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The paper deals with the problem of modelling the inrun profile of a ski
jumping hill with a variable radius of curvature. It presents the possibi-
lity of reducing the inertia force acting on a ski jumper in the immediate
neighbourhood of the take-off track while maintaining the inclination
angles of the starting segment of the track and the take-off track which
are applied in the present day constructions. The problem of a further
decrease of the inertia force resulting from the increase of the inclina-
tion angle of the starting segment has also been discussed. Finally, the
profiles of the inrun which do not contain the inflexion point have been
determined.
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1. Introduction

The inrun profiles of ski jumping hills designed and constructed nowadays
(Neufert, 2002) consist of two segments (AC and DE) and a circular arc CD
that is tangent to them (Fig. 1).

The segment AC constitutes a rectilinear part of the inrun and it is usually
inclined at an angle β = 35◦. It includes the segment AB in the length of
which the starting gate is situated. The arc CD forms a curvilinear part of
the inrun. Its task is to reduce the inclination angle of the tangent towards the
track. The segment DE plays the role of the take-off track for a ski jumper
and it is usually inclined at an angle α = 10.5◦. The coordinates of point A
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Fig. 1. A typical profile of the inrun of a ski jumping hill

and the angles α and β clearly define the length of the segment AC and the
radius of curvature of the arc CD.

A normal reaction of the curvilinear part of the track is caused by the
weight of the ski jumper and the normal inertia force, which is inversely pro-
portional to the radius of curvature. This reaction is a measure of the load put
on the ski jumper’s legs. In the case of the ski jumping hills used nowadays,
the normal reaction of the curvilinear part of the track exceeds the weight of
the ski jumper at the point bordering on the take-off track by over 70%. Its
value can be reduced by changing the profile of the inrun of a jumping hill. It
is important to achieve the highest possible value of the radius of curvature
at the point bordering on the take-off track to maximally diminish the normal
inertia force. The reduction of the normal inertia force will make it easier for
the ski jumper to take off and perform a good jump.

The increase of the radius of curvature at the point bordering on the take-
off track can be obtained by replacing the rectilinear segment BC and the
circular arc CD with one curvilinear segment BD. This exchange can be
carried through in many ways. It is important that the normal reaction force
should rise as the ski jumper approaches the take-off track until reaching its
maximum at the point D. It turns out that it is possible to find various profiles
that meet this requirement. From among the possible solutions, the profile for
which the value of the normal reaction force at the point bordering on the
take-off track is the smallest should be chosen.

The simplest approach, which is presented in Palej and Struk (2003b),
consists in choosing a profile with a given form of the function in which the
radius of curvature increases as the ski jumper approaches the take-off track.
From the mathematical point of view, it is an initial value problem formulated
for a nonlinear second order equation. A disadvantage of such an approach lies
in the fact that the maximum of the normal reaction does not usually appear
at the point bordering on the take-off track.
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By applying the solutions obtained by Palej and Struk (2003b), a correc-
ted profile of the inrun, presented in an invention project by Palej and Struk
(2003a), for which the normal reaction force reaches its maximum at the po-
int D, has been achieved.

Another approach, described by Palej and Struk (2004), consists in impo-
sing variability of the radius of curvature of the inrun profile. The profile of
the inrun results from the solution of an ordinary differential equation. From
the mathematical point of view, it is a boundary value problem of a nonlinear
second order equation with three boundary conditions. In this approach, it
is possible to select parameters of the function which describes the radius of
curvature in such a way that all the boundary conditions are fulfilled and the
maximum of the normal reaction of the track occurs at the point bordering
on the take-off track.

Still another approach, presented by Palej and Struk (2005), consists in
assuming a constant value of the normal reaction of the track during the ski
jumper’s descent. The profile of the inrun is obtained there as well by means
of solving a nonlinear second order differential equation with three boundary
conditions. This approach brings about the smallest normal reaction at the
point bordering on the take-off track.

A disadvantage of all of these approaches is a relatively big value of the
inclination angle of the starting segment AB.

The paper presents, to a certain degree, a continuation and a development
of the last approach.

The profile of the inrun is achieved by means of solving a nonlinear second
order differential equation with four boundary conditions. Such an approach
allows for the elimination of a big inclination angle of the starting segment
and the obtainment of the required variability of the normal reaction force.
From among various possible solutions we choose such a one for which the
maximum of the reaction at the point bordering on the take-off track is the
lowest and, at the same time, the ski jumper does not lose contact with the
track during the descent.

2. The effect of the inrun profile on the normal reaction

The rectilinear segment BC and the circular arc CD can be replaced with
one curvilinear segment BD which is tangent to the take-off track DE and
the starting segment AB (Fig. 2).



232 R. Palej, R. Filipowska

Fig. 2. A graphical illustration of the problem

The normal reaction and the radius of curvature of the curvilinear seg-
ment BD are described with the following formulas

N = mg cos γ ±
mv2

r
r = ±

√

{1 + [y′(x)]2}3

y′′(x)
(2.1)

where the sign ”+” corresponds to the downward concavity of a plane curve,
the sign ”−” corresponds to the upward concavity, and the symbols used
stand for: N – normal reaction of the track, m – mass of the ski jumper,
g – gravitational acceleration, γ – inclination angle of the tangent line to the
inrun, v – velocity of the ski jumper, r – radius of curvature of the track,
y(x) – profile of the inrun.
By applying the geometrical interpretation of the derivative, the following

formula can be written down

cos γ =
1

√

1 + [y′(x)]2
(2.2)

Assuming, like in the brachistochrone problem, the validity of the principle of
conservation of energy, i.e. neglecting friction of the skis and the air drag, we
can write

v2 = 2g[h+ h0 − y(x)] (2.3)

where h signifies the height of point B, h0 – height of the starting gate over
the point B.
By inserting Eqs. (2.1)2-(2.3) into Eq. (2.1)1, regardless of the type of

concavity, a straightforward relation between the normal reaction N and the
profile of the inrun y(x) and its derivatives is achieved

N(x) = mg
1

√

1 + [y′(x)]2
+ 2mg

h+ h0 − y(x)
√

{1 + [y′(x)]2}3
y′′(x) (2.4)
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In order to facilitate the calculations, nondimensional variables have been
introduced. The reference variables are: distance d (Fig. 2) – for the parameters
described with length units and weight of the ski jumper G – for the normal
reaction N . After the introduction of the nondimensional variables marked
with letters of the Greek alphabet, Eq. (2.4) takes the following form

ν(ξ) =
1

√

1 + [ψ′(ξ)]2
+ 2

η + η0 − ψ(ξ)
√

{1 + [ψ′(ξ)]2}3
ψ′′(ξ) (2.5)

where ν = N/(mg) is the nondimensional normal reaction of the track,
η = h/d – nondimensional height of the point B, η0 = h0/d – nondimen-
sional height of the starting gate over the point B, ξ = x/d – nondimensional
horizontal coordinate, ψ = y/d – nondimensional vertical coordinate.

3. Formulation of the problem and the method of solution

By eliminating ψ′′(ξ) from Eq. (2.5), we obtain a differential equation with
respect to ψ(ξ), which contains an unknown function ν(ξ) that describes the
nondimensional normal reaction

ψ′′(ξ) =
ν(ξ)
√

{1 + [ψ′(ξ)]2}3 − [ψ′(ξ)]2 − 1

2[η + η0 − ψ(ξ)]
(3.1)

The sought profile of the inrun has to pass points B and D and it must
be tangent to the take-off track DE and the starting segment AB, which
are inclined respectively at angles α and β to the horizontal. The solution to
differential equation (3.1) should then fulfill the following boundary conditions

ψ(0) = 0 ψ(1) = η

ψ′(0) = tanα ψ′(1) = tan β
(3.2)

For an arbitrary function ν(ξ), the solution to Eq. (3.1) can fulfill two of four
conditions (3.2) at the most. By selecting, in a particular way, the form of the
function ν(ξ), a solution to Eq. (3.1) that fulfills all boundary conditions (3.2)
can be found.
The function ν(ξ) should increase as the ski jumper approaches the take-

off track until reaching its maximum at the point bordering on the take-off
track. In addition, this function should contain two control parameters so that,
through their proper selection, the solution sought fulfills all the boundary
conditions.
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For example, the following even polynomial functions possess the deman-
ded properties of the normal reaction

νi(ξ) = −aiξ
2i + bi i = 1, 2, . . . (3.3)

The functions listed above impose solely the variability of the normal reaction
without numerical description of its value at any point. The solution to equ-
ation (3.1), which fulfills all boundary conditions (3.2), was achieved by means
of the shooting method. By giving various values of the control parameters ai
and bi, the solution to equation (3.1) was found, regarding the problem as an
initial-value problem described with the first two conditions given by (3.2). By
applying the shooting method (Rao, 2002), the values of control parameters
ai and bi were determined for which the solution to equation (3.1) fulfilled the
remaining boundary conditions (3.2).

4. Numerical results

Four subsequent polynomial functions νi(ξ), described with formula (3.3),
were considered in the calculations. For each of them, the values of control
parameters ai and bi which guarantee the fulfillment of all boundary condi-
tions (3.2) by the solution to equation (3.1) were determined. Table 1 shows
values of the determined control parameters ai and bi for the following data:
η = 0.517677569826 and η0 = 0.114298857.

Table 1. A list of the control parameters ai and bi for which the solution to
equation (3.1) fulfills all boundary conditions (3.2)

i ai bi

1 1.09211603 1.66119517

2 1.19886121 1.54432451

3 1.36668431 1.50428111

4 1.54431350 1.48370157

Figure 3 presents the obtained profiles of the inrun with the variable radius
of curvature together with the profile of a typical ski jumping hill (tsjh).

It is possible to observe in Fig. 3 the points of inflexion which appear in the
neighbourhood of the point B. At these points, the radius of curvature tends
to infinity. Figure 4 shows graphs of the radii of curvature of the solutions
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Fig. 3. Inrun profiles determined for four subsequent exponents i against the
background of the profile of a typical ski jumping hill (tsjh)

Fig. 4. Radii of curvature of the inrun profiles determined for four subsequent
exponents i against the background of the radius of curvature of a typical ski

jumping hill (tsjh)

obtained together with the graph of the radius of curvature of the profile of a
typical ski jumping hill.

Together with the increase of the exponent i, the value of the radius of
curvature at the point bordering on the take-off track increases as well, and
the inflexion point approaches the point B. The fact that the upper part of
the curvilinear segment BD is concave upward brings about the danger of
losing contact with the track by the ski jumper. The graphs of the normal
reaction of the track shown in Fig. 5 illustrate and explain the problem of the
ski jumper’s contact with the track.

For i = 1, 2, 3, the normal reaction of the track is positive at each point
of the inrun, while for i = 4, the ski jumper loses contact with the track
immediately after crossing the point B because the reaction is negative. A
continuing growth of the exponent i increases the negative values of the normal
reaction of the track in the immediate neighbourhood of the point B.
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Fig. 5. Normal reactions of the inrun tracks determined for four subsequent
exponents i against the background of the reaction of the inrun track of a typical

ski jumping hill (tsjh)

5. Verification of the obtained results

In order to verify the mathematical model and the numerical results obtained,
a reverse problem was considered – the one that consists in determination of
the normal reaction of the track during the ski jumper’s descent along a given
profile. The verification was carried out for i = 2. A numerical solution to dif-
ferential equation (3.1) was used to determine values of the function ψ(ξ) in
101 equally spaced data points in the section [0, 1]. An interpolation polyno-
mial in form of third-order splines was made to pass through every data point.
The accuracy of the interpolation was shown in Fig. 6, which presents the
difference between the numerical solution to equation (3.1) and cubic splines.

Fig. 6. The difference between the solution to equation (3.1) and cubic splines

The ski jumper’s descent along the plane curve y(x) (Fig. 2) is described
with the following equations

mẍ = −N sin γ mÿ = N cos γ −mg (5.1)
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By eliminating the reaction N from the set of equations (5.1) and considering
formulas

y′ = tan γ ÿ = y′′ẋ2 + y′ẍ (5.2)

an equation describing ski jumper’s motion along the horizontal axis x is
obtained

ẍ = −
y′(x)[g + ẋ2y′′(x)]

1 + [y′(x)]2
(5.3)

After the introduction of nondimensional variables it takes the following form

ξ̈ = −
ψ′(ξ)[1 + ξ̇2ψ′′(ξ)]

1 + [ψ′(ξ)]2
(5.4)

In equation (5.4), the dot denotes differentiation with respect to nondimensio-
nal time τ , while the prime denotes differentiation with respect to nondimen-
sional coordinate ξ. The solution to equation (5.4) should fulfill the following
initial conditions

ξ(0) = 1 ξ̇(0) = −
√

2η0 cos β (5.5)

Knowing the solution to the problem formulated in that way, the nondimen-
sional normal reaction ν(ξ) can be determined as follows

ν(τ) =
1 + ξ̇2ψ′′(ξ)
√

1 + [ψ′(ξ)]2
(5.6)

A graph of the normal reaction versus nondimensional coordinate ξ, is shown
in Fig. 7.

Fig. 7. Normal reaction of the track during the ski jumper’s descent along a profile
described with cubic splines



238 R. Palej, R. Filipowska

Fig. 8. The difference between the normal reaction force given with Eq. (3.3) and
the one derived from Eq. (5.6)

The normal reaction force derived from Eq. (5.6) has a very similar graph
to the one described with Eq. (3.3) for i = 2 (Fig. 5). The difference between
them is shown in Fig. 8.

The coincidence between the normal reaction force given with Eq. (3.3)
and the one derived from Eq. (5.6) confirms the correctness of the assumed
mathematical model and the computational method applied.

6. The influence of the inclination angle of the truck starting

segment on characteristics of the inrun profiles with given

dynamic properties of the track

The inclination angle of the starting segment is usually determined by the
degree of inclination of the slope. This angle can be increased, especially in
the case of an artificially constructed inrun. The following figures present the
influence of the angle β, with a determined exponent i, on: the profile of the
inrun, radius of curvature and normal reaction of the track.

Fig. 9. Profiles of the inrun determined for three different angles β with i = 2
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Fig. 10. Radii of curvature of the inrun profiles determined for three different angles
β with i = 2

Fig. 11. Normal reactions of the inrun tracks determined for three different angles β
with i = 2

An increase of the angle β has little effect on the profile of the inrun,
especially on its lower part (Fig. 9). Together with the increase of the angle β,
the inflexion point moves towards the point B (Fig. 10). The increase of the
inclination angle of the starting segment slightly lowers the value of the normal
track reaction at the point bordering on the take-off track (Fig. 11).

7. Inrun profiles without inflexion points

The inflexion point which can be seen in the majority of inrun profiles with a
variable radius of curvature results from a relatively small inclination angle β
of the starting segment. This point can be eliminated by means of a proper
increase of that angle. Table 2 lists values of the angle β for which the curvi-
linear part of the inrun profile BD (Fig. 2) is only concave downward as the
inflexion point coincides with the point B.
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Table 2. A specification of the angles β for which the inflexion point coincides
with the point B

i β

1 41◦80′

2 45◦37′

3 47◦87′

4 49◦68′

The following figures show: profiles of the inrun, radii of curvature and
normal reactions of the track for the solutions in which the inflexion point
coincides with the point B.

Fig. 12. Inrun profiles in which the inflexion point coincides with the point B

Fig. 13. Radii of curvature of the inrun profiles in which the inflexion point coincides
with the point B

An increase of the exponent i causes an increase of the angle β (Table 2,
Fig. 12), which guarantees the coincidence of the inflexion point with the po-
int B. Together with the increase of the exponent i, the radius of curvature
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Fig. 14. Normal reactions of the inrun tracks in which the inflexion point coincides
with the point B

of the track at the point bordering on the take-off track increases as well
(Fig. 13), while the value of the normal reaction of the track at that point
decreases (Fig. 14).

8. Conclusions

Replacing the rectilinear segment BC and the circular arc CD (Fig. 1) with
one curvilinear part of the inrun profile BD (Fig. 2) allows one to increase the
radius of curvature at the point D. The profiles of the inrun with a variable
radius of curvature presented in the paper fulfill the requirement regarding
the normal reaction of the track which should increase as the ski jumper
approaches the take-off track until reaching its maximum at the point D. The
nonlinear differential equation presented in the paper together with a set of
boundary conditions makes it possible to design inrun profiles of ski jumping
hills which are characterised by a decreased reaction of the track for various
inclination angles of the starting section AB. The reduction of the inertia
forces which affect the ski jumper can contribute to performing longer jumps
that will, in addition, be better from the technical point of view.
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Modelowanie profilu najazdu skoczni narciarskiej o zadanych

własnościach dynamicznych toru

Streszczenie

Praca dotyczy zagadnienia projektowania najazdu skoczni narciarskiej o zmien-
nym promieniu krzywizny. W pracy pokazano możliwość obniżenia reakcji normalnej
toru w bezpośrednim sąsiedztwie z progiem, przy zachowaniu stosowanych w obecnych
rozwiązaniach kątów nachylenia części startowej i progu. Zbadano również możliwość
dalszego obniżenia reakcji normalnej w wyniku zwiększenia kąta nachylenia części
startowej. Na koniec wyznaczono łagodne pod względem dynamicznym profile najaz-
du nie zawierające punktu przegięcia.
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