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The present study deals with the linear elastic analysis of variable thickness rotating disks
made of functionally graded materials (FGMs) by the finite element method. The disks have
radially varying material properties according to an exponential law, which is achieved by
the element based grading of the material properties on the meshed domain. The results are
reported for three types of thickness profiles, namely, uniform, linearly varying and concave
thickness, having their mass constant. The disks are subjected to the clamped boundary
condition at the inner surface and the free boundary condition at the outer surface. The
obtained results show that in a variable thickness rotating disk, deformation and stresses
are less as compared to the uniform thickness disk.
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1. Introduction

Functionally graded materials (FGMs) are special composite materials that have continuous
and smooth spatial variations of physical and mechanical properties. Functionally graded com-
ponents, in recent years, are widely used in space vehicles, aircrafts, nuclear power plants and
many other engineering applications. Rotating disks, made up of such a FGM are widely used
in the field of marine, mechanical and aerospace industry including gas turbines, gears, turbo-
-machinery, etc. The stresses due to centrifugal load in rotating components have important
effects on their strength and safety. Thus, control and optimization of stress and displacement
fields can help one to reduce the overall payload in industries. Optimization of the stress to
strength ratio is done by varying the material property and thickness of the disk. Disks made
up of functionally graded materials and of variable thickness, have significant stress reduction
over the disks made up of homogeneous materials and of uniform thickness. Therefore, a higher
limit speed and higher pressure is permissible for FGM disks.

A few researchers have reported works on analysis of FGM disks, plates, shells, beams and
bars by analytical and finite element methods. Eraslan (2003) obtained analytical solutions for
the elastic plastic stress distribution in rotating variable thickness annular disks. Thickness of
the disks had parabolic variation and the analysis was based on the Tresca’s yield criterion. Bay-
at et al. (2009) reported work on analysis of a variable thickness FGM rotating disk. Material
properties varied according to power law and the disk was subjected to both the mechanical and
thermal loads. Afsar and Go (2010) analyzed a rotating FGM circular disk subjected to mecha-
nical as well as thermal load by the finite element method. The disk had exponentially varying
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material properties in the radial direction. The inner surface was made up of Al2O3 having fix bo-
undary condition and the outer surface was made up of Al having free boundary condition. The
disk was subjected to a thermal load along with centrifugal load due to non uniform temperature
distribution. The axisymmetric problem was formulated in terms of a second order ordinary dif-
ferential equation and was solved by the finite element method. Callioglu et al. (2011a) analyzed
functionally a graded rotating annular disk subjected to internal pressure and various tempera-
ture distributions such as uniform temperature, linearly increasing and decreasing temperatures
in the radial direction. An analytical thermoelasticity solution for a disk made of functionally
graded materials (FGMs) was presented by Callioglu (2011). Bayat et al. (2011) investigated
displacement and stress behavior of a functionally graded rotating disk of variable thickness by a
semi analytical method. Radially varying one dimensional FGM was taken and material proper-
ties varied according to a power law and the Mori-Tanaka scheme. A disk subjected to centrifugal
load was analyzed for the fixed boundary condition at the inner surface and the free boundary
condition at the outer surface. The results were reported for both metal-ceramic and ceramic-
etal disks and, a comparison was made for uniform and variable thickness disks. Callioglu et al.
(2011b) analyzed thin FGM disks. Density and modulus of elasticity of them varied according to a
power law in an FGM of aluminum ceramic. The effect of the grading parameter on displacement
and stresses was investigated. Sharma et al. (2012) worked on the analysis of stresses, displa-
cements and strains in a thin circular functionally graded material (FGM) disks by the finite
element method. The disk were subjected to mechanical as well as thermal loads. Ali et al. (2012)
reported a study on the elastic analysis of two sigmoid FGM rotating disks. Metal-ceramic-metal
disks were analyzed for both uniform and variable thickness disks and effect of grading index on
the displacement and stresses was investigated. Nejad et al. (2013) found a closed-form analyti-
cal solution for an exponentially varying FGM disk which was subjected to internal and external
pressure.

In his recent work, Zafarmand and Hassani (2014) worked on elastic analysis of two-
-dimensional functionally graded rotating annular and solid disks with variable thickness.
Axisymmetric conditions were assumed for the two-dimensional functionally graded disk and
the graded finite element method (GFEM) was applied to solve the equations. Rosyid et
al. (2014) worked on finite element analysis of nonhomogeneous rotating disk with arbitra-
rily variable thickness. Three types of grading laws, namely, power law, sigmoid and expo-
nential distribution laws were considered for the volume fraction distributions. The work in-
cluded parametric studies performed by varying volume fraction distributions and bounda-
ry conditions. Zafarmand and Kadkhodayan (2015) investigated a nonlinear elasticity solu-
tion of functionally graded nanocomposite rotating thick disks with variable thickness rein-
forced with single-walled carbon nanotubes (SWCNTs). The derived governing nonlinear equ-
ations were based on the axisymmetric theory of elasticity with the geometric nonlinearity
in axisymmetric complete form and were solved by a nonlinear graded finite element me-
thod (NGFEM). The nonlinear graded finite element method (NGFEM) used in that study
was based on the Rayleigh–Ritz energy formulation with the Picard iterative scheme. The re-
sults were reported for four different thickness profiles, namely, constant, linear, concave and
convex.

In the present research work, stress and deformation analysis of annular rotating FGM disks
is reported, which is based on the element based grading of material properties. Uniform as well
as variable thickness disks, made of exponentially varying FGMs, are analyzed. The disks are
subjected to centrifugal body load and have the clamped boundary condition at the inner surface
and the free boundary condition at the outer surface. The finite element method based on the
principle of stationary total potential is used to analyze disks. Numerical results are evaluated
for a uniform, linear varying thickness profile and concave thickness profile disks, and the effect
of the thickness parameter on the deformation and stresses is investigated.
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2. Geometric modeling

For an annular disk, the governing equation of radially varying thickness is assumed as

h(r) = h0
[

1− q
(r − a

b− a

)m]

(2.1)

where a and b are the inner and outer radii, h(r) and h0 are half of the thickness at the radius r
and at the root of the disk, respectively. Symbolsm and q are geometric parameters that control
the thickness profiles of the disk. For a uniform thickness disk q is taken as zero and for a variable
thickness disk, q > 0 (Fig. 1b). The value of h0 is calculated for each thickness profile to get
constant mass for all thickness profile disks.

Fig. 1. (a): Geometrical parameters of the variable thickness disk, (b) disks of varying thickness;
sectional isometric view

2.1. Calculation of h0 for the variable thickness profile

Figure 1a shows half of the cross section of the variable thickness disk. The symbol Vc denotes
the volume of the disk till height h0(1 − q) and the symbol Vv is the volume from h0(1 − q) to
height at the inner radius. The symbol V denotes the total volume of the disk

Vc = π(b
2 − a2)(1− q)h0 Vv =

h0
∫

(1−q)h0

π(r2 − a2) dh V = 2(Vc + Vv) (2.2)

Since mass of the variable thickness disk equals mass of the uniform thickness disk

ρ1V = ρuVu (2.3)

where ρ1 and ρu are densities of variable thickness and uniform thickness disks, respectively. The
symbol Vu is the volume of the uniform thickness disk. Assuming h0 of the uniform thickness
disk as hu, Vu is obtained as

Vu = 2π(b
2 − a2)hu (2.4)

Since density is independent of thickness, it is constant for all thickness profiles, therefore equ-
ation (2.3) reduces to

V = Vu (2.5)
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putting the values of V , Vu, Vc, and Vv into equation (2.5)

π(b2 − a2)(1− q)h0 +

h0
∫

(1−q)h0

π(r2 − a2) dh = π(b2 − a2)hu (2.6)

Substituting the value of r from equation (2.1) to equation (2.6) and solving the resulting
equation for given thickness of the uniform disk and different values of m, we obtain value of h0
for different thickness profiles.

3. Material modeling

Young’s modulus and density of the disk are assumed to vary exponentially along the radial
direction as (Afsar and Go, 2010):

E(r) = E0e
βr ρ(r) = ρ0e

γr E0 = EAe
−βa

ρ0 = ρAe
−γa γ =

1

a− b
ln
ρA

ρB
β =

1

a− b
ln
EA

EB

(3.1)

where E(r) and ρ(r) are modulus of elasticity and density at the radius r; EA, EB and ρA, ρB
are modulus of elasticity and density at the inner and outer radius, respectively.

4. Finite element modeling

The rotating disk, being thin, is modeled as a plane stress axisymmetric problem. Using quadratic
quadrilateral element, the displacement vector u can be obtained as (Seshu, 2003)

u = Nδ (4.1)

where u is the element displacement vector, N is the matrix of quadratic shape functions and
δ is the nodal displacement vector

N =
[

N1 N2 . . . N8

]

δ =
{

u1 u2 . . . . . . u8

}T

In natural co-ordinates, the shape functions are given as

N1 =
1

4
(1− ξ)(1 − η)(−1− ξ − η) N2 =

1

4
(1 + ξ)(1− η)(−1 + ξ − η)

N3 =
1

4
(1 + ξ)(1 + η)(−1 + ξ + η) N4 =

1

4
(1− ξ)(1 + η)(−1 − ξ + η)

N5 =
1

2
(1− ξ2)(1− η) N6 =

1

2
(1 + ξ)(1− η2)

N7 =
1

2
(1− ξ2)(1 + η) N8 =

1

2
(1− ξ)(1− η2)

The strain components are related to elemental displacement components as

ε =
{

εr εθ

}T
=

{

∂u

∂r

u

r

}T

{

∂u

∂r

u

r

}T

= B1

{

∂u

∂r

∂u

∂z

u

r

}T
(4.2)
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where εr and εθ are radial and tangential strains, respectively. By transforming the global co-
-ordinates into natural co-ordinates (ξη), we obtain

{

∂u

∂r

∂u

∂z

u

r

}T

= B2

{

∂u

∂ξ

∂u

∂η

u

r

}T

{

∂u

∂ξ

∂u

∂η

u

r

}T

= B3
{

u1 u2 . . . u8

}T
(4.3)

The above elemental strain-displacement relationships can be written as

ε = Bδe (4.4)

where B is the strain-displacement relationship matrix which contains derivatives of the shape
functions. For a quadratic quadrilateral element, it is calculated as

B = B1B2B3 (4.5)

and

B1 =

[

1 0 0
0 0 1

]

B2 =













J22

|J|

−J12
|J|

0

−J21
|J|

J11

|J|
0

0 0 1













where J is the Jacobian matrix used to transform the global co-ordinates into natural co-
-ordinates. It is given as

J =











8
∑

i=1

∂Ni

∂ξ
ri

8
∑

i=1

∂Ni

∂ξ
zi

8
∑

i=1

∂Ni

∂η
ri

8
∑

i=1

∂Ni

∂η
zi











B3 =



















∂N1

∂ξ

∂N2

∂ξ
. . .
∂N8

∂ξ

∂N1

∂η

∂N2

∂η
. . .
∂N8

∂η

N1

r

N2

r
. . .

N8

r



















(4.6)

From Hooke’s law, the components of stresses in the radial and circumferential direction are
related to the components of total strain as

εr =
1

E
(σr − νσθ) εθ =

1

E
(σθ − νσr) (4.7)

By solving the above equations, the stress-strain relationship can be obtained as follows

σr =
E(r)

(1− ν)2
(εr + νεθ) σθ =

E(r)

(1− ν)2
(εθ + νεr) (4.8)

In the standard finite element matrix notation, the above stress strain relations can be written
as

σ = D(r)ε (4.9)

where

σ =
{

σr σθ

}T
D(r) =

E(r)

(1− ν)2

[

1 ν
ν 1

]

ε =
{

εr εθ

}T
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Upon rotation, the disk experiences a body force which under constrained boundary results
in deformation and stores internal strain energy U

U =
1

2

∫

V

ε
T
σ dv (4.10)

The work potential due to body force resulting from centrifugal action is given by

V = −

∫

V

δ
Tqv dv (4.11)

Upon substituting Eq. (4.4) and (4.9) into Eq. (4.10) and Eq. (4.11), the elemental strain
energy and work potential are given by

U e =

∫

V

πrhrδ
eTBTD(r)Bδe dr V e = −2

∫

V

πrhrδ
eTNTqv dr (4.12)

For a disk rotating at ω [rad/s], the body force vector for each element is given by

qv =

{

ρ(r)ω2r
0

}

(4.13)

The total potential of the element is obtained from Eqs. (4.12)

πep =
1

2
δ
eTKeδe − δeTf e (4.14)

Here, defining the element stiffness matrix Ke and the element load vector f e as

Ke = 2

∫

V

πrhrB
TD(r)B dr f e = 2

∫

V

πrhrN
Tqv dr (4.15)

In FEM, the functional grading is popularly carried out by assigning the average material
properties over a given geometry followed by adhering the geometries, thus resulting into layered
functional grading of material properties. The downside of this approach is that it yields singular
field variable values at the boundaries of the glued geometries. To get better results, it is an
established practice to divide the total geometry into very fine geometries. However, a better
approach is to assign the average material properties to the elements of mesh of the single
geometry. This is, in other words, better described as assigning material properties to the finite
elements instead of geometry. In Eq. (4.9), the matrix D(r), being a function of r, is calculated
numerically at each node, and this yields continuous material property variation throughout the
geometry. The element matrices are then assembled to give the global stiffness matrix and the
global load vector, respectively.

The element based grading of the material property yields an appropriate approach of func-
tional grading as the shape functions in the elemental formulations being co-ordinate functions
make it easier to implement the same (Kim and Paulino, 2002)

φe =
8
∑

i=1

φiNi (4.16)

where φe is the material property of the element, φi is the material property at the node i, and
Ni is the shape function.
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Total potential energy of the disk is given by

πp =
∑

πep =
1

2
δ
TKδ − δTF (4.17)

where K is global stiffness matrix, F isglobal load vector

K =
N
∑

n=1

Ke F =
N
∑

n=1

f e

and N is number of elements.
Using the Principle of Stationary Total Potential (PSTP), the total potential is set to be

stationary with respect to small variation in the nodal degree of freedom, that is

∂πp

∂δT
= 0 (4.18)

From above, the system of simultaneous equations is obtained as follows

Kδ = F (4.19)

5. Results and discussion

5.1. Validation

A numerical problem of reference (Bayat et al., 2011) is modeled and analyzed, and the
comparison is shown in Fig. 2 for the validation purpose. In the reference rotating disks having
uniform and concave thickness, the profiles are analyzed. Gradation of the material properties
is done by the Mori-Tanaka scheme and comparison is made for n = 0 for ceramic-metal and
metal-ceramic disks.

Fig. 2. Comparison of the results of the current work with the reference ones (Bayat et al., 2011)

5.2. Numerical results

Rotating annular disks made of aluminum and alumina ceramic are analyzed, and the di-
stribution of resulting displacement and stresses are presented for different thickness profiles.
The material properties are graded according to an exponential law as discussed in Section 3.
Figures 3a and 3b show the distribution of Young’s modulus and density of the exponential
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Fig. 3. Radial distribution of Young’s modulus (a) and of density (b)

FGM considered here. The properties of aluminum and alumina ceramic are given as (Afsar and
Go, 2010): EAl = 71.0MPa, Ecer = 380MPa, ρAl = 2.7 g/cm

3, ρcer = 0.96 g/cm
3 and ϑ = 0.3.

In the present numerical problem, the inner diameter of the disks is taken as 15mm and outer
diameter 150mm; q = 0.7 and hu is taken as 5mm, h0 for linear and concave thickness profiles
are obtained as 9.0164mm and 10.9416mm from Eq. (2.6) for m = 1 and 0.5, respectively. The
disks have an angular velocity of 100 rad/s.
Figures 4 and 5 show the distribution of radial displacement, radial stress, tangential stress

and von Mises stress, respectively, along the radial direction. It is observed that the uniform
thickness disk has highest deformation and stresses as compared to the linear thickness profile
and concave thickness profile disk. Stresses and deformations are less near the inner radius and
higher near the outer radius for the concave thick disk as compared to the linear disk. This is
because of the fact that the concave thick disk has greater thickness near the root as compared to
the linear thick disk. The radial displacement is minimum, that is zero at the inner surface and
the radial stress is zero at the outer surface for all thickness profiles, which confirms the clamped
boundary condition at the inner surface and the free boundary condition at the outer surface
applied on the disks. The tangential stress is maximum at the outer radius for all thickness
profiles, which corresponds to the complete ceramic material. Since ceramics have low tensile
strength, to withstand higher stresses at higher speeds, sufficient thickness at the outer radius
should be provided, which means that the value of geometric parameter q in equation (2.1)
should be taken smaller at higher speeds. Further it can be seen that the radial stress is higher
as compared to the tangential and von Mises stresses for all thickness profiles. Therefore, it is
suggested that during designing of rotating disks, the radial stress should be taken as the critical
limit stress, and the concave thickness profile should be selected.

Fig. 4. Distribution of: (a) radial displacements, (b) radial stress
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Fig. 5. Distribution of: (a) tangential stress, (b) von Mises stress

6. Conclusion

The present work proposes a study using the element based gradation of a varying material pro-
perty of rotating disks and reports the stress and deformation behavior of uniform and variable
thickness clamped rotating disks of exponentially graded FGMs. The element based grading of
the material property yields an appropriate approach of functional grading as the shape func-
tions in elemental formulations being co-ordinate functions make it easier to implement the
same. The layered functional grading over a discrete area instead of elements, offers singularities
in the field variables at adjoining lines or surfaces. The results obtained are found to be in good
agreement with the established reports. Further, it is observed that varying geometry of FGM
disks results into lower stress states in the disks and, hence, it can be concluded that variable
thickness disks possess better strength than uniform disks of the same mass.
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