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The study concerns the linear elastic and viscoelastic constitutive mo-
delling of homogeneous orthotropic solid bodies. The considerations are
based on well-known coupled standard/inverse constitutive equations of
elasticity. The author has derived new uncoupled standard/inverse consti-
tutive equations of elasticity, new uncoupled standard /inverse constitutive
equations of viscoelasticity, and new coupled standard/inverse constitu-
tive equations of viscoelasticity of orthotropic materials. A homogeneous
orthotropic material is described by 9 elastic and 18 viscoelastic constants,
clearly interpreted physically. Simpler materials, i.e. monotropic and iso-
tropic solid bodies, are also considered. In addition, the separation of shear
and bulk strains in the uncoupled constitutive equations of elasticity has
been examined numerically for exemplary materials.
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1. Introduction

Modern high-performance materials, e.g. xFRP cross-ply laminates, are usu-
ally homogenised and modelled as orthotropic solid bodies (Jones, 1975; Tsai,
1987; Daniel and Ishai, 1994). However, only the theory of linear elasticity
(Timoshenko and Goodier, 1951) and viscoelasticity (Ferry, 1970; Garbarski,
1990; Klasztorny, 2004a,b) of isotropic materials is advanced in literature.
Garbarski (1990) presented state-of-the-art in viscoelastic modelling of isotro-
pic plastics exhibiting substantial viscoelastic/viscous deformations. Klasztor-
ny (2004a,b) developed coupled/uncoupled constitutive equations of elastici-
ty /viscoelasticity of isotropic thermohardening plastics as well as formulated
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numerical algorithms for transforming standard constitutive equations into
inverse constitutive equations.

In literature, viscoelastic modelling of orthotropic materials was formula-
ted in reference to fibre-reinforced plastics (xFRP), in the form of unidirec-
tional fibre composites or cross-ply laminates. Such materials exhibit sensible
viscoelastic properties.

Sobotka (1980) presented a two-dimensional rheological model for an ortho-
tropic viscoelastic thin plate. The basic model consists of one planar Hookean
elastic and one Newtonian viscous region in the unit representative area, and
is described by 4 relaxation and 2 retardation times. The writer generalizes
this model via incorporating several elastic and viscous regions.

Holzapfel and Gasser (2001) developed a general viscoelastic model for the
three-dimensional stress state of orthotropic materials on the assumption of
finite strains. The authors have developed the expressions for the fourth-order
elasticity tensor. Papers (Zaoutsos et al., 1998; Papanicolaou et al., 1999, 2004)
concern unidirectional fibre-polymer matrix composites. The considerations
are restricted to uniaxially tensioned samples. Zaoutsos et al. (1998) analy-
sed a nonlinear viscoelastic response of a unidirectional CFRP, employing a
one-dimensional viscoelastic model and modified Schapery’s nonlinear consti-
tutive relationship. Creep-recovery tests in tension were executed for stress
levels of 30-70% of the ultimate tensile stress. This approach has been advan-
ced in the next papers, in which a methodology for predicting the nonlinear
viscoelastic behaviour of xFRP composites was developed (Papanicolaou et
al., 1999), and uniaxial tension of samples for different fibre orientations was
tested (Papanicolaou et al., 2004).

To the author’s knowledge based on the literature review, a gap in the the-
ory of linear elasticity and viscoelasticity of orthotropic materials is observed.
So far, only coupled standard/inverse constitutive equations of linear elastici-
ty of an orthotropic material have been formulated (Jones, 1975; Tsai, 1987;
Daniel and Ishai, 1994). Coupled standard constitutive equations of linear vi-
scoelasticity derived from generalisation of respective equations of elasticity
can be formulated relatively easy, as shown in this study. However, analytic
inversion of these equations, using well-known classic procedures, is impossible.

This paper presents a new approach to the problem of viscoelastic model-
ling of homogeneous orthotropic materials. Uncoupled standard constitutive
equations of linear elasticity of an orthotropic solid body are derived. These
equations enable one to formulate uncoupled standard constitutive equations
of linear viscoelasticity. Both groups of uncoupled equations are reversed ana-
lytically in order to obtain uncoupled inverse constitutive equations of line-
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ar elasticity and viscoelasticity. Finally, respective uncoupled equations are
transformed into coupled standard/inverse constitutive equations of linear vi-
scoelasticity.

2. Coupled standard constitutive equations of linear
viscoelasticity of orthotropic solid bodies formulated
by generalization of respective elastic equations

A homogeneous orthotropic solid body in isothermal conditions in the zizox3
Cartesian co-ordinate system with the x1, xo2, 3 axes coinciding the ortho-
tropy directions is examined. The considerations are restricted to stress levels
inducing linear behaviour of the material.

Coupled standard constitutive equations of linear viscoelasticity of an or-
thotropic material can be formulated by generalization of Egs. (A.2), (A3),
ie.

e(t) =S(t) @ o(t) (2.1)
where [S11(t) Si2(t) Sis(t) 0 0 0
Saa(t) Sas(t) 0 0 0
S(1) = S 22
Ses(t) 0
| Symm. Ss6(t) ]

is termed as a viscoelastic compliance matrix whose elements are defined by
the formulae

t
Sii(t) = Ei[l +w,~,~/Fii(t — ) dv)] i =11,22,33
0
) t
Sii(t) = —;—jj 1 +wz-j/F,-j(t ~ ) do] ij = 23,13,12
0
1 ¢ p :
Sualt) = 55— [1 + s / Fu(t —0) do)] (2.3)
0
1 / :
Sis(t) = 55— [L+wis / Fus(t —9) )
0
1 / :
Sis(t) = 55— 1+ wis / Fuo(t — ) )
0
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where Fll(t), Fgg(t), Fgg(t), Fgg(t), Flg(t), Flg(t), Fs4(t), FS5(t), Fsﬁ(t) are
termed as generic functions or stress-history functions or memory functions of
a viscoelastic material (Ferry, 1970). The generic functions are described by
respective retardation times. Moreover, t is a time variable, ® — convolution
operator.

Summing up, Egs. (2.3) contain 9 elastic constants (set up in Appendix)
and 18 viscoelastic constants, i.e. 9 long-term creep coefficients w11, woo, w3s,
wa3, W13, W12, Ws4, Ws5, Wsg and 9 retardation times 71, T2, 733, T3, T13, T12,
Ts4, Ts5, Ts6- Fquations (2.1)-(2.3) show high complexity of the viscoelastic
modelling of orthotropic bodies. Equations (2.1) are coupled, so the analytic
reversal of these equations using the available classic methods is impossible.

For a monotropic solid body, the following relationships resulting from Egs.
(A.6) are satisfied

S33(t) = Saa(t) S13(t) = S12(t) Ss5(t) = Ses(t) (2.4)

In this case, the number of viscoelastic constants reduces itself to 12.

3. Uncoupled standard/inverse constitutive equations of elasticity
of orthotropic solid bodies

Equations (A.2); 23 are coupled. Uncoupled standard constitutive equations
of linear elasticity of an orthotropic solid body are searched in the form of two
matrix equations

Eg = {SS}O'S Ep = {Sb}O'b (31)
where ( ) ( )
es=(1—B)e os=(1—-A)o
(3.2)
Ep = Be oy = Ac
with
rl 1 1 7
A2 1 A 00 0
3 3 33
| = diag(1,1,1,1,1,1) A=|2 A Lo (3.3)
3 33X 3
0 0 0 0 00
0 0 0O 0 0 0
L 0 0 0 0 0 0
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and

{Ss} = diag (5317 5327 5337 5347 5357 SSG)
(3.4)

{Sp} = diag (Sp1, Sp2, Sp3, 1,1,1)

Matrices defined by Egs. (3.4) may be termed as diagonal matrices of ela-
stic compliances. The x7 direction has been privileged in order to reflect the
monotropy direction for monotropic materials. Equations (3.2) result in the
following relationships

€ ==¢€,+ € o=0,+o0y (3.5)

Coefficients Ao, A3 and elastic compliances Sg1, Ss2, Ss3, Sp1, Sp2, Sk
will be derived from compatibility conditions related to the coupled and un-
coupled constitutive equations. Comparing Egs. (A.2) and (3.1), taking into
consideration Egs. (3.5), one obtains

So ={Ss}os+ {Sp}op (3.6)
Substituting Egs. (3.2)2, (3.2)4 into Eq. (3.6) results in
S={S.}(I-A)+ {S;}A (3.7)

Matrix equation (3.7) constitutes the compatibility conditions. Taking in-
to account Egs. (A.1), the explicit form of Eq. (3.7) related to sub-blocks
1,7 = 1,2, 3, has the following form

1 V12 V13 1 1 1
- —_— _—— - 255 S —_— S — SS _ S _ SS
En ?22 Ejs3 Z)%\( 1+ ) 31)\2( b1 1) 3/\)\3( b1 1)

V12 23 2 5

 Ey T el Tl — Ps — (255 AL - S,
Ey  FEy ?33 )E)’ (Sp2 — Ss2) 3/{( Ss2 + Sp2) 31)\3 (Sp2 — Ss2)
V13 123 3 5

B3 B Fs3 3 oY Q). — s —(254
Ess B33 Ess 3 (S5 = S:3) 3A2 (St = Sea) 3( Ss3 + 5b3)

(3.8)
Comparing respective elements in Eq. (3.8), one obtains 9 algebraic equations
with one equation (optional) stating identity. The analytic solution to the
remaining 8 equations has the form

Ay = 13 Ag = 212
V23 V39
1 V21113 1 V12193
S=—1|1 So=—(1 3.9
sl Efl ( + VV25> ) s2 B ) ( + ]/Vl3y ) ( )
G.— 1 (4 1332 g = L (] grerts
s3 FEs3 ( + V12 ) b Eqq ( V23 )
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1 V12123 1 V13V32
Spp = — (1 — 24222 Sps = — (1 -2
27 E ( V13 ) ¥ B ( V12 )
The remaining equations in Eq. (3.1)1, related to shear stresses, are directly
uncoupled.
Taking into account Egs. (3.2)4, (A.9), Eq. (3.1)2 can be transformed to
the following form

ep, = {Sp}op, = {Sp}Ao = {S;}ACe = Be (3.10)

Therefore,

B = {S,}AC (3.11)

The matrix B is of a block structure analogous to the structure of the ma-
trix A, i.e.

[Bi1 Bi2 Biz 0 0 0]
Boy B Bz 0 0 0
_|Bs1 B3z Bz 0 0 0
B = 0 0 0O 0 0 O (3.12)
0 0 0O 0 0 O
0 0 0 00 0

For a monotropic material, the conditions written in Egs. (A.5), (A.7) give
the relationships

Az = A2 Ss2 = Ss3 = Ss4 S5 = Ss6 Sps = Sp2 (3.13)
In this case, Egs. (3.4) simplify themselves to the form

{Ss} = dlag (5817 5547 5547 5547 5567 556)

(3.14)
{Sp} = diag (Sp1, Sp2, Sp2,1,1,1)
where
1 1 1
Ssl — —(1 + M) Ss4 — 536 =
11 U392 2Ga3 2G12 (3.15)
1 V2112 1 ’
= (1o Spp =
S Eq ( V32 ) "2 7 3By
with
E E E
Gos = o By = st vz = va1—=  (3.16)

2(1 + 1/32) 3(1 — 21/32) F11
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Equations (A.8) for an isotropic material yield

Aa=A3=1

B=A (3.17)

In this case, Eqgs. (3.2) take the matrix form equivalent to the classic results
(Timoshenko and Goodier, 1951; Klasztorny, 2004a)

es = (1—A)e
gp = Ae
where
B
5
3
A =
symm.
and

{Ss} = diag (557 587 SS7 Ss; 587 Ss)

1
Ss=3a

E
G_2(1+u)

s ={-Re (3.18)

o, = Ao

(3.19)

Wl W | =

o o o O

o O O [en} )
o O o O [an} o

{Sb} - dla‘g (Sb7 Sb7 Sbu 17 17 1)
1
Sb - 3_B
E

3(1—2v)

(3.20)

According to the classic theory of elasticity (Timoshenko and Goodier, 1951),
S is termed as an elastic shear compliance, S, — elastic bulk compliance,
G — Kirchhoff’s modulus, B — Helmholtz’s modulus of an isotropic medium.

The reversal of Egs. (3.1) gives uncoupled inverse constitutive equations
of elasticity of an orthotropic solid body, i.e.

os = {Csles o, = {Cpley (3.21)
where
{C}={S:}! {Co} ={Sp} "
Coi =S5 i=1,2,3,4,5,6 (3.22)
Chj = Sy, j=1,2,3

Matrices defined by Eqs. (3.22); 2 may be termed as diagonal matrices of the
elastic stiffness.
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For a monotropic material, Eqgs. (3.22); 2 take the following form

{C,} = diag (Cs1,2G23,2G23, 2Ga3, 2G12, 2G12)
(3.23)

{Cy} = diag (Cp1,3B22,3B2,1,1,1)

with
Co1 = St Cp1 = Sy" (3.24)

s

For an isotropic material, diagonal matrices of the elastic stiffness in Eqs
(3.21) reduce themselves to the following form (see Egs. (3.20) and (3.22))

{Ss} = diag (03703703703703703) Cs =2G

3.25
{Sy} = diag (Ch, Gy, G, 1, 1, 1) G, — 2B (3:25)

According to the classic theory of elasticity (Timoshenko and Goodier, 1951),
C is termed as the elastic shear stiffness, and Cj — elastic bulk stiffness of an
isotropic material.

4. Analysis of separation of shear and bulk strains in uncoupled
equations of elasticity of orthotropic solid bodies

Shear strains of an orthotropic material are fully expressed in terms of the
vector €. This statement results from Eqgs. (3.2), (3.12). The bulk (volumetric)
strains are expressed in terms of the vector &, but a minor part of these strains
is included into the vector €,. The following quantities constitute the measures
of the bulk strains corresponding to the vectors e, €5, respectively

ey = €p1 + Ep2 + b3 = P1€11 + P2E22 + P3€33 (4.1)

es=e—e,=(1—pi)ern + (1 — p2)eaa + (1 — p3)ess
where
€ =¢&11 + €92 + €33 (4.2)
is termed as dilatation (the full volumetric strain of a unit element) (Timo-

shenko and Goodier, 1951). From Eqgs. (3.2)3 and (3.12), one obtains

p1 = B11+ Bo1 + B3y p2 = Bia+ Baa + B3a p3 = Bi13+ B3 + B33
(4.3)
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Taking into consideration Egs. (3.18)3 and (3.19) for an isotropic material,

one obtains
pr=1 p2=1 p3=1
(4.4)
ep=¢€ es =0

hence, the shear and bulk strains are fully separated, as expected.

In this study, the separation of shear and bulk strains is examined for the
following materials:
a) monotropic materials

Ell =10 — 100 GPa E22 =10 GPa E33 =10 GPa
V39 — 0.4 V3] — 0.4 V91 = 0.4

b) orthotropic materials

Ell =10 — 100 GPa E22 =40 GPa E33 =10 GPa

V3o = 0.4 V31 = 0.4 V91 = 0.1

The calculations were performed using author’s computer programme.

Diagrams of the coefficients p1, p2, p3 are presented in Fig. 1 and Fig. 2
for monotropic and orthotropic materials, respectively. Full separation of the
shear and bulk strains in the isotropic material has been confirmed. Values
of the coefficients p1, p2, p3 depend on the orthotropy level. The vector g
incorporates 80—100% of the bulk strains, whereas the remaining part of these
strains is included in the vector ;. For a monotropic material, one obtains

p2 = p3.

12
<
~ 1.0
Q’; \.\'s.
Togk  TTememe———— —
J—)
0.6} Monotropy —_—— Py P3
04 1 1 1 1 1 1 1 1
10 20 30 40 50 60 70 80 90 100
E“ [GPa]

Fig. 1. Values of coefficients p1, p2, p3 vs. longitudinal Young’s modulus F4; for
monotropic materials



12 M. KLASZTORNY

1.2
S
Q:\‘ 10/ ] — LT
< ———.
OAS_ ------------------------ .
— 7
0.61 ; — =
Orthotropy ——
04 1 1 1 1 1 1 1 1
10 20 30 40 50 60 70 80 90 100
Ey [GPa]

Fig. 2. Values of coefficients pi1, p2, ps vs. longitudinal Young’s modulus FEj; for
orthotropic materials

5. Uncoupled/coupled standard constitutive equations of
viscoelasticity of orthotropic solid bodies

In this study, uncoupled standard constitutive equations of linear viscoelasti-
city of an orthotropic material are derived from generalisation of Eqgs. (3.1)
and, in matrix notation, take the following form

es(t) = {Ss (1)} ® os5(t) ev(t) = {Su(t)} ® (1) (5.1)
where €5, 05, €, €p are defined by Egs. (3.2), and

{Ss(t)} = diag[Ss1(t), Ssa(t), Sss(t), Ssa(t), Sss(t), Ss6(t)] (52)

{Su(t)} = diag [Se1(t), Sk2(t), Ses(t), 1,1,1]

The matrices defined by Egs. (5.2) may be termed as a diagonal viscoelastic
quasi-shear compliance matrix and a diagonal viscoelastic quasi-bulk com-
pliance matrix, respectively. General formulae for these compliances have the
form

t
Salt) = Sl +wsi/Fsi(t —9)dd] i=1,2,3,4,5,6
0, (5.3)
Sbj(t) = S [1 —l—wbj/Fbj(t — ) dﬁ} 7=12,3
0

where Fy;(t), Fy;(t) are termed as quasi-deviatoric and quasi-axiatoric stress-
history functions, respectively. For each function, a retardation time is to be
specified.

Summing up, an orthotropic material is described by 9 elastic con-
stants and 18 viscoelastic constants, i.e. 9 long-term creep coefficients wy;,
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i=1,2,3,4,5,6; wy;, 7 =1,2,3 and 9 retardation times 7, i = 1,2,3,4,5,6;
Toj, J = 1,2,3.

For a monotropic solid body, the following relationships resulting form Egs.
(3.13) are valid

Sso(t) = Ssa(t) = Ssa(t) Ss5(t) = Sse(t) Spa(t) = Sps(t) (5.4)

In this case, the number of viscoelastic constants drops to 10.

Coupled standard constitutive equations of linear viscoelasticity of an or-
thotropic solid body are obtained by summing matrix equations (5.1)1, (5.1)2,
ie

e(t) =S(t)®@a(t) (5.5)

where

(5.6)
[S11(t)  Sia(t) Sis(t) 0 0 0
Sor(t) Saa(t) Sos(t) O 0 0
_ S31(t) Ssa(t) Sss(t) 0 0 0
0 0 0 Sa(t) 0 0
0 0 0 0  Ss(t) 0
L0 0 0 0 0  Ssl(t)

is named as in Section 2, i.e. the viscoelastic compliance matrix.

6. Uncoupled/coupled inverse constitutive equations of
viscoelasticity of orthotropic solid bodies

The exact analytic reversal of uncoupled standard constitutive equations of
viscoelasticity (Egs. (5.1)) is possible for a number of generic functions. As a
result, one obtains uncoupled inverse constitutive equations of viscoelasticity
of an orthotropic material in the form

os(t) = {Cs()} @ es(t) oy(t) = {Cy(1)} ® en(t) (6.1)

where

{Cs(t)} = diag[Cs1(t), Csa(t), Cs3(t), Csa(t), Css(t), Cse(t)]
{Cy(t)} = diag[Cpi(t), Cra(t), Cos(t),1,1,1]
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t
Cuilt) = Cus[1 - msi/Ksi(t — ) o) i=1,2,3,456 (6.2)
0
t
Oy (1) = Coy |1 — g /ij(t —d) dv)] j=1,2,3
0

The matrices defined by Egs. (6.2) may be termed as a diagonal viscoelastic
quasi-shear stiffness matrix and a diagonal viscoelastic quasi-bulk stiffness ma-
trix, respectively. Quantities K;(t), Kp;(t) may be termed as quasi-shear and
quasi-bulk strain-history functions, respectively. For each function, a relaxa-
tion time is to be specified.

From the point of view of inverse equations, an orthotropic material is still
described by 9 elastic constants and 18 viscoelastic constants, i.e. 9 long-term
relaxation coefficients rg;, i = 1,2,3,4,5,6; Ky, j = 1,2,3 and 9 relaxation
times Oy, 1 =1,2,3,4,5,6; 0y;, j = 1,2,3.

For some genering functions, formulae transforming quantities related to
the standard equations (Egs. (5.1)) into quantities related to the inverse equ-
ations (Egs. (6.1)) are known. For example, normal exponential generic func-
tions

Fyi(t) = age™ it Qg = — i=1,2,3,4,5,6
p
! (6.3)
Fbj(t) = abje_abft Qpj = — J=123
Tbj

result in (Timoshenko and Goodier, 1951; Klasztorny, 2004a,b)

Wgj 3.
Ksi = 1 _|_8:) - Ki(t) = Bsie Pait
o 1 i=1,2,3,4,5,6
Bsi = (1 + Wsi)asi Bsi = 9_
> (6.4)
Wp4 3.
Rbj = 7 ? Kyj(t) = Bpze~ 7"
b i =1,2,3
1 J=1,4
By; = (1 + wej)ou; By = o
by

Summing Eqs. (6.1)1, (6.2)2 and taking into account formulae (3.2), one
obtains coupled inverse constitutive equations of linear viscoelasticity of an
orthotropic solid body in the form



COUPLED AND UNCOUPLED CONSTITUTIVE EQUATIONS... 15

o(t) = C(t) @ e(t) (6.5)

where

(6.6)
[C11(t) Cha(t) Cis(t) 0 0 0
Cor(t) Caa(t) Cas(t) 0 0 0
n C31(t) Csa(t) Css(t) 0 0 0
0 0 0 Cu) 0 0
0 0 0 0 Cs() 0
| 0 0 0 0 0 Cs(t)]

is termed as a viscoelastic stiffness matrix.

7. Conclusions

The study concerns the linear elastic/viscoelastic constitutive modelling of
homogeneous orthotropic solid bodies. Coupled standard /inverse constitutive
equations of elasticity have consituted the basis for deriving the following
equations:

e uncoupled standard constitutive equations of elasticity,

e uncoupled inverse constitutive equations of elasticity,

e uncoupled standard constitutive equations of viscoelasticity,
e uncoupled inverse constitutive equations of viscoelasticity,

e coupled standard constitutive equations of viscoelasticity,

e coupled inverse constitutive equations of viscoelasticity.

The uncoupled/coupled constitutive equations of viscoelasticity of a homo-
geneous orthotropic material are described by 9 elastic and 18 viscoelastic
constants. These constants have been clearly interpreted physically. Two
particular cases have been considered, i.e. monotropic and isotropic solid
bodies.

In addition, the separation of shear and bulk strains in the uncoupled
constitutive equations of elasticity has been examined numerically for selected
monotropic and orthotropic materials.
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A. Coupled standard/inverse constitutive equations of linear
elasticity of orthotropic solid bodies

This appendix is based on Jones (1975), Tsai (1987), Daniel and Ishai (1994)
and slightly develops respective equations via unification of Poisson’s ratios.
A homogeneous orthotropic solid body in isothermal conditions in the zjzszg
Cartesian co-ordinate system with the x1, x9, 3 axes coinciding the ortho-
tropy directions is examined. The considerations are restricted to stress levels
inducing linear behaviour of the material. The stress and strain states are
described by the following vectors (reflecting stress and strain tensors, respec-
tively)

o = col(o11,0922,033,023,013,012)

e = col (e11,€922,€33,€23,€13,€12)

where, for i,j = 1,2,3, 0y; is the normal stress, o;; — shear stress (i # j),
gii — relative elongation, &;; — half of the shear strain angle of the dxidzodxs
differential element (i # j).

A homogeneous orthotropic material is described by 9 independent ela-
stic constants, i.e. F11, E9s, F33 — Young’s longitudinal moduli of elasticity;
V39, V31, Vo1 — Poisson’s ratios; Gag, Gi3, G12 — Kirchhoff’s shear moduli.
The remaining Poisson’s ratios (3,113, 112) are derived from the symmetry
conditions, i.e.

Vij Vji e
= £ j; =1,2,3 Al
Ej EZ 1 ]) Z?] ) ) ( )

where (—vj;) denotes shortening in the z; direction induced by tensioning in
the z; direction.

Coupled standard constitutive equations of linear elasticity of an orthotro-
pic solid body, written in matrix notation, have the following form

e =So (A.2)
where
[ S S S13 O 0 07
_ S3z3 0 0 0
S = Su 0 0 (A.3)
Ses 0
|Symm. Ss6
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is termed as an elastic compliance matrix, whose elements are defined by the
following formulae

1 V12 V13
S Spp = V12 G _ M3
=g 12 Fos 13 s
v 1 v
521=—Ei111 522=E—22 5232—%;
A4
G — 3L G, — 32 Gun — 1 (A.4)
51T 2= g 3= oo
1 1 1
Ssq = Ss5 = Ss6 =
s4 2023 sb 2013 s6 2012

A monotropic material, also termed as a transverse isotropic material,
satisfies the following relationships

E
E33 = Foa» Giz3 = G2 V13 = V12 Goz = 20 —1—221/32)
(A5)
resulting in
S3z = Soo S13 = S12 Ss5 = Se6 (A.6)

with x; being the direction of monotropy, zsxs — plane of isotropy. A monotro-
pic material is described by 5 independent elastic constants, i.e.: F11 — Young’s
longitudinal modulus, Fso — Young’s transverse modulus (Fs < Eiq),
39 — Poisson’s ratio in the xox3 plane, ro; — greater Poisson’s ratio in the
r129 plane, G712 — Kirchhoff’s shear modulus in the x1z2 plane. The remaining
7 elastic constants for a monotropic material depend on the constants Fqp,
Es9, v39, 191, G12 according to Egs. (A.1), (A.5). In this case, one obtains

Ea
Viz = Va1 g < V21 V31 = V21 V23 = V32 (A7)
11
The coefficient 119 is termed as a smaller Poisson’s ratio in the xq1x9 plane.
An isotropic material is described by two classic elastic constants, F, v,
and satisfies the following relationships

E;=E i = 11,22,33

Vij = Vvji =V ij =23,13,12 (A8)
E

Gij=G= j=23,13,12

2(1+v)
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The coupled inverse constitutive equations describing behaviour of an or-
thotropic solid body, written in matrix notation, have the following form

where )
Cin

[Symm.

o =Ce
012 013 0 0 07
Coy Cos 0 0 0
Cs3 0 0 0
Csg O 0
Css O
CSG_

(A.9)

(A.10)

is termed as an elastic stiffness matrix, which elements are defined by the

following formulae

1 _
Cop = E22%
Cro = Eap 91 +AV23V31
V3 + V12V31
Caz = E3?’T
Css = 2G13 Cs6 = 2G12

A=1- Vo3V32 — V13V31 — Vi2V21 — V12V23V31 — V21V32V13

013 = 012 C55 = 066

1 — vo3v39
Cn = EHT
1 —vyovg
C33 = F33—————
33 33 A
V31 + /21132
Ci3 = E33T
Csa = 2Ga3
with
and C =81
For a monotropic material, one obtains
Cs3 = C22
Acknowledgements

(A.11)

(A.12)
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Sprzezone i niesprzezone réwnania konstytutywne liniowej sprezystosci

i lepkosprezystosci materialéw ortotropowych

Streszczenie

Praca dotyczy modelowania konstytutywnego jednorodnych ortotropowych ciat
stalych w zakresie linowym, sprezystym i lepkosprezystym. Podstawa rozwazan sa
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znane sprzezone standardowe/odwrotne réwnania konstytutywne liniowej sprezysto-
§ci tych materialéw. Wyznaczono niesprzezone standardowe/odwrotne réwnania kon-
stytutywne liniowej sprezystosci, sformulowano niesprzezone standardowe/odwrotne
réwnania konstytutywne liniowej lepkosprezystosci, a nastepnie wyznaczono sprzezo-
ne standardowe/odwrotne réwnania konstytutywne liniowej lepkosprezystosci ortotro-
powych cial statych. Jednorodny materiat ortotropowy opisano za pomoca 9 statych
sprezystosci i 18 statych lepkosprezystosci z podaniem przejrzystej interpretacji fizycz-
nej tych statych. Rozwazono réwniez przypadki szczegdlne materialtu monotropowego
i izotropowego. Dodatkowo, przetestowano numerycznie rozdzielenie odksztaltcen po-
staciowych i objetosciowych w przypadku niesprzezonych réwnan konstytutywnych
sprezystosci materialéw ortotropowych i monotropowych.

Manuscript received June 18, 2007; accepted for print October 23, 2007



