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An NURBS-based isogeometric analysis for elastic-plastic stress in a cylindrical pressure
vessel is presented. The vessel is made of a ceramic/metal functionally graded material, i.e.
a particle-reinforced composite. It is assumed that the material plastic deformation follows
an isotropic strain-hardening rule based on the von Mises yield criterion. The mechanical
properties of the graded material are modelled by the modified rule of mixtures. Selected
finite element results are also presented to establish the supporting evidence for validation of
the isogeometric analysis. Similar analyses are performed and solutions for spherical pressure
vessel and rotating disk made of FGMs are also provided.
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1. Introduction

The intensity and variation of stress distributions due to large mismatch in material proper-
ties can be substantially reduced if micro-structural transition behaviour, i.e. a graded material
model, is used. Advances in material synthesis technologies have spurred the development of
functionally graded materials (FGM) with promising applications in aerospace, transportation,
energy, cutting tools, electronics, and biomedical engineering (Chakraborty et al., 2003). An
FGM comprises a multi-phase material with volume fractions of the constituents varying gradu-
ally in a predetermined profile, thus yielding a non-uniform microstructure in the material with
continuously graded properties (Jin et al., 2003).

Elastic and elastic-plastic analyses of thick-walled pressure vessels have always attracted a
lot of research interest because of their importance in engineering applications. Figueiredo et
al. (2008) proposed a numerical methodology in order to predict the elastic-plastic stress beha-
viour of functionally graded cylindrical vessels subjected to internal pressure. It was assumed
that the structures undergo small strain and that the material properties of the graded layer
were modelled by the modified rule of mixtures approximation. Furthermore, the plastic do-
main for ductile phases was defined through the von Mises yield criterion. They proposed an
iterative method for solving the nonlinear system combining a finite element approximation and
an incremental-iterative scheme. Haghpanah Jahromi et al. (2009, 2010) extended the Variable
Material Property (VMP) method developed by Jahed and Dubey (1997) for materials with
varying elastic and plastic properties. In the VMP method, the linear elastic solution to the
boundary value problem was used as a basis to generate the inelastic solution. Through iterative
analysis, the VMP method was used to obtain the distribution of material parameters which
were considered as field variables. The application of the VMP method, generally applied to
homogeneous elastic-plastic materials (Jahed and Shirazi, 2001; Jahed et al., 2005, 2006), was
extended to materials with varying elastic-plastic properties in order to calculate the residual
stresses in an autofrettaged FGM cylindrical vessel.
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Although there are several papers on the elastic analysis of FGM spherical pressure vessels in
the literature (You et al., 2005; Dai et al., 2006; Chen and Lin, 2008), elastic-plastic stress analysis
of FGM spherical pressure vessels is not such a customary study. Sadeghian and Ekhteraei (2011)
studied thermal stress field for an FGM spherical pressure vessel made of an elastic-perfectly
plastic and a power law material model.

Similar to the FGM cylindrical and spherical vessels, much of the studies on FGM rotating
disks has been carried out in elasticity cases (Durodola and Attia, 2000; Bayat et al., 2008).
Haghpanah Jahromi et al. (2012) applied the VMP method to estimate the elasto-plastic stresses
in a rotating disk with varying elastic and plastic properties in the radial direction.

In this paper, isogeometric analysis is proposed for predicting stress components of a strain-
-hardening cylinder based on the von Mises yield criterion under plane stress conditions. Isoge-
ometric analysis was introduced by Hughes et al. (2005) as a generalisation of the standard finite
element analysis. In isogeometric analysis, the solution space for dependent variables is represen-
ted in terms of the same functions which represent the geometry. The geometric representation is
typically smooth, whereas the solution space for the standard finite element analysis is continu-
ous but not smooth. Adoption of the isogeometric concept has shown computational advantages
over the standard finite element analysis in terms of accuracy and analysis time in many ap-
plication areas, including solid and structural mechanics. Most CAD systems use spline basis
functions and often Non-Uniform Rational B-Splines (NURBS) of different polynomial orders to
represent geometry. Results obtained from finite element analysis using the commercial software
ABAQUS (v. 6.10) were used to validate the results from the isogeometric analysis. The analysis
was further extended to obtain solutions for FGM spherical vessels and rotating disks.

A brief review of the isogeometric analysis based on NURBS is presented in Section 2.
This is followed in Section 3 by describing the details of isogeometric analysis formulation for
elastic-plastic cases (functionally graded cylindrical and spherical vessels and rotating disks). In
Section 4, we describe material properties of the graded layer modelled by the modified rule of
mixtures, whereas in Section 5 the results of elastic-plastic analyses are presented. Finally, in
Section 6, key conclusions are pointed out.

2. Fundamentals of NURBS-based isogeometric analysis

2.1. B-splines and NURBS

Non-uniform rational B-splines (NURBS) are a standard tool for describing and modelling
curves and surfaces in the computer aided design and computer graphics.

B-splines are piecewise polynomial curves composed of linear combinations of B-spline basis
functions. The piecewise definition allows approximation of a large number of control points
using lower order polynomials. The coefficients are points in space, referred to as the control
points. A knot vector E is a set of non-decreasing real numbers representing coordinates in the
parametric space of the curve

E= [517527537"'7§i7---7§n+p+1] (21)

where p is the order of the B-spline and n refers to the number of the basis functions (also
control points). The interval [{;, &, 4p+1] is called a patch.

The B-spline basis functions for a given degree p are defined recursively over the parametric
domain by the knot vector. The piecewise constants are first defined as

1 if &<E<&n

) (2.2)
0 otherwise

Nio(§) = {
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For p > 0, the basis functions are defined by the following recursion formula

L&Ni,p—l(g) + MNiJrl,p—l(f) >

Ni =
»(6) Cap — & Sitpr1 — it

A B-spline surface is constructed by the basis functions in two directions, N;,(§) and M, 4(n),
and a set of control points P, ¢ = 1,2,...,n, j = 1,2,...,m. Similar to the first para-
metric direction &, M;4(n) is also defined by Eqgs. (2.2) and (2.3), but another knot vector
H = [n1,7m2,73,..-,Mj,-- -, Mm+q+1) constitutes the foundation. Often, the B-spline order is the
same in both directions, i.e. p = q.

The surface is to be drawn in the two-dimensional space, P;; € R2. The B-spline surface is
then interpolated by

S m) = Z Z Ni,p(f)Mj,q(U)Pi j (2.4)

i=1j=1

The B-spline surface is the result of a tensor product. The patch for the surface is now the
domain &1, &n4pt1] X 1M1, Mngp+1]- Identifying the logical coordinates (i, j) of the B-spline surface
with the traditional notation of the node A and the Cartesian product of the associated basis
functions with the shape function Na(&,n) = N; ,(§)M; 4(n), the familiar finite element notation
is recovered, namely

S(&mn) = % Na(& n)Pa (2.5)
A=1

B-splines are non-rational functions that form non-rational B-spline curves and surfaces. A
rational curve or surface can represent conical sections in an exact manner. Non-uniform rational
B-splines (NURBS) are therefore introduced by including weights on the control points. The
NURBS basis functions will differ from the B-spline basis functions, but the knot vectors, the
tensor product nature, and refinement mechanisms are unchanged.

The NURBS surface is given by

1 nm nm _
S = — N Py = N P .
& mn) wEn) Az::l A&, mMwaPa Azzjl A(&,m) P (2.6)
where
- — _ Na(€,n)wa
w(é,n) = ;NA(&??)WA Na(¢,n) = TwEn)

2.2. Fundamentals of the isogeometric analysis

The isogeometric analysis was defined by Hughes et al. (2005) and means that the analysis
model uses the same mathematical description as the geometry model. This notion of using the
same basis for geometry and analysis is called the isoparametric concept, and it is quite common
in the classical finite element analysis. The fundamental difference between the isogeometric ana-
lysis and the finite element analysis is that, in the FEA, the basis chosen for the approximation
of the unknown solution fields is used to approximate known geometry whereas the isogeometric
analysis turns this idea around and selects a basis capable of exactly representing the known
geometry, and uses it as a basis for the fields we wish to approximate (Cottrell et al., 2009).

The main advantages of the isogeometrical method, compared to other numerical methods,
can be summarised as below:

e feduction in size of the system of equations,
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e flexibility and accuracy in the definition of geometry and its boundaries,

e the possibility of keeping the original model in the whole process without several remeshing
in problems with a varying domain of interest,

e considerable ease in implementing adaptively and mesh refinement,
e accuracy in satisfaction of the essential boundary conditions,

e applicability of the method in problems of functionally graded materials (Hassani et al.,
2011).

And the main disadvantages of the isogeometric analysis can be mentioned as in the following:

e the control points of geometry commonly are not a part of the physical domain of the
problem,

e the relative difficulty of establishing a correspondence between the point in the domain
and the solution.

3. Isogeometric analysis formulation for the elastic-plastic case

3.1. Elastic formulation

We use the principle of virtual displacement applied to a plane elastic body

0= /(aijéaij + puléuz) dV — /fzéul dV — %tzéul ds (3.1)
14 14 S

where o0;; is the Cauchy stress, g;; is strain, p is density, i; is the acceleration component, u; is
the displacement component (i.e. u,v,w), f; is the body force component, ¢; is the traction
component (i.e. t;,ty,t.), V is volume and S is surface area corresponding to the volume.

In the cylindrical coordinate system and axisymmetric condition, Eq. (3.1) can be rewritten
as follows

0=2m //(Uijéaij + piiou;)r drdz — 27 // fidu;r dr — }{tiéui ds (3.2)
S

By using the NURBS basis functions, the approximated displacement functions can be written
as

1
MEm) = 3 Nal€mra = (&) Na€m) o Naw(€m)) | | | =N
A=1 .
rnm
2(&m) = ) Na(§,n)2a = Nz (3.3)
A=1
U(fﬂ?) = Z NA(S’U)/U’A = Nu w(fﬂ?) = Z NA(S’U)U)A = Nw
A=1 A=1
5“’(5777) = Z NA(é.’T/)(SUA = Néu 5w(§777) = Z NA(&U)(S?UA = Now
A=1 A=1

where r4 and zaare the z- and y-coordinates of the control points of the surface, ua and w4
are the control points of the displacement.
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The stress and strain relationships are given by

e=TN m -B M o =Ce=CB m (3.4)
w w w
where T is the matrix of differential operators, C is the constitutive matrix (constitutive matrix
is calculated via Young’s modulus and Poisson’s ratio) and B = TN. In this study it is assumed
that Poisson’s ratio v is a material constant while Young’s modulus E(r) varies with the position
across the wall thickness of the vessel (disk).

Substituting Egs. (3.3) and (3.4) into Eq. (3.2), and in the absence of inertia forces, we
obtain

0= 2r // (BTCB m> rdrdz — 27r/ NT [ﬂ rdrdz — z{NT H ds (3.5)

Note that in Eq. (3.5) all variables are written in terms of the parameters & and n which is
similar to mapping in the standard finite element method where the base or unit elements are
used

Entp+1 Mm4q+1

0=2r / / BTCB M r(det J) dnd¢
&1 1 v
Entp+1 NMmtq+1
_on / / NT lﬂ r(det J) dndé — ]{ NT H ds
& o z 2 z

(3.6)

where

_|or/o¢  0z]0¢
~ |Or/dn 0z/0n

and the matrix form is as follows
Ku=F+T (3.7)

where

Entp+1 Mm+q+1

K — 27 / / BTCB m r(det J) dypde
&1 m
Entp+1 Mm+q+1
F =21 / / NT lﬂ r(det J) dn de (3:8)

&1 1
T tr
T = ?{N l 1 ds
2
S

Integrals in Eq. (3.8) can be calculated using the Gauss-Legendre method of numerical integra-
tion.

In order to obtain stress distributions for a spherical thick-walled functionally graded pressure
vessel, the isogeometric analysis formulation is rewritten in the spherical coordinate system

(r,0, ).
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3.2. Plastic formulation

In order to formulate a theory which models elasto-plastic material deformation, three requ-
irements have to be met:

e before the onset of plastic deformation, an explicit relationship between stress and strain
must be formulated to describe material behaviour under elastic conditions,

e a yield criterion must be postulated to indicate the stress level at which plastic flow
commences,

e a relationship between stress and strain must be developed for post yield behaviour, when
the deformation is made up of both elastic and plastic components (Owen and Hinton,
1980).

According to the normality hypothesis of plasticity, the plastic strain increment deP is defined

as:
oQ
deP = dA—=X 3.9
2 o (3.9)

where @ is the yield function and dA is called the plastic multiplier.

Assuming that the material plastic deformation follows the isotropic strain-hardening rule
based on the von Mises yield criterion n = 0Q /00 = [3/(20¢)]S and d\ = deP, Eq. (3.9) may be
rewritten as

der — 3% g (3.10)
2 o
where deP is the equivalent plastic strain increment. The superscripts p and e denote plasticity
and elasticity conditions respectively, also the subscript e denotes equivalent (effective) parame-
ters (stress or plastic strain).
The equivalent stress o, and the deviatoric stress S for the plane stress field are defined as

20, — 0y
S, 3
Oc =024 03 — 0,09 S=1Sy| = 200 — or (3.11)
S Jr3—|— op
3

where o, and oy are the radial and hoop stresses, respectively. For a linear strain hardening
material (Fig. 1), the yield stress o, and the plastic multiplier dA are determined by

nTCde

Oy = O'y()(r) + hp(?")é—g d)\ = m

(3.12)

where hy(r) is the plasticity modulus (i.e. the gradient of the stress-plastic strain curve) and
oyo(r) is the initial yield stress of the FGM material. Both hy(r) and oyg(r) are functions
dependent on the radial position r. The stress increment is given by

do = Cde® = C(de — de?) = C(de — dAn) (3.13)
by substituting Eq. (3.12)5 into Eq. (3.13), we can obtain the complete elasto-plastic incremental
stress-strain relation

CnnTC

do = Cd cw_c_ CmC
7 € nTCn + h,

(3.14)

where the superscripts ep denote the elasto-plastic behaviour.
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Fig. 1. Stress-strain curve for linear strain hardening

If we denote all quantities at the iteration k& with a superscript k, and those at the next
increment by k£ + 1 in a similar way, then we may write

bt Cdet

= - do® = C(de* — a\Fn” 3.15
nt' Cn* + h, ( ) (315)

The integration to obtain the quantity at the end of the time step At may be then written as
oftl = g% + do* (3.16)

If relatively large load increments are to be permitted, the process described can lead to an
inaccurate prediction of the stresses. Two parameters R (reduction factor) and m (the excess
of the yield stress is divided into m parts) can help to minimize the error (Owen and Hinton,
1980). The algorithm for plasticity isogeometric analysis is summarized in Fig. 2.

Load increment

. Ftoml .
AF"!C}‘ - AF - AFIIICI‘
number of load increments
I
Tangential stiffness method ] k=k+1
1 < : [
K? > Au=K?P AF J
T
In the Gauss points
do_m‘al :[C] [B][Au] o_m‘al :O_k—l +do_zrial
1
O_etrial :%[(Ulm'al 762”@)2”0_2:@1 —03"'i”’)2 +(63trial 7o_llrial)2]2

The Gauss point had previously yielded |NO [ The Gauss point had previously yielded |NO The Gauss point had not previously NO The Gauss point had not previously yielded\

and the stress is still increasing and is now unloading yielded and the stress is still elastic and is yielding during application of load
O_Ck—l ZO_yl(—l & Uem‘a[ >Uel(—l O_ek—l Za'yk71 & O_em‘a[ <Uel(—l O,gkfl <Uykfl & cr['"al <Uykfl Gekfl <dykfl & Uzmal >ayk71 )
YES R . YES w
v YES YES
/ Stress correction \ A A 4 Stress correction
No need for stress correction No need for stress correction il i
o, g _ _trial _ glrial _gy|Je TOyield |,
m =8| 4] o=0 oc=0 m=8> — +
O yieldd I | yield0
ok = gtrial _ gotrial - ¥ R= T
Calculate the equivalent nodal force from the element stresses T
¢ ¢
for 1:m do=c*-c*1 5 A= J‘[B]T [do)dV o = otrial _ pagtrial
trial
ok =ok +ab'_ )4
m | for 1: m
n=—[s] Calculate the residual force + & RdoMil
20, YES @=AF - AF' @ > tolerance ? g mo
p S
2 =L [Clde] w NO neis]
Y [Clinl+ hy oo 2%
L x AF =AF""® — F=F +AF T
ot =0c" -diCn total i = [n]” IC]ldz]
F>F g I [Cln + by

\ / [ Et:l‘:s ] \ » ot =ok —drcn j

Fig. 2. Flow chart of the algorithm for the elastic-plastic analysis
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4. Mechanical behaviour of FGM

It is assumed that the functionally graded metal-ceramic composite is locally isotropic and fol-
lows the von Mises yield criterion. The three important material properties for elastic-plastic
analysis are the elastic modulus E(r), the initial yield stress oyo(r), and the tangent modu-
lus H(r). These properties can be calculated using the modified rule of mixtures for composites
(Suresh and Mortensen, 1998). Note that the modified rule of mixtures is appropriate for mo-
deling of isotropic materials

B=[0- B L pE][0- 0 g 2]
70 = Fyom | (1= £ + qu—rizm f_jm d (4.1)
1= [0 e+ im0 - f e n]
EH
" E-m

where the subscripts ¢ and m indicate the ceramic and metal material, respectively. The volume
fraction of ceramic particles is denoted by f., and ¢ is the ratio of the stress to strain transfer,
where o, €. and o,,, €,, are the average stresses and strains in ceramic and metal, respectively
(see Fig. 3)

Oc = 0Om

0<g<oo (4.2)
lec — €ml

q:

(a)
f.=To

Fig. 3. (a) Schematic representation of a thick FGM vessel (rotating disk) with internal radius r; and
external radius r,. (b) Schematic representation of the modified rule of mixtures used to estimate the
behaviour of the ceramic particle-reinforced metal composite

The empirical parameter ¢ depends on many factors including material composition, mi-
crostructural arrangements and internal constraints. For example, ¢ — oo if the constituent
elements deform identically in the loading direction, while ¢ = 0 if the constituent elements
experience the same stress level. In the present analysis, the ceramic particle reinforcement is
assumed to have a volume fraction that varies from 0 at the inner radius r; to f.o at the outer
radius r, according to the following relationship

fe(r) = ch( S )n (4.3)

To —T;

where n is the reinforcement distribution exponent n = 0 denotes uniformly-reinforced metal-
-ceramic). The material properties for each constituent phase are listed in Table 1. The para-
meter ¢ may be approximated by calibration of experimental data from tensile tests performed
on monolithic composite specimens. For example, a value of ¢ = 4.5 GPa is used for a TiB/Ti
FGM (Carpenter et al., 1999), whereas Poisson’s ratio is taken constant and equal to 0.3.
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Table 1. Material properties (Jin et al., 2003)

Materials Young’s modulus | Yield stress | Tangent modulus
[GPa] [MPal [GPa|
Ti 107 450 10
TiB 373
5. Results

In this Section, we study three cases, a cylindrical and spherical pressure vessel as well
as a rotating disk made of FGMs. The elastic-plastic isogeometric analysis code is written
in MATLAB (2008). The cylinder (disk) B-spline model includes 50 control points (10 po-
ints in the r-direction and 5 points in the z-direction), and the assumed knot vectors are
= = [0,0,0,0,0.142,0.285,0.428,0.571,0.714,0.857,1,1,1,1] and H = [0,0,0,0,0.5,1,1,1,1]
(cubic NURBS). In all the cases, the second order Gauss quadrature is used for numerical
integrations (156 Gauss points in the r-direction and 8 Gauss point in the z-direction). The
knot vectors and the number of control points in the sphere model is similar to that in the
cylinder model. The geometries in this study are modeling with a single patch (the patch for
the surface is the domain (& = 0,&u1pr1 = 1] X )1 = 0,7p4p+1 = 1]), and we have no need
to assemble the stiffness matrices and force vectors. By removing the assemble step, we redu-
ce the overall analysis time by about 10% (at the same number of degrees-of-freedom in the
isogeometric method and FEM).

To verify the accuracy of the isogeometric analysis, finite element analyses have been perfor-
med using the commercial finite element code ABAQUS (Karlsson, Hibbitt, Sorensen Inc., 2008).
The conventional method of modelling FGMs in the software is to subdivide the thick wall into
several thin layers with equal thickness. This method of modelling leads to discontinuity in the
mechanical properties of FGM materials and is both difficult and time-consuming. Setoodeh et
al. (2008) proposed a new approach for analysing the FGM material in the elastic zone without
the need for dividing the thickness into thin strips. They applied a virtual temperature distri-
bution in the cylinder wall using the facility available within the software to assign continuously
variable properties across the wall thickness and then created a one-to-one relationship between
the temperature and mechanical properties. The correlation of the distribution of temperature
and mechanical properties of the FGM material allowed one tp model the variation of FGM
properties in the cylinder. Note that the conductivity factor and other thermal parameters are
set to zero, and the temperature does not change during analysis. Indeed, the analysis is solely
mechanical and no thermomechanical examination is carried out. This method allows the analy-
sis of the elastic-plastic FGM cylindrical and spherical vessels as well as the rotating disk. The
three-dimensional 8-noded linear coupled temperature displacement family of finite elements in
ABAQUS has been used to model the cylinder. Sensitivity analysis of the mesh has also been
performed to ensure the results remained insensitive to the element size.

In order to evaluate the isogeometric analysis code, a set of results from finite element
calculations and the VMP method (Haghpanah Jahromi et al., 2009) obtained for the plane
strain conditions have been compared with the results obtained from the isogeometric analysis
for the FGM cylindrical vessel subjected to autofrettage internal pressure 100 MPa (Fig. 4).
The results indicated that the isogeometric analysis method has some influence on the accuracy.
Figure 5 illustrates the distribution of von Mises stresses across the thickness in the cylindrical
vessel subjected to internal pressure 300 MPa with n = 2 and different reinforcement distribution
coefficients f.o. The results show that because E./E,, > 1, an increase in f elevates von Mises
stress in the outer surface, and the plastic region decreases in the inner surface.



122

A.T. Kalali et al.

o~
(==}
T

hoop stress

[\
(=]

axial stress

(=]

radial stress

1
[\
(=]

F=0.8, n=1
¢=17.2GPa
Pautofrcttagc =100MPa

—— Finite element method (ABAQUS)

A
S

Residual stress [MPa]

|
D
(=]

-80 x Isogeometric analysis method
* VMP, Haghpanah Jahromi et al. (2009)
-100F
~120L 1 L 1 1 i
1.0 1.2 14 1.6 18 2.0

Fig. 4. Comparison of the VMP method (Haghpanah Jahromi et al., 2009) with the finite element
analysis. The results show the residual stresses in the autofrettaged vessel. In this calculation:
E,, = 56GPa, E. = 20GPa, oy0,, = 106 MPa, H,, = 12 GPa and v,,, = v. = 0.25. The vessel undergoes

a plane-strain condition
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Fig. 5. Von Mises stress along the thickness in the FGM cylindrical vessel subjected to internal pressure
300 MPa with ¢ = 4.5 GPa and n = 2 for different f.o. The vessel has ¢/r; = 1 and plane-stress
condition (properties listed in Table 1)

For the spherical vessel subjected to internal pressure of 600 MPa, the results obtained from
the isogeometric analysis method have been compared with the finite element results. Excellent
agreement is observed as shown in Fig. 6. For the purpose to investigate the effect of n on the
initiation of yielding, we introduce two parameters P,; (pressures corresponding to the initiation
of yielding at the inner radius) and P, (pressures corresponding to the initiation of yielding at
the outer radius). Figure 7 shows that P,; and P, decrease with growing n. Also, in the cylinder
subjected to P, by increasing n, the plastic region gradually spreads from the inner surface.
Note that by increasing n, the metal properties dominate overcoming the ceramic properties
and, therefore, the plastic behaviour of the material becomes more evident.

Similar to the previous cases, the excellent agreement of the isogeometric analysis with the
finite element predictions of elastic-plastic stresses for the rotating disc is shown in Fig. 8. The
distribution of von Mises stresses across the thickness in the disk rotating at different angular
velocities with n = 2 and f.9 = 0.8 is presented in Fig. 9. The results clearly indicate that the
growth of the plastic zone across the thickness is initiated from both sides of the disc. In this
study, density of metal is p,, = 4420 kg/m? and density of ceramic is p. = 2000 kg/m?>.
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Fig. 6. Comparison with the finite element method. The results show the stress components in the
spherical vessel with f.o = 1 and n = 2 subjected to internal pressure 600 MPa. In this calculation
q = 4.5 GPa. The vessel has t/r; = 1 (properties listed in Table 1)
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Fig. 7. Von Mises stress along the thickness in the FGM spherical vessel subjected to P,; and P, with
feo =1 and different n. In this calculation ¢ = 4.5 GPa. The vessel has t/r; = 1 (properties listed in
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Fig. 8. Comparison with the finite element method. The results show the stress components in the
rotating disk with f.o = 0.8 and n = 2 at the angular velocity w = 230rad/s. In this calculation
g = 4.5 GPa. The disk has ¢/r; = 1 (properties listed in Table 1)
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Fig. 9. Von Mises stress along the thickness in the FGM rotating disk at different angular velocities with
feo = 0.8 and n = 2. In this calculation ¢ = 4.5 GPa. The disk has t/r; = 1 (properties listed in Table 1)

6. Conclusion

Using the isogeometric analysis method, elastic-plastic stress distributions in a cylindrical and
spherical pressurized vessels and rotating disks made of an FGM material have been determined.
As expected, this approach to the plasticity problem is computationally cost effective and results
in a much smaller system of equations to solve. Finite element analysis of the problem using
ABAQUS commercial code has been used for verification of the isogeometric method. The nu-
merical analysis within the software has been performed by the application of a “virtual thermal
load” that enabled continuous variation of the material behaviour through the wall thickness.
The analysis results obtained in this work also indicate the possibility of formation and growth
of a plastic region within the wall thickness from the external surface of the FGM vessels or
rotating disks whereas in cylindrical (spherical) vessels and rotating disks made of homogeneous
materials, the plasticity essentially starts from the inner surface.
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