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The problem of a crack in a piezomagnetic material under magneto-
mechanical loading is considered. The exact solution, obtained in this
work, includes the unknown a priori normal component of the magnetic
induction vector inside the crack. Several different physical assumptions
associated with limited magnetic permeability of the crack are utilized
to determine those unknown magnetic inductions through the crack bo-
undaries. Analytical formulae for the stress and magnetic induction in-
tensity factors are derived. The effects of magnetic boundary conditions
(limited permeability) at the crack surface on the basic parameters of
fracture mechanics are analysed and some features of the solution are
discussed. If the permeability of the medium inside the crack tends to
zero or is very large, extreme results i.e. impermeable or permeable crack
solutions are obtained.
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1. Introduction

Magneto-mechanical modelling of the piezomagnetic fracture is complicated
by the fact that piezomagnetic materials exhibit magneto-elastic coupling be-
haviour as well as anisotropy.
The attractive property of piezomagnetic materials, that become strained

when subjected to a magnetic field, is the underlying foundation for achieving
numerous types of smart structures. When subjected to mechanical and ma-
gnetical loads in service, piezomagnetic materials may fail prematurely due to
their brittleness or due to the presence of defects or flaws produced during
their manufacturing process. Therefore, it is important to study the fracture
behaviour of piezomagnetic materials.
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Among theoretical studies on piezomagnetic bodies, magnetic permeable
and impermeable conditions on crack faces are most commonly adopted. For
permeable cracks, there is a nonzero magnetic field in the free space inside
voids, while for impermeable cracks the magnetic field inside the voids is always
zero.

In recent years, the study on magneto-electro-elastic materials with de-
fects or crack has received considerable interest. The magneto-elastic problem
of straight cracks lying along the interface of two dissimilar soft ferromagne-
tic materials subjected to a remote uniform magnetic induction was consi-
dered by Lin and Lin (2002). The magneto-elastic coupling effect in an in-
finite soft ferromagnetic material with a crack was also studied by Liang et
al. (2002), where the nonlinear effect of magnetic field upon stress and the
effect of deformed crack configuration were taken into consideration. Tho-
se papers considered the coupling between magnetic and elastic fields. The
electro-elastic field inside a piezoelectric material, where the limited elec-
trical permeability inside the crack was taken into account, were conside-
red, and closed form solutions were derived by Rogowski (2007). Rogow-
ski (2008) discussed the limited electric boundary conditions on the crack
faces in electro-elastic materials under transient thermal loading and also
mechanic and electric (two cases) loadings, and closed form solutions were
obtained.

In this paper, a limited permeable crack model is considered. The effects
of magnetic boundary conditions (limited permeability) at the crack surfaces
on the fracture mechanics of piezomagnetic materials are analysed and some
features of the solutions are discussed. In two limiting cases (infinitely large
or zero magnetic permeablities of the medium inside the crack) we can obtain
the limiting solutions from the general results presented here. For piezoelectric
materials, there are two kinds of ideal electric boundary conditions for the
crack faces, that is, electrically impermeable crack and electrically permeable
crack (Zhang et al., 2002).

Although this paper is a generalisation to magnetoelasticity described by
Zhang et al. (2002) who dealt with a piezoelectric medium in addition to
different results regarding expressions for elastic and magnetic fields, there
exists one distinct difference, namely the limited permeable crack boundary
conditions are considered.

The physical laws for piezomagnetic materials were explored by Nowacki
(1983). Many theoretical problems can be found in the book by Purcell (1965)
and Parkus (1972).
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2. Fundamental equations for piezomagnetic medium

We consider an axi-symmetric problem. Assume that field variables are func-
tions of r and z in the cylindrical coordinate system (r, θ, z). Constitutive
equations for a piezomagnetic material polarised along the z direction subjec-
ted to mechanical and magnetic fields can be written as

(σrr, σθθ, σzz, σrz, Br, Bz)
⊤ = C(εr, εθ, εz , εrz,Hr,Hz)

⊤ (2.1)

where (·)⊤ denotes the transpose of a matrix and

C =




c11 c12 c13 0 0 −q31
c12 c11 c13 0 0 −q31
c13 c13 c33 0 0 −q33
0 0 0 c44 −q15 0
0 0 0 q15 µ11 0
q31 q31 q33 0 0 µ33




(2.2)

Here σij , Bi and Hi are stresses, components of the magnetic induction vec-
tor and components of the magnetic field vector; cij , qij and µij are elastic
constants, piezomagnetic constants and magnetic permeabilities, respectively.
The strain is related to the mechanical displacements ur, uz as follows

εr =
∂ur
∂r

εθ =
ur
r

εz =
∂uz
∂z

(2.3)

εrz =
∂ur
∂z
+
∂uz
∂r

The equilibrium equations for stresses and magnetic flux are

∂σrr
∂r
+
∂σrz
∂z
+
σrr − σθθ
r

= 0
∂σzr
∂r
+
∂σzz
∂z
+
σzr
r
= 0

(2.4)

∂Br
∂r
+
Br
r
+
∂Bz
∂z
= 0

Here we neglect the body forces and magnetic sources in piezomagnetic
ceramics.
The Maxwell equations in the quasi-static approximation are

Hr = −
∂φ

∂r
Hz = −

∂φ

∂z
(2.5)

where φ(r, z) is the magnetic potential.
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Substituting equations (2.1), (2.2) and (2.3) into equations (2.4) and using
relations (2.5), we obtain the following equilibrium equations

c11B1ur + c44D
2ur + (c13 + c44)D

∂uz
∂r
+ (q31 + q15)D

∂φ

∂r
= 0

c44B0uz + c33D
2uz + (c13 + c44)D

∂(rur)

r∂r
+ q15B0φ+ q33D

2φ = 0 (2.6)

(q31 + q15)D
∂(rur)

r∂r
+ q15B0uz + q33D

2uz − µ11B0φ− µ33D2φ = 0

where the following differential operators have been introduced

Bk =
∂2

∂r2
+
1

r

∂

∂r
− k
r2

k = 0, 1 D =
∂

∂z
(2.7)

The quasi-harmonic functions ϕi(r, z), such that

( ∂2

∂r2
+
1

r

∂

∂r
+
1

λ2i

∂2

∂z2

)
ϕi(r, z) = 0 i = 1, 2, 3 (2.8)

determine all field variables as follows

ur(r, z) =
3∑

i=1

ai1λi
∂ϕi
∂r

uz(r, z) =
3∑

i=1

1

λi

∂ϕi
∂z

φ(r, z) = −
3∑

i=1

ai3
λi

∂ϕi
∂z

σrr = −
3∑

i=1

ai4
λi

∂2ϕi
∂z2
− (c11 − c12)

ur
r

σzz =
3∑

i=1

ai4
λ3i

∂2ϕi
∂z2

σθθ = −
3∑

i=1

ai4
λi

∂2ϕi
∂z2
− (c11 − c12)

∂ur
∂r

σzr =
3∑

i=1

ai4
λi

∂2ϕi
∂r∂z

Hr = −
∂φ

∂r
=
3∑

i=1

ai3
λi

∂2ϕi
∂r∂z

(2.9)

Hz = −
∂φ

∂z
=
3∑

i=1

ai3
λi

∂2ϕi
∂z2

Br =
3∑

i=1

ai5λi
∂2ϕi
∂r∂z

Bz =
3∑

i=1

ai5
λi

∂2ϕi
∂z2
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where

ai1 =
a1λ
2
i + b1

a2λ4i + b2λ
2
i + c2

ai3 =
c13 + c44
q31 + q15

− c11 − c44λ
2
i

q31 + q15
ai1

ai4 =
q31c44λ

2
i + q15c11

q31 + q15
ai1 +

c44q31 − c13q15
q31 + q15

ai5 =
q33µ11 − q15µ33
µ11 − µ33λ2i

− q31µ11 − q15µ33λ
2
i

µ11 − µ33λ2i
ai1 (2.10)

a1 = c33(q31 + q15)− (c13 + c44)q33 a2 = c44q33

b1 = c13q15 − c44q31
b2 = (c13 + c44)q31 + c13q15 − c11q33 c2 = c11q15

and λ2i (i = 1, 2, 3) are the roots of the following cubic algebraic equation
in λ2i

a0λ
6 + b0λ

4 + c0λ
2 + d0 = 0 (2.11)

with the coefficients defined by

a0 = c44(c33µ33 + q
2
33)

b0 = (q31 + q15)[2c13q33 − c33(q31 + q15)] + 2c44q33q31 − c11q233 +
−µ11c33c44 − µ33c2

c0 = 2q15[c11q33 − c13(q31 + q15)] + c44q231 + µ33c11c44 + µ11c2 (2.12)

d0 = −c11(c44µ11 + q215)
c2 = c11c33 − c13(c13 + 2c44)

The roots of the above equation for a real material can be expressed for
two cases:

(a) +R1, −R1, +R2, −R2, +R3, −R3

(b) +R1, −R1, R2 + iR3, R2 − iR3, −R2 + iR3, −R2 − iR3
where R1, R2, R3 are positive real numbers and i =

√
−1.

3. Formulation of the problem

Consider a crack with a finite dimension in a transversely isotropic piezoma-
gnetic solid under combined mechanical (σ∞) and pure magnetical loads (B∞
or H∞) applied at infinity (Fig. 1).
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Fig. 1. A crack in a magnetoelastic medium and loading conditions

To solve the crack problem in linear elastic solids, the superposition techni-
que is usually used. Thus, we first solve the stress and magnetic field problem
without the cracks in the medium under magnetical and/or mechanical lo-
ads. Then, we use equal and opposite stresses and magnetic inductions as the
crack surface tractions and solve the crack problem (the so called perturbation
problem, Fig. 2)

σ∞ =

{
(1 + q0)σ0 − c̃1B∞ case I

σ0 − q3H∞ case II

B∗ =

{
B∞ case I

µ0σ0 + µ3H∞ case II

H∗ =

{
−q2σ0 + c̃3B∞ case I

H∞ case II

c̃3 =
c11 + c12
q1

q2 = c̃3µ0

Fig. 2. Crack loading in the perturbation problem

The material parameters in the above solution are

q1 = µ33(c11 + c12) + 2q
2
31 q0 =

c̃22
c̃20q1
=
c̃2µ0
q1

µ0 =
c̃2
c̃20

c̃2 = q33(c11 + c12)− 2q31c13 c̃1 =
c̃2
q1

(3.1)

µ3 = µ33 +
2q231
c11 + c12

q3 = q33 −
2c13
c11 + c12

q31
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Note that σ0 is the uniform normal stress at zero magnetical loads.

Employing the superposition principle, one arrives at an equivalent pro-
blem with the loading σz = −σ∞, Bz = B0 − B∗ being applied on both
surfaces of the crack.

Inside the crack there is often air or vacuum, and the magnetic induction
is usually considered constant under a uniform remote applied load. This unk-
nown component is denoted by B0 and the following assumption is stated to
determine B0

B0 = µaH
c
z (3.2)

where µa is the magnetic permeability of the medium inside the crack and
Hcz is the component of the magnetic field vector in the z-direction inside the
crack.

The quasi-harmonic function needed for the solution is

ϕi(r, z) =

∞∫

0

Ai(ξ) exp(−λiξz)J0(ξr) dξ (3.3)

4. Solution for a limited magnetically permeable crack problem

The boundary conditions along the crack plane z = 0 are stated as follows

uz(r, 0) = 0 φ(r, 0) = 0 r ­ a
σzr(r, 0) = 0 r ­ 0
Bz(ρ, 0) = B0 −B∗ 0 ¬ r < a
σzz(r, 0) = −σ∞ 0 ¬ r < a

(4.1)

The mechanical crack boundary conditions give

3∑

i=1

ai4
λi

∞∫

0

ξ2Ai(ξ)J0(rξ) dξ = −σ∞ 0 ¬ r < a

−
3∑

i=1

∞∫

0

ξAi(ξ)J0(rξ) dξ = 0 r ­ a

3∑

i=1

ai4

∞∫

0

ξ2Ai(ξ)J1(rξ) dξ = 0 r ­ 0

(4.2)
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The magnetical crack boundary conditions are

3∑

i=1

ai3

∞∫

0

ξAi(ξ)J0(rξ) dξ = 0 r ­ a

3∑

i=1

ai5λi

∞∫

0

ξ2Ai(ξ)J0(rξ) dξ = B0 −B∗ 0 ¬ r < a
(4.3)

Substituting

A1(ξ) +A2(ξ) +A3(ξ) = D1(ξ)

a13A1(ξ) + a23A2(ξ) + a33A3(ξ) = D2(ξ) (4.4)

a14A1(ξ) + a24A2(ξ) + a34A3(ξ) = 0

and solving this system of algebraic equations, we obtain

m2Ai(ξ) = diD1(ξ) + liD2(ξ) (4.5)

where

m2 =
3∑

i=1

di d1 = a24a33 − a34a23

d2 = a13a34 − a14a33 d3 = a14a23 − a13a24
l1 = a34 − a24 l2 = a14 − a34 l3 = a24 − a14

(4.6)

The boundary conditions lead to two pairs of simultaneous dual integral equ-
ations

m

∞∫

0

ξ2D1(ξ)J0(rξ) dξ +m6

∞∫

0

ξ2D2(ξ)J0(rξ) dξ = −σ∞m2 0 ¬ r < a

∞∫

0

ξD1(ξ)J0(rξ) dξ = 0 r ­ a

m5

∞∫

0

ξ2D1(ξ)J0(rξ) dξ +m7

∞∫

0

ξ2D2(ξ)J0(rξ) dξ = (B0 −B∗)m2 0 ¬ r < a

∞∫

0

ξD2(ξ)J0(rξ) dξ = 0 r ­ a

(4.7)
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The solution to those equations is

D1(ξ) =
2

π

m2
m̃
[m7σ∞ +m6(B0 −B∗)]

1

ξ

d

dξ

(sin ξa
ξ

)

(4.8)

D2(ξ) = −
2

π

m2
m̃
[m5σ∞ +m(B0 −B∗)]

1

ξ

d

dξ

(sin ξa
ξ

)

where

m̃ = mm7 −m5m6 m5 =
3∑

i=1

ai5λidi m6 =
3∑

i=1

ai4li
λi
(4.9)

m7 =
3∑

i=1

ai5λili m =
3∑

i=1

ai4di
λi

The physical quantities are obtained as follows

ur(r, z) =
r

πm̃

3∑

i=1

ai1λid̃i
(π
2
− tan−1ζi −

ζi
1 + ζ2i

)
+ rεr∞

uz(r, z) =
2a

πm̃

3∑

i=1

d̃iηi
[
1− ζi

(π
2
− tan−1ζi

)]
+ zεz∞

φ(r, z) = − 2a
πm̃

3∑

i=1

ai3d̃iηi
[
1− ζi

(π
2
− tan−1ζi

)]
−H∗z

σzr(r, z) = −
2r

πm̃a

3∑

i=1

ai4d̃i
ηi

(1 + ζ2i )(ζ
2
i + η

2
i )

σzz(r, z) = −
2

πm̃

3∑

i=1

ai4
λi
d̃i
(π
2
− tan−1ζi −

ζi
ζ2i + η

2
i

)
+ σ∞ (4.10)

σrr(r, z) =
2

πm̃

3∑

i=1

ai4λid̃i
(π
2
− tan−1ζi −

ζi
ζ2i + η

2
i

)
− (c11 − c12)

(ur
r
− εr∞

)

σθθ(r, z) =
2

πm̃

3∑

i=1

ai4λid̃i
(π
2
− tan−1ζi −

ζi
ζ2i + η

2
i

)
− (c11 − c12)

(∂ur
∂r
− εr∞

)

Hr(r, z) = −
2

πm̃

r

a

3∑

i=1

ai3d̃i
ηi

(1 + ζ2i )(ζ
2
i + η

2
i )

Hz(r, z) = −
2

πm̃

3∑

i=1

ai3λid̃i
(π
2
− tan−1ζi −

ζi
ζ2i + η

2
i

)
+H∗
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Br(r, z) = −
2

πm̃

r

a

3∑

i=1

ai5λ
2
i d̃i

ηi
(1 + ζ2i )(ζ

2
i + η

2
i )

Bz(r, z) = −
2

πm̃

3∑

i=1

ai5λid̃i
(π
2
− tan−1ζi −

ζi
ζ2i + η

2
i

)
+B∗

where

d̃i = (m7di −m5li)σ∞ − (B∗ −B0)(m6di −mli)

εr∞ =





−
(c13
c̃20
+
q31
q1
µ0
)
σ0 +

q31
q1
B∞ case I

−c13
c̃20
σ0 +

q31
c11 + c12

H∞ case II

(4.11)

εz∞ =
c11 + c12
c̃20

σ0 for case I and case II

c̃20 = c33(c11 + c12)− 2c213

Closed form solutions (4.10) for elastic and magnetic fields are obtained
according to the improper integrals presented analytically by oblate spheroidal
co-ordinates (Rogowski, 2007)

r2 = a2(1 + ζ2i )(1− η2i ) λiz = aζiηi i = 1, 2, 3 (4.12)

5. Solutions for different assumptins on magnetic boundary

conditions

Two different assumptions on the magnetic boundary condition on crack sur-
faces are analysed as described below.

5.1. The notch solution

We assume that the potential at the crack-notch interface is continuous
and that along the z direction the magnetic field Hcz and the magnetic induc-
tion B0 on the upper notch surface can be written as

Hcz(r) = −
ϕ+ − ϕ−
δ(r)

B0 = −µa
ϕ+ − ϕ−
δ(r)

(5.1)

where δ(r) describes the shape of the notch.
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Thus

B0 = −
4

π

m2
m̃
µa

√
a2 − r2
δ(r)

[m5σ∞ −m(B∗ −B0)] (5.2)

From this equation, we may determine the unknown B0.
If we assume an elliptic notch, such that

δ(r) =
δ0
a

√
a2 − r2 (5.3)

where δ0 is the thickness of the notch at r = 0, then we obtain

B0 = −
m5σ∞ −mB∗

m+ π
4
m̃
m2
δ0
aµa

(5.4)

The magnetic induction intensity factor is obtained as follows

KB =
2

π

√
a(B∗ −B0) =

2

π

√
a
m5σ∞ +

π
4
m̃
m2
δ0
aµa
B∗

m+ π
4
m̃
m2
δ0
aµa

(5.5)

If the notch interior is filled with a conductive medium such that µa tends to
infinity, then KB and B0 are

KpermB =
2

π

m5
m
σ∞
√
a Bperm0 = −m5

m
σ∞ +B

∗ (5.6)

which is the permeable crack solution. In this case, Hr = 0 and φ(r, 0) = 0
on the whole crack plane. Therefore, the solution for the permeable crack is
dependent on the magnetic induction B∞ (case I) and magnetic field H∞
(case II) and on the stress in both cases of loading, since

σ∞ =

{
(1 + q0)σ0 − c̃1B∞ case I

σ0 − q3H∞ case II
(5.7)

The values of m5/m are 17.84 ·10−10 m/A and 11.58 ·10−10 m/A for CoFe2O4
and composite, respectively. This implies that a tensile stress will produce a
negative induction inside the notch (for B∗ = 0) in a single material and com-
posite. The permeable magnetic induction intensity factor assumes positive
values.
If the permeability of the notch is very small, such that we may take

µa = 0, then

K impB =
2

π
B∗
√
a Bimp0 = 0 (5.8)

wich is the impermeable crack solution.
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Therefore, the solutions for the impermeable crack depend on the magnetic
induction B∞ (case I) and the magnetic field H∞ and stress σ0 (case II), since

B∗ =

{
B∞ case I

µ0σ0 + µ3H∞ case II
(5.9)

In general

KB = K
imp
B

[
1− f

( δ0
aµa

)]
+KpermB f

( δ0
aµa

)
(5.10)

where

f
( δ0
aµa

)
=

1

1 + π
4
m̃
m2m

δ0
aµa

(5.11)

K impB =
2

π
B∗
√
a KpermB =

2

π

m5
m
σ∞
√
a

we have

KB
K∗I
=






m5
m
(1 + q0)

[
1− c̃1
1 + q0

B∞
σ0

]
f
( δ0
aµa

)
+
B∞
σ0

[
1− f

( δ0
aµa

)]
case I

m5
m

[
1− q3

H∞
σ0

]
f
( δ0
aµa

)
+ µ0
(
1 +
µ3
µ0

H∞
σ0

)[
1− f

( δ0
aµa

)]
case II

(5.12)

K∗I =
2

π
σ0
√
a

Figure 3 shows the dependence of f(δ0/(aµa)) on δ0/(aµa) for compo-
site BaTiO3-CoFe2O4 and piezomagnetic CoFe2O4. Material properties for
BaTiO3 and CoFe2O4 are taken from Huang et al. (1998). The properties
of BaTiO3-CoFe2O4 composite are obtained by averaging the properties of
single-phase BaTiO3 and CoFe2O4 materials using the rule of mixtures. This
implies that the BaTiO3-to-CoFe2O4 ratio in the composite is roughly 50:50.
We observe that f(δ0/(aµa)) approaches zero as µa tends to zero, and

is unity as µa tends to infinity. The solution perfectly matches the exact
solution in both limiting cases, namely impermeable and permeable magnetic
crack boundary conditions. Figure 3 shows the dependence of KB on δ0/(aµa),
since KB is weighted by function f(δ0/(aµa)) as shown Eqs. (5.12).
Note that

KI =





(
1 + q0 − c̃1

B∞
σ0

)
K∗I > 0 case I

(
1− q3

H∞
σ0

)
K∗I > 0 case II

(5.13)

for the crack tip opening displacement to exist.
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Fig. 3. KB versus δ0/(aµa) for BaTiO3-CoFe2O4 composite and piezomagnetic
CoFe2O4

The stress intensity factor vanishes if

B∞
σ0
=
1 + q0
c̃1

case I

H∞
σ0
=
1

q3
case II

(5.14)

The right-hand sides of those equations are 5, 303 · 10−6m/A and 3.049 ·
10−6m/A (case I) and 0.033Am/N and 0.036 Am/N (case II) for single ma-
terial CoFe2O4 and composite, respectively.

5.2. The effect of crack opening displacement

We assume that the magnetic field inside the crack can be found by

Haz = −
ϕ+ − ϕ−
u+z − u−z

(5.15)

Taking into account that

B0 = µaH
a
z (5.16)

one arrives at the magnetic condition

B0uz(r) = −µaϕ(r) (5.17)

along the crack region.
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Using the above obtained results for uz(r) and ϕ(r) on the crack surface,
we obtain

B0 = −µa
m5σ∞ +m(B0 −B∗)
m7σ∞ +m6(B0 −B∗)

(5.18)

This gives a quadratic equation with respect to B0

η1B
2
0 + η2B0 + η3 = 0 (5.19)

where

η1 = m6 η2 = m7σ∞ −m6B∗ +mµa
(5.20)

η3 = (m5σ∞ −mB∗)µa

For the two limiting cases, we obtain

(a) µa = 0, B
imp
0 = 0, since m7σ∞ −m6B∗ 6= 0

(b) µa →∞, Bperm0 = −(m5/m)σ∞ +B∗

which are the solutions for impermeable and permeable magnetic crack boun-
dary conditions, respectively. For this model of magnetic boundary conditions,
the magnetic induction intensity factors in the extreme cases are the same as
given by equations (5.6) and (5.8), respectively.

For µa →∞ we obtain

uz(r, 0) =
2

π
σ∞
m2
m̃

√
a2 − r2 (permeable) (5.21)

For µa → 0, we have

uz(r, 0) =
2

π

m2
m̃
(m7σ∞ −m6B∗)

√
a2 − r2 (impermeable) (5.22)

Figure 4 shows one half of the crack opening displacement for two
analysed materials and permeable or impermeable boundary conditions for
σ∞ = 10MPa and B

∗ = 0.01N/(Am) (case I).

Note that for both materials the crack opening displacement is large for
the permeable boundary conditions in comparison to the impermeable case,
but the difference is not visible.
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Fig. 4. The crack opening displacement for some magnetic materials

6. Concluding remarks

The following conclusions can be made based on the results obtained in the
paper:

(a) The stress intensity factor does not depend on the assuptions applied to
the crack-face magnetic boundary condition assumptions.

(b) The stress intensity factor depends on the applied mechanical and ma-
gnetic loads and on the material constants (details are given in Section 5
and in Eq. (5.13)).

(c) The stress intensity factor decreases with the magnetic field if the field
is applied in the poling direction; in the opposite case KI increases.

(d) The magnetic induction intensity factor depends on the properties of the
material and on the applied magnetic and mechanical loads, as shown
by equations (5.12).

(e) The magnetic permeability of air or vacuum inside the crack cannot be
ignored while calculating the magnetic induction intensity factor. The
effect of finite thickness of a very flat notch or of a crack opening displa-
cement in a realistic structure must be assessed. It can be seen that the
function of permittivity and material parameters f(·) describes the ratio
of the normal magnetic induction which is stored inside the crack to the
total normal magnetic induction Bperm0 which may be stored inside the
crack. Hence, it can be said that the calculated magnetic induction in-
tensity factor is an average magnetic induction intensity factor weighted
by the function f(·). This situation exists for the notch solution model
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given by solution (5.11) and shown graphically in Fig. 3. However, know-
ledge of the notch thickness to length ratio is essential for obtaining the
correct B0 in this model. Thus, the crack opening displacement model
is more useful. The crack opening displacement is obtained explicitly in
a closed-form, and this model may be applied to analysis of fracture of
piezomagnetic materials in engineering applications.

(f) Summing up, it must be emphasised that the basic discrepancy exists in
the field singularity for a crack and notch. For an elliptic hole, unlike a
crack, the field has no singularity. Therefore, it should be noted that the
field intensity factors presented in Section 5.1 are only valid for very flat
notches (when the notch thickness-to-length ratio δ0/a is very small).

One cannot find in the open literature a substantial experimental data for
piezomagnetic materials about the applicability of permeable or impermeable
boundary conditions and about the magnetic permeability inside a crack of
a piezomagnetic material. But the comparison with experimental results is
critical for the assessment of the most appropriate boundary conditions. The
works in scientific laboratories must be underway and test results must be
published.
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Analiza kołowej szczeliny w ciele magnetosprężystym

Streszczenie

Rozpatrzono zagadnienie szczeliny w materiale piezomagnetycznym przy obcią-
żeniu mechanicznym i magnetycznym. Dokładne rozwiązanie, otrzymane w tej pracy,
zawiera nieznaną a priori normalną składową magnetycznej indukcji wewnątrz szcze-
liny. Fizyczne założenia, odnoszące się do ograniczonej magnetycznej przenikalności
ośrodka wypełniającego szczelinę oraz magnetycznych warunków na brzegu szczeliny,
prowadzą do wyznaczenia tej magnetycznej indukcji. Otrzymano analityczne wzory
określające naprężeniowe i magnetyczne współczynniki intensywności typu I. Zbada-
no wpływ magnetycznych warunków brzegowych na brzegu szczeliny na parametry
mechaniki pękania i przedyskutowano pewne własności rozwiązań. Nieprzepuszczalny
i przepuszczalny model szczeliny otrzymuje się jako przypadki graniczne. W pierw-
szym modelu uproszczonym indukcja magnetyczna w szczelinie jest zawsze równa ze-
ru. W drugim modelu otrzymuje się różne wartości magnetycznej indukcji wewnątrz
szczeliny, a tym samym współczynnika intensywności magnetycznej indukcji. Zależy
to od warunków, jakie przyjmuje się na powierzchni szczeliny dla określenia w ośrod-
ku szczeliny składowej wektora natężenia pola magnetycznego prostopadłej do jej
brzegów.
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