.

If the permeability of the notch is very small, such that we may take
e = 0, then

Kb — B\/_ B =0 (5.8)

wich is the impermeable crack solutlon.
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Therefore, the solutions for the impermeable crack depend on the magnetic
induction By, (case I) and the magnetic field H, and stress o (case II), since

B — By case | 59
N { tooo + psHoo case 11 (5.9)
In general
Ko = K7 1= 1 (20)] + K () (5.10)
where
do \ 1
) Trra o
5.11
Kimv — 2 /g KE™ =", a
h
we have ms ){1_ & B_oo:| (50) B—‘X’[l— (50)} I
Kp _ 1 1+qo0 oo aflg o aflg case
Ky %[1—(]3%}]0(23)+M0(1+£Z—?)[1—f(ai3a)] ca(s;llg)
Ki=Zoo/a

Figure 3 shows the dependence of f(do/(apa)) on do/(aps) for compo-
site BaTiO3-CoFesO4 and piezomagnetic CoFeyO4. Material properties for
BaTiO3z and CoFepOy4 are taken from Huang et al. (1998). The properties
of BaTiO3-CoFesO4 composite are obtained by averaging the properties of
single-phase BaTiO3 and CoFe;O,4 materials using the rule of mixtures. This
implies that the BaTiO3-to-CoFe, Oy ratio in the composite is roughly 50:50.

We observe that f(do/(au,)) approaches zero as p, tends to zero, and
is unity as pu, tends to infinity. The solution perfectly matches the exact
solution in both limiting cases, namely impermeable and permeable magnetic
crack boundary conditions. Figure 3 shows the dependence of Kp on dy/(aps),
since Kp is weighted by function f(do/(apu,)) as shown Egs. (5.12).

Note that

B
(1+qo—51—)K}>0 case I
K= 70 (5.13)

(1 - qu—zo)K} >0 case 11

for the crack tip opening displacement to exist.
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Fig. 3. Kp versus 0o/ (ap,) for BaTiO3-CoFesO4 composite and piezomagnetic
COF6204

The stress intensity factor vanishes if

By 14 qo
— = — case |
c
ggo 1 (5.14)
— = — case 11
00 q3

The right-hand sides of those equations are 5,303 - 107°m/A and 3.049 -
107%m/A (case I) and 0.033 Am/N and 0.036 Am/N (case II) for single ma-
terial CoFeoO4 and composite, respectively.

5.2. The effect of crack opening displacement

We assume that the magnetic field inside the crack can be found by

+ _ —
7 (L (5.15)
UZ - UZ
Taking into account that
By = uoH? (5.16)
one arrives at the magnetic condition
Bou (1) = —pqp(r) (5.17)

along the crack region.
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Using the above obtained results for u,(r) and ¢(r) on the crack surface,
we obtain
m50e0 + m(Bo — B*)

Bo = —1g 1
0 " m70'00+m6(B()—B*) (5 8)

This gives a quadratic equation with respect to By
mBg +n2Bo + 13 =0 (5.19)
where

m = mg N2 = M70s0 — MeB™ + mp,
(5.20)

N3 = (M5000 — MB* ) g
For the two limiting cases, we obtain
(a) pq =0, Bémp =0, since m70o — mgB* # 0
(b) 1a — 00, BE™ = —(ms/m)o + B*

which are the solutions for impermeable and permeable magnetic crack boun-
dary conditions, respectively. For this model of magnetic boundary conditions,
the magnetic induction intensity factors in the extreme cases are the same as
given by equations (5.6) and (5.8), respectively.

For p, — oo we obtain

2
uy(r,0) = —Joo@\/ a? —r? (permeable) (5.21)
T

m

For u, — 0, we have
_2Zmy * 2_ .2 :
uy(r,0) = —ﬁ(mwfoo —mgB*)Va* —r (impermeable) (5.22)
T

Figure 4 shows one half of the crack opening displacement for two
analysed materials and permeable or impermeable boundary conditions for
000 = 10 MPa and B* = 0.01 N/(Am) (case I).

Note that for both materials the crack opening displacement is large for
the permeable boundary conditions in comparison to the impermeable case,
but the difference is not visible.
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Fig. 4. The crack opening displacement for some magnetic materials

6. Concluding remarks

The following conclusions can be made based on the results obtained in the
paper:

(a)

The stress intensity factor does not depend on the assuptions applied to
the crack-face magnetic boundary condition assumptions.

The stress intensity factor depends on the applied mechanical and ma-
gnetic loads and on the material constants (details are given in Section 5
and in Eq. (5.13)).

The stress intensity factor decreases with the magnetic field if the field
is applied in the poling direction; in the opposite case K7 increases.

The magnetic induction intensity factor depends on the properties of the
material and on the applied magnetic and mechanical loads, as shown
by equations (5.12).

The magnetic permeability of air or vacuum inside the crack cannot be
ignored while calculating the magnetic induction intensity factor. The
effect of finite thickness of a very flat notch or of a crack opening displa-
cement in a realistic structure must be assessed. It can be seen that the
function of permittivity and material parameters f(-) describes the ratio
of the normal magnetic induction which is stored inside the crack to the
total normal magnetic induction B{“"™ which may be stored inside the
crack. Hence, it can be said that the calculated magnetic induction in-
tensity factor is an average magnetic induction intensity factor weighted
by the function f(-). This situation exists for the notch solution model
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given by solution (5.11) and shown graphically in Fig. 3. However, know-
ledge of the notch thickness to length ratio is essential for obtaining the
correct By in this model. Thus, the crack opening displacement model
is more useful. The crack opening displacement is obtained explicitly in
a closed-form, and this model may be applied to analysis of fracture of
piezomagnetic materials in engineering applications.

Summing up, it must be emphasised that the basic discrepancy exists in
the field singularity for a crack and notch. For an elliptic hole, unlike a
crack, the field has no singularity. Therefore, it should be noted that the
field intensity factors presented in Section 5.1 are only valid for very flat
notches (when the notch thickness-to-length ratio dy/a is very small).

One cannot find in the open literature a substantial experimental data for
piezomagnetic materials about the applicability of permeable or impermeable
boundary conditions and about the magnetic permeability inside a crack of
a piezomagnetic material. But the comparison with experimental results is
critical for the assessment of the most appropriate boundary conditions. The
works in scientific laboratories must be underway and test results must be
published.
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Analiza kotowej szczeliny w ciele magnetosprezystym

Streszczenie

Rozpatrzono zagadnienie szczeliny w materiale piezomagnetycznym przy obcia-
zeniu mechanicznym i magnetycznym. Dokladne rozwiazanie, otrzymane w tej pracy,
zawiera nieznang a priori normalng sktadowa magnetycznej indukcji wewnatrz szcze-
liny. Fizyczne zalozenia, odnoszace sie do ograniczonej magnetycznej przenikalnosci
o$rodka wypelniajacego szczeline oraz magnetycznych warunkéw na brzegu szczeliny,
prowadza do wyznaczenia tej magnetycznej indukcji. Otrzymano analityczne wzory
okredlajace naprezeniowe i magnetyczne wspotczynniki intensywnosci typu 1. Zbada-
no wplyw magnetycznych warunkow brzegowych na brzegu szczeliny na parametry
mechaniki pekania i przedyskutowano pewne wtasnosci rozwiazan. Nieprzepuszczalny
i przepuszczalny model szczeliny otrzymuje si¢ jako przypadki graniczne. W pierw-
szym modelu uproszczonym indukcja magnetyczna w szczelinie jest zawsze rowna ze-
ru. W drugim modelu otrzymuje sie rézne wartosci magnetycznej indukeji wewnatrz
szczeliny, a tym samym wspoélczynnika intensywnosci magnetycznej indukeji. Zalezy
to od warunkéw, jakie przyjmuje sie na powierzchni szczeliny dla okreslenia w o$rod-
ku szczeliny sktadowej wektora natezenia pola magnetycznego prostopadiej do jej
brzegdw.
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