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The study concerns the linear elastic and viscoelastic constitutive mo-
delling of homogeneous orthotropic solid bodies. The considerations are
based on well-known coupled standard/inverse constitutive equations of
elasticity. The author has derived new uncoupled standard/inverse consti-
tutive equations of elasticity, new uncoupled standard/inverse constitutive
equations of viscoelasticity, and new coupled standard/inverse constitu-
tive equations of viscoelasticity of orthotropic materials. A homogeneous
orthotropic material is described by 9 elastic and 18 viscoelastic constants,
clearly interpreted physically. Simpler materials, i.e. monotropic and iso-
tropic solid bodies, are also considered. In addition, the separation of shear
and bulk strains in the uncoupled constitutive equations of elasticity has
been examined numerically for exemplary materials.
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1. Introduction

Modern high-performance materials, e.g. xFRP cross-ply laminates, are usu-
ally homogenised and modelled as orthotropic solid bodies (Jones, 1975; Tsai,
1987; Daniel and Ishai, 1994). However, only the theory of linear elasticity
(Timoshenko and Goodier, 1951) and viscoelasticity (Ferry, 1970; Garbarski,
1990; Klasztorny, 2004a,b) of isotropic materials is advanced in literature.
Garbarski (1990) presented state-of-the-art in viscoelastic modelling of isotro-
pic plastics exhibiting substantial viscoelastic/viscous deformations. Klasztor-
ny (2004a,b) developed coupled/uncoupled constitutive equations of elastici-
ty/viscoelasticity of isotropic thermohardening plastics as well as formulated
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numerical algorithms for transforming standard constitutive equations into
inverse constitutive equations.

In literature, viscoelastic modelling of orthotropic materials was formula-
ted in reference to fibre-reinforced plastics (xFRP), in the form of unidirec-
tional fibre composites or cross-ply laminates. Such materials exhibit sensible
viscoelastic properties.

Sobotka (1980) presented a two-dimensional rheological model for an ortho-
tropic viscoelastic thin plate. The basic model consists of one planar Hookean
elastic and one Newtonian viscous region in the unit representative area, and
is described by 4 relaxation and 2 retardation times. The writer generalizes
this model via incorporating several elastic and viscous regions.

Holzapfel and Gasser (2001) developed a general viscoelastic model for the
three-dimensional stress state of orthotropic materials on the assumption of
finite strains. The authors have developed the expressions for the fourth-order
elasticity tensor. Papers (Zaoutsos et al., 1998; Papanicolaou et al., 1999, 2004)
concern unidirectional fibre-polymer matrix composites. The considerations
are restricted to uniaxially tensioned samples. Zaoutsos et al. (1998) analy-
sed a nonlinear viscoelastic response of a unidirectional CFRP, employing a
one-dimensional viscoelastic model and modified Schapery’s nonlinear consti-
tutive relationship. Creep-recovery tests in tension were executed for stress
levels of 30-70% of the ultimate tensile stress. This approach has been advan-
ced in the next papers, in which a methodology for predicting the nonlinear
viscoelastic behaviour of xFRP composites was developed (Papanicolaou et
al., 1999), and uniaxial tension of samples for different fibre orientations was
tested (Papanicolaou et al., 2004).

To the author’s knowledge based on the literature review, a gap in the the-
ory of linear elasticity and viscoelasticity of orthotropic materials is observed.
So far, only coupled standard/inverse constitutive equations of linear elastici-
ty of an orthotropic material have been formulated (Jones, 1975; Tsai, 1987;
Daniel and Ishai, 1994). Coupled standard constitutive equations of linear vi-
scoelasticity derived from generalisation of respective equations of elasticity
can be formulated relatively easy, as shown in this study. However, analytic
inversion of these equations, using well-known classic procedures, is impossible.

This paper presents a new approach to the problem of viscoelastic model-
ling of homogeneous orthotropic materials. Uncoupled standard constitutive
equations of linear elasticity of an orthotropic solid body are derived. These
equations enable one to formulate uncoupled standard constitutive equations
of linear viscoelasticity. Both groups of uncoupled equations are reversed ana-
lytically in order to obtain uncoupled inverse constitutive equations of line-
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ar elasticity and viscoelasticity. Finally, respective uncoupled equations are
transformed into coupled standard/inverse constitutive equations of linear vi-
scoelasticity.

2. Coupled standard constitutive equations of linear
viscoelasticity of orthotropic solid bodies formulated
by generalization of respective elastic equations

A homogeneous orthotropic solid body in isothermal conditions in the x1x2x3
Cartesian co-ordinate system with the x1, x2, x3 axes coinciding the ortho-
tropy directions is examined. The considerations are restricted to stress levels
inducing linear behaviour of the material.
Coupled standard constitutive equations of linear viscoelasticity of an or-

thotropic material can be formulated by generalization of Eqs. (A.2), (A3),
i.e.

ε(t) = S(t)⊗ σ(t) (2.1)

where

S(t) =



















S11(t) S12(t) S13(t) 0 0 0
S22(t) S23(t) 0 0 0

S33(t) 0 0 0
Ss4(t) 0 0

Ss5(t) 0
symm. Ss6(t)



















(2.2)

is termed as a viscoelastic compliance matrix whose elements are defined by
the formulae

Sii(t) =
1

Eii

[

1 + ωii

t
∫

0

Fii(t− ϑ) dϑ
]

ii = 11, 22, 33

Sij(t) = −
νij

Ejj

[

1 + ωij

t
∫

0

Fij(t− ϑ) dϑ
]

ij = 23, 13, 12

Ss4(t) =
1

2G23

[

1 + ωs4

t
∫

0

Fs4(t− ϑ) dϑ
]

(2.3)

Ss5(t) =
1

2G13

[

1 + ωs5

t
∫

0

Fs5(t− ϑ) dϑ
]

Ss6(t) =
1

2G12

[

1 + ωs6

t
∫

0

Fs6(t− ϑ) dϑ
]
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where F11(t), F22(t), F33(t), F23(t), F13(t), F12(t), Fs4(t), Fs5(t), Fs6(t) are
termed as generic functions or stress-history functions or memory functions of
a viscoelastic material (Ferry, 1970). The generic functions are described by
respective retardation times. Moreover, t is a time variable, ⊗ – convolution
operator.
Summing up, Eqs. (2.3) contain 9 elastic constants (set up in Appendix)

and 18 viscoelastic constants, i.e. 9 long-term creep coefficients ω11, ω22, ω33,
ω23, ω13, ω12, ωs4, ωs5, ωs6 and 9 retardation times τ11, τ22, τ33, τ23, τ13, τ12,
τs4, τs5, τs6. Equations (2.1)-(2.3) show high complexity of the viscoelastic
modelling of orthotropic bodies. Equations (2.1) are coupled, so the analytic
reversal of these equations using the available classic methods is impossible.
For a monotropic solid body, the following relationships resulting from Eqs.

(A.6) are satisfied

S33(t) = S22(t) S13(t) = S12(t) S55(t) = S66(t) (2.4)

In this case, the number of viscoelastic constants reduces itself to 12.

3. Uncoupled standard/inverse constitutive equations of elasticity
of orthotropic solid bodies

Equations (A.2)1,2,3 are coupled. Uncoupled standard constitutive equations
of linear elasticity of an orthotropic solid body are searched in the form of two
matrix equations

εs = {Ss}σs εb = {Sb}σb (3.1)

where
εs = (I− B)ε σs = (I− A)σ

εb = Bε σb = Aσ
(3.2)

with

I = diag (1, 1, 1, 1, 1, 1) A =





























1

3

1

3λ2

1

3λ3
0 0 0

λ2

3

1

3

λ2

3λ3
0 0 0

λ3

3

λ3

3λ2

1

3
0 0 0

0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0





























(3.3)



Coupled and uncoupled constitutive equations... 7

and

{Ss} = diag (Ss1, Ss2, Ss3, Ss4, Ss5, Ss6)
(3.4)

{Sb} = diag (Sb1, Sb2, Sb3, 1, 1, 1)

Matrices defined by Eqs. (3.4) may be termed as diagonal matrices of ela-
stic compliances. The x1 direction has been privileged in order to reflect the
monotropy direction for monotropic materials. Equations (3.2) result in the
following relationships

ε = εs + εb σ = σs + σb (3.5)

Coefficients λ2, λ3 and elastic compliances Ss1, Ss2, Ss3, Sb1, Sb2, Sb3
will be derived from compatibility conditions related to the coupled and un-
coupled constitutive equations. Comparing Eqs. (A.2) and (3.1), taking into
consideration Eqs. (3.5), one obtains

Sσ = {Ss}σs + {Sb}σb (3.6)

Substituting Eqs. (3.2)2, (3.2)4 into Eq. (3.6) results in

S = {Ss}(I− A) + {Sb}A (3.7)

Matrix equation (3.7) constitutes the compatibility conditions. Taking in-
to account Eqs. (A.1), the explicit form of Eq. (3.7) related to sub-blocks
i, j = 1, 2, 3, has the following form















1

E11
−
ν12

E22
−
ν13

E33

−
ν12

E22

1

E22
−
ν23

E33

−
ν13

E33
−
ν23

E33

1

E33















=

















1

3
(2Ss1 + Sb1)

1

3λ2
(Sb1 − Ss1)

1

3λ3
(Sb1 − Ss1)

λ2

3
(Sb2 − Ss2)

1

3
(2Ss2 + Sb2)

λ2

3λ3
(Sb2 − Ss2)

λ3

3
(Sb3 − Ss3)

λ3

3λ2
(Sb3 − Ss3)

1

3
(2Ss3 + Sb3)

















(3.8)
Comparing respective elements in Eq. (3.8), one obtains 9 algebraic equations
with one equation (optional) stating identity. The analytic solution to the
remaining 8 equations has the form

λ2 =
ν13

ν23
λ3 =

ν12

ν32

Ss1 =
1

E11

(

1 +
ν21ν13

ν23

)

Ss2 =
1

E22

(

1 +
ν12ν23

ν13

)

Ss3 =
1

E33

(

1 +
ν13ν32

ν12

)

Sb1 =
1

E11

(

1− 2
ν21ν13

ν23

)

(3.9)
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Sb2 =
1

E22

(

1− 2
ν12ν23

ν13

)

Sb3 =
1

E33

(

1− 2
ν13ν32

ν12

)

The remaining equations in Eq. (3.1)1, related to shear stresses, are directly
uncoupled.

Taking into account Eqs. (3.2)4, (A.9), Eq. (3.1)2 can be transformed to
the following form

εb = {Sb}σb = {Sb}Aσ = {Sb}ACε = Bε (3.10)

Therefore,

B = {Sb}AC (3.11)

The matrix B is of a block structure analogous to the structure of the ma-
trix A, i.e.

B =



















B11 B12 B13 0 0 0
B21 B22 B23 0 0 0
B31 B32 B33 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0



















(3.12)

For a monotropic material, the conditions written in Eqs. (A.5), (A.7) give
the relationships

λ3 = λ2 Ss2 = Ss3 = Ss4 Ss5 = Ss6 Sb3 = Sb2 (3.13)

In this case, Eqs. (3.4) simplify themselves to the form

{Ss} = diag (Ss1, Ss4, Ss4, Ss4, Ss6, Ss6)
(3.14)

{Sb} = diag (Sb1, Sb2, Sb2, 1, 1, 1)

where

Ss1 =
1

E11

(

1 +
ν21ν12

ν32

)

Ss4 =
1

2G23
Ss6 =

1

2G12

Sb1 =
1

E11

(

1− 2
ν21ν12

ν32

)

Sb2 =
1

3B22

(3.15)

with

G23 =
E22

2(1 + ν32)
B22 =

E22

3(1− 2ν32)
ν12 = ν21

E22

E11
(3.16)
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Equations (A.8) for an isotropic material yield

λ2 = λ3 = 1 B = A (3.17)

In this case, Eqs. (3.2) take the matrix form equivalent to the classic results
(Timoshenko and Goodier, 1951; Klasztorny, 2004a)

εs = (I− A)ε σs = (I− A)σ

εb = Aε σb = Aσ
(3.18)

where

A =



























1

3

1

3

1

3
0 0 0

1

3

1

3
0 0 0

1

3
0 0 0

0 0 0
symm. 0 0

0



























(3.19)

and

{Ss} = diag (Ss, Ss, Ss, Ss, Ss, Ss) {Sb} = diag (Sb, Sb, Sb, 1, 1, 1)

Ss =
1

2G
Sb =

1

3B
(3.20)

G =
E

2(1 + ν)
B =

E

3(1− 2ν)

According to the classic theory of elasticity (Timoshenko and Goodier, 1951),
Ss is termed as an elastic shear compliance, Sb – elastic bulk compliance,
G – Kirchhoff’s modulus, B – Helmholtz’s modulus of an isotropic medium.
The reversal of Eqs. (3.1) gives uncoupled inverse constitutive equations

of elasticity of an orthotropic solid body, i.e.

σs = {Cs}εs σb = {Cb}εb (3.21)

where
{Cs} = {Ss}

−1 {Cb} = {Sb}
−1

Csi = S
−1
si i = 1, 2, 3, 4, 5, 6

Cbj = S
−1
bj j = 1, 2, 3

(3.22)

Matrices defined by Eqs. (3.22)1,2 may be termed as diagonal matrices of the
elastic stiffness.
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For a monotropic material, Eqs. (3.22)1,2 take the following form

{Cs} = diag (Cs1, 2G23, 2G23, 2G23, 2G12, 2G12)
(3.23)

{Cb} = diag (Cb1, 3B22, 3B22, 1, 1, 1)

with
Cs1 = S

−1
s1 Cb1 = S

−1
b1 (3.24)

For an isotropic material, diagonal matrices of the elastic stiffness in Eqs
(3.21) reduce themselves to the following form (see Eqs. (3.20) and (3.22))

{Ss} = diag (Cs, Cs, Cs, Cs, Cs, Cs) Cs = 2G

{Sb} = diag (Cb, Cb, Cb, 1, 1, 1) Cb = 2B
(3.25)

According to the classic theory of elasticity (Timoshenko and Goodier, 1951),
Cs is termed as the elastic shear stiffness, and Cb – elastic bulk stiffness of an
isotropic material.

4. Analysis of separation of shear and bulk strains in uncoupled
equations of elasticity of orthotropic solid bodies

Shear strains of an orthotropic material are fully expressed in terms of the
vector εs. This statement results from Eqs. (3.2), (3.12). The bulk (volumetric)
strains are expressed in terms of the vector εb, but a minor part of these strains
is included into the vector εs. The following quantities constitute the measures
of the bulk strains corresponding to the vectors εb, εs, respectively

eb = εb1 + εb2 + εb3 = ρ1ε11 + ρ2ε22 + ρ3ε33
(4.1)

es = e− eb = (1− ρ1)ε11 + (1− ρ2)ε22 + (1− ρ3)ε33

where
e = ε11 + ε22 + ε33 (4.2)

is termed as dilatation (the full volumetric strain of a unit element) (Timo-
shenko and Goodier, 1951). From Eqs. (3.2)3 and (3.12), one obtains

ρ1 = B11+B21+B31 ρ2 = B12+B22+B32 ρ3 = B13+B23+B33
(4.3)
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Taking into consideration Eqs. (3.18)3 and (3.19) for an isotropic material,
one obtains

ρ1 = 1 ρ2 = 1 ρ3 = 1

eb = e es = 0
(4.4)

hence, the shear and bulk strains are fully separated, as expected.

In this study, the separation of shear and bulk strains is examined for the
following materials:

a) monotropic materials

E11 = 10− 100 GPa E22 = 10 GPa E33 = 10 GPa

ν32 = 0.4 ν31 = 0.4 ν21 = 0.4

b) orthotropic materials

E11 = 10− 100 GPa E22 = 40 GPa E33 = 10 GPa

ν32 = 0.4 ν31 = 0.4 ν21 = 0.1

The calculations were performed using author’s computer programme.

Diagrams of the coefficients ρ1, ρ2, ρ3 are presented in Fig. 1 and Fig. 2
for monotropic and orthotropic materials, respectively. Full separation of the
shear and bulk strains in the isotropic material has been confirmed. Values
of the coefficients ρ1, ρ2, ρ3 depend on the orthotropy level. The vector εb
incorporates 80−100% of the bulk strains, whereas the remaining part of these
strains is included in the vector εs. For a monotropic material, one obtains
ρ2 = ρ3.

Fig. 1. Values of coefficients ρ1, ρ2, ρ3 vs. longitudinal Young’s modulus E11 for
monotropic materials
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Fig. 2. Values of coefficients ρ1, ρ2, ρ3 vs. longitudinal Young’s modulus E11 for
orthotropic materials

5. Uncoupled/coupled standard constitutive equations of
viscoelasticity of orthotropic solid bodies

In this study, uncoupled standard constitutive equations of linear viscoelasti-
city of an orthotropic material are derived from generalisation of Eqs. (3.1)
and, in matrix notation, take the following form

εs(t) = {Ss(t)} ⊗ σs(t) εb(t) = {Sb(t)} ⊗ σb(t) (5.1)

where εs, σs, εb, εb are defined by Eqs. (3.2), and

{Ss(t)} = diag [Ss1(t), Ss2(t), Ss3(t), Ss4(t), Ss5(t), Ss6(t)]
(5.2)

{Sb(t)} = diag [Sb1(t), Sb2(t), Sb3(t), 1, 1, 1]

The matrices defined by Eqs. (5.2) may be termed as a diagonal viscoelastic
quasi-shear compliance matrix and a diagonal viscoelastic quasi-bulk com-
pliance matrix, respectively. General formulae for these compliances have the
form

Ssi(t) = Ssi
[

1 + ωsi

t
∫

0

Fsi(t− ϑ) dϑ
]

i = 1, 2, 3, 4, 5, 6

Sbj(t) = Sbj
[

1 + ωbj

t
∫

0

Fbj(t− ϑ) dϑ
]

j = 1, 2, 3

(5.3)

where Fsi(t), Fbj(t) are termed as quasi-deviatoric and quasi-axiatoric stress-
history functions, respectively. For each function, a retardation time is to be
specified.
Summing up, an orthotropic material is described by 9 elastic con-

stants and 18 viscoelastic constants, i.e. 9 long-term creep coefficients ωsi,
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i = 1, 2, 3, 4, 5, 6; ωbj, j = 1, 2, 3 and 9 retardation times τsi, i = 1, 2, 3, 4, 5, 6;
τbj, j = 1, 2, 3.
For a monotropic solid body, the following relationships resulting form Eqs.

(3.13) are valid

Ss2(t) = Ss3(t) = Ss4(t) Ss5(t) = Ss6(t) Sb2(t) = Sb3(t) (5.4)

In this case, the number of viscoelastic constants drops to 10.
Coupled standard constitutive equations of linear viscoelasticity of an or-

thotropic solid body are obtained by summing matrix equations (5.1)1, (5.1)2,
i.e

ε(t) = S(t)⊗ σ(t) (5.5)

where

S(t) = {Ss(t)}(I − A) + {Sb(t)}A =
(5.6)

=



















S11(t) S12(t) S13(t) 0 0 0
S21(t) S22(t) S23(t) 0 0 0
S31(t) S32(t) S33(t) 0 0 0
0 0 0 Ss4(t) 0 0
0 0 0 0 Ss5(t) 0
0 0 0 0 0 Ss6(t)



















is named as in Section 2, i.e. the viscoelastic compliance matrix.

6. Uncoupled/coupled inverse constitutive equations of
viscoelasticity of orthotropic solid bodies

The exact analytic reversal of uncoupled standard constitutive equations of
viscoelasticity (Eqs. (5.1)) is possible for a number of generic functions. As a
result, one obtains uncoupled inverse constitutive equations of viscoelasticity
of an orthotropic material in the form

σs(t) = {Cs(t)} ⊗ εs(t) σb(t) = {Cb(t)} ⊗ εb(t) (6.1)

where

{Cs(t)} = diag [Cs1(t), Cs2(t), Cs3(t), Cs4(t), Cs5(t), Cs6(t)]

{Cb(t)} = diag [Cb1(t), Cb2(t), Cb3(t), 1, 1, 1]
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Csi(t) = Csi
[

1− κsi

t
∫

0

Ksi(t− ϑ) dϑ
]

i = 1, 2, 3, 4, 5, 6 (6.2)

Cbj(t) = Cbj
[

1− κbj

t
∫

0

Kbj(t− ϑ) dϑ
]

j = 1, 2, 3

The matrices defined by Eqs. (6.2) may be termed as a diagonal viscoelastic
quasi-shear stiffness matrix and a diagonal viscoelastic quasi-bulk stiffness ma-
trix, respectively. Quantities Ksi(t), Kbj(t) may be termed as quasi-shear and
quasi-bulk strain-history functions, respectively. For each function, a relaxa-
tion time is to be specified.

From the point of view of inverse equations, an orthotropic material is still
described by 9 elastic constants and 18 viscoelastic constants, i.e. 9 long-term
relaxation coefficients κsi, i = 1, 2, 3, 4, 5, 6; κbj , j = 1, 2, 3 and 9 relaxation
times θsi, i = 1, 2, 3, 4, 5, 6; θbj, j = 1, 2, 3.

For some genering functions, formulae transforming quantities related to
the standard equations (Eqs. (5.1)) into quantities related to the inverse equ-
ations (Eqs. (6.1)) are known. For example, normal exponential generic func-
tions

Fsi(t) = αsie
−αsit αsi =

1

τsi
i = 1, 2, 3, 4, 5, 6

Fbj(t) = αbje
−αbj t αbj =

1

τbj
j = 1, 2, 3

(6.3)

result in (Timoshenko and Goodier, 1951; Klasztorny, 2004a,b)

κsi =
ωsi

1 + ωsi
Ksi(t) = βsie

−βsit

βsi = (1 + ωsi)αsi βsi =
1

θsi















i = 1, 2, 3, 4, 5, 6

(6.4)

κbj =
ωbj

1 + ωbj
Kbj(t) = βbje

−βbjt

βbj = (1 + ωbj)αbj βbj =
1

θbj















j = 1, 2, 3

Summing Eqs. (6.1)1, (6.2)2 and taking into account formulae (3.2), one
obtains coupled inverse constitutive equations of linear viscoelasticity of an
orthotropic solid body in the form



Coupled and uncoupled constitutive equations... 15

σ(t) = C(t)⊗ ε(t) (6.5)

where

C(t) = {Cs(t)}(I − B) + {Cb(t)}B =
(6.6)

+



















C11(t) C12(t) C13(t) 0 0 0
C21(t) C22(t) C23(t) 0 0 0
C31(t) C32(t) C33(t) 0 0 0
0 0 0 Cs4(t) 0 0
0 0 0 0 Cs5(t) 0
0 0 0 0 0 Cs6(t)



















is termed as a viscoelastic stiffness matrix.

7. Conclusions

The study concerns the linear elastic/viscoelastic constitutive modelling of
homogeneous orthotropic solid bodies. Coupled standard/inverse constitutive
equations of elasticity have consituted the basis for deriving the following
equations:

• uncoupled standard constitutive equations of elasticity,

• uncoupled inverse constitutive equations of elasticity,

• uncoupled standard constitutive equations of viscoelasticity,

• uncoupled inverse constitutive equations of viscoelasticity,

• coupled standard constitutive equations of viscoelasticity,

• coupled inverse constitutive equations of viscoelasticity.

The uncoupled/coupled constitutive equations of viscoelasticity of a homo-
geneous orthotropic material are described by 9 elastic and 18 viscoelastic
constants. These constants have been clearly interpreted physically. Two
particular cases have been considered, i.e. monotropic and isotropic solid
bodies.

In addition, the separation of shear and bulk strains in the uncoupled
constitutive equations of elasticity has been examined numerically for selected
monotropic and orthotropic materials.



16 M. Klasztorny

A. Coupled standard/inverse constitutive equations of linear
elasticity of orthotropic solid bodies

This appendix is based on Jones (1975), Tsai (1987), Daniel and Ishai (1994)
and slightly develops respective equations via unification of Poisson’s ratios.
A homogeneous orthotropic solid body in isothermal conditions in the x1x2x3
Cartesian co-ordinate system with the x1, x2, x3 axes coinciding the ortho-
tropy directions is examined. The considerations are restricted to stress levels
inducing linear behaviour of the material. The stress and strain states are
described by the following vectors (reflecting stress and strain tensors, respec-
tively)

σ = col (σ11, σ22, σ33, σ23, σ13, σ12)

ε = col (ε11, ε22, ε33, ε23, ε13, ε12)

where, for i, j = 1, 2, 3, σii is the normal stress, σij – shear stress (i 6= j),
εii – relative elongation, εij – half of the shear strain angle of the dx1dx2dx3
differential element (i 6= j).

A homogeneous orthotropic material is described by 9 independent ela-
stic constants, i.e. E11, E22, E33 – Young’s longitudinal moduli of elasticity;
ν32, ν31, ν21 – Poisson’s ratios; G23, G13, G12 – Kirchhoff’s shear moduli.
The remaining Poisson’s ratios (ν23, ν13, ν12) are derived from the symmetry
conditions, i.e.

νij

Ejj
=
νji

Eii
i 6= j; i, j = 1, 2, 3 (A.1)

where (−νji) denotes shortening in the xj direction induced by tensioning in
the xi direction.

Coupled standard constitutive equations of linear elasticity of an orthotro-
pic solid body, written in matrix notation, have the following form

ε = Sσ (A.2)

where

S =



















S11 S12 S13 0 0 0
S22 S23 0 0 0

S33 0 0 0
Ss4 0 0

Ss5 0
symm. Ss6



















(A.3)
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is termed as an elastic compliance matrix, whose elements are defined by the
following formulae

S11 =
1

E11
S12 = −

ν12

E22
S13 = −

ν13

E33

S21 = −
ν21

E11
S22 =

1

E22
S23 = −

ν23

E33

S31 = −
ν31

E11
S32 = −

ν32

E22
S33 =

1

E33

Ss4 =
1

2G23
Ss5 =

1

2G13
Ss6 =

1

2G12

(A.4)

A monotropic material, also termed as a transverse isotropic material,
satisfies the following relationships

E33 = E22 G13 = G12 ν13 = ν12 G23 =
E22

2(1 + ν32)
(A.5)

resulting in

S33 = S22 S13 = S12 S55 = S66 (A.6)

with x1 being the direction of monotropy, x2x3 – plane of isotropy. A monotro-
pic material is described by 5 independent elastic constants, i.e.: E11 – Young’s
longitudinal modulus, E22 – Young’s transverse modulus (E22 ¬ E11),
ν32 – Poisson’s ratio in the x2x3 plane, ν21 – greater Poisson’s ratio in the
x1x2 plane, G12 – Kirchhoff’s shear modulus in the x1x2 plane. The remaining
7 elastic constants for a monotropic material depend on the constants E11,
E22, ν32, ν21, G12 according to Eqs. (A.1), (A.5). In this case, one obtains

ν12 = ν21
E22

E11
¬ ν21 ν31 = ν21 ν23 = ν32 (A.7)

The coefficient ν12 is termed as a smaller Poisson’s ratio in the x1x2 plane.

An isotropic material is described by two classic elastic constants, E, ν,
and satisfies the following relationships

Eii = E ii = 11, 22, 33

νij = νji = ν ij = 23, 13, 12

Gij = G =
E

2(1 + ν)
j = 23, 13, 12

(A.8)
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The coupled inverse constitutive equations describing behaviour of an or-
thotropic solid body, written in matrix notation, have the following form

σ = Cε (A.9)
where

C =



















C11 C12 C13 0 0 0
C22 C23 0 0 0

C33 0 0 0
Cs4 0 0

Cs5 0
symm. Cs6



















(A.10)

is termed as an elastic stiffness matrix, which elements are defined by the
following formulae

C11 = E11
1− ν23ν32
∆

C22 = E22
1− ν13ν31
∆

C33 = E33
1− ν12ν21
∆

C12 = E22
ν21 + ν23ν31
∆

C13 = E33
ν31 + ν21ν32
∆

C23 = E33
ν32 + ν12ν31
∆

Cs4 = 2G23 Cs5 = 2G13 Cs6 = 2G12

(A.11)

with

∆ = 1− ν23ν32 − ν13ν31 − ν12ν21 − ν12ν23ν31 − ν21ν32ν13 (A.12)

and C = S−1.
For a monotropic material, one obtains

C33 = C22 C13 = C12 C55 = C66 (A.13)
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Sprzężone i niesprzężone równania konstytutywne liniowej sprężystości
i lepkosprężystości materiałów ortotropowych

Streszczenie

Praca dotyczy modelowania konstytutywnego jednorodnych ortotropowych ciał
stałych w zakresie linowym, sprężystym i lepkosprężystym. Podstawą rozważań są
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znane sprzężone standardowe/odwrotne równania konstytutywne liniowej sprężysto-
ści tych materiałów. Wyznaczono niesprzężone standardowe/odwrotne równania kon-
stytutywne liniowej sprężystości, sformułowano niesprzężone standardowe/odwrotne
równania konstytutywne liniowej lepkosprężystości, a następnie wyznaczono sprzężo-
ne standardowe/odwrotne równania konstytutywne liniowej lepkosprężystości ortotro-
powych ciał stałych. Jednorodny materiał ortotropowy opisano za pomocą 9 stałych
sprężystości i 18 stałych lepkosprężystości z podaniem przejrzystej interpretacji fizycz-
nej tych stałych. Rozważono również przypadki szczególne materiału monotropowego
i izotropowego. Dodatkowo, przetestowano numerycznie rozdzielenie odkształceń po-
staciowych i objętościowych w przypadku niesprzężonych równań konstytutywnych
sprężystości materiałów ortotropowych i monotropowych.
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