
JOURNAL OF THEORETICAL

AND APPLIED MECHANICS

46, 2, pp. 315-324, Warsaw 2008

FAST POINT LOCATION ALGORITHM ON TRIANGULAR

MESHES

Michał Wichulski

Jacek Rokicki

Warsaw University of Technology, Institute of Aeronautics and Applied Mechanics, Poland

e-mail: wichulski@meil.pw.edu.pl; jack@meil.pw.edu.pl

This paper is a study of application of persistent data structures to the
planar and, in part, also spatial point location. In practice, a simplified
method of building persistent red-black binary search tree is considered.
It corresponds to the structure of a two-dimensional cell complex. Subse-
quent use of the structure for searching a certain point in space is shown.
The computational mesh consists of triangular (in two dimensions) or
tetrahedral (in three dimensions) cells. This fact allows significant sim-
plifications to both implementation of the total order necessary to build
the search tree as well as construction of the red-black binary search
tree itself. The performance of the algorithm is verified for various me-
shes (consisting of up to 1846197 cells). Finally, certain further directions
of the research are shown.

Key words:mesh generation, Chimera mathod, point location algorithms

1. Introduction

One of the special-purpose methods in the field of numerical analysis is the
so called Chimera method. It is based on dividing the computational domain
into a union of overlapping subdomains. A physical problem (usually expres-
sed in the form of Partial Differential Equations) is solved locally on each
sub-domain, while the global solution is obtained by iteratively adjusting the
boundary conditions on each sub-domain (see Fig. 1). The value of solution
on the current mesh is used as the boundary condition for overlapping meshes
in the next step of the iterative process. Effectiveness of the algorithm of lo-
calisation is one of factors limiting efficiency of such a method (especially for
meshes moving one with respect to another).



316 M. Wichulski, J. Rokicki

Fig. 1. An example of overlapping meshes in the Chimera method

The point location is a classic problem in computational geometry and
its application scope runs out further than the Chimera method. The simplest
formulation is ”given an arbitrary point, find a mesh cell containing this point”,
this however does not describe the difficulty of finding the answer. The main
goal is to minimise three factors:

• preprocessing time needed to build the data structure,
• memory used for this structure,
• query cost in which the cell containing the point is found.

The query cost of O(N), characteristic for the naive method, is unacceptable.
The Chimera method demands huge amounts of data to be searched and
exchanged between iterations. This causes an avalanche of queries. Typical
meshes of interest can contain millions of cells, and it is obvious that a brute
force solution is not acceptable.
Therefore, an algorithm of cost lower than linear is sought, e.g., the average

cost of one query should not exceed O(logkN) (where k ¬ 2).
The aim of the present paper is not, however, the design of a theoretically

fast algorithm, but rather an efficient and robust implementation of an existing
concept. Such a concept proposed by Preparata and Tamassia (1992) relied on
persistent data structures (Discroll et al., 1989) for two- and three-dimensional
meshes. This type of approach will be described further.
It must be noticed that the policy of Preparata and Tamassia (1992) based

on adding the persistence was an inspiration to find a generalisation in the
treatment of the problem.



Fast point location algorithm... 317

2. Preliminaries

We define a cell as a convex polygon, and a collection of nonoverlapping
cells is called a mesh. In the mesh P , V = {v1, v2, . . . , vN} denotes a set
of vertices, y-coordinates of these vertices are denoted by y1, . . . , yN , while
C = {c1, c2, . . . , cn} is a set of cells. It is assumed that the vertices are ordered
in such way that y1 < y2 < · · · < yN . This means that two vertices never
share the same y-coordinate. This may look very restrictive but in practice
this condition can be easily fulfilled by an equivalent of a small rotation of the
axis system (see de Berg et al., 1997) for a practical algorithm dealing with
degenerate cases).
First of all, one should notice that the intersection of the mesh P with the

horizontal line λ(y) at the height y forms a disjoint and a totally ordered set
of intervals R(y) (see Fig. 2. With the set R(y), we associate a graph G(y),
whose vertices are the ordered intersection points of line λ(y) with edges of
the mesh P . The edges of this graph are intervals between these vertices.
Such a definition guarantees a unique 1 : 1 mapping from the set R(y) to
graph G(y).

Fig. 2. Intersections corresponding to levels in the data structure

Suppose now that an arbitrary point v∗ = (x∗, y∗) is given. The point
location problem is now reduced to one-dimensional search within the R(y∗)
set (with O(logN) query cost). If the horizontal line is shifted up or down
to y′, the graph G(y′) has the same topology as G(y∗) as long as the line
λ(y′) does not cross the vertex.

Lemma 2.1. For all y′, y′′ ∈ 〈yi, yi+1〉, the graphs G(y′) and G(y′′) are iso-
morphic (i = 1, . . . , N).



318 M. Wichulski, J. Rokicki

On a particular height y, the line λ(y) determines the set R(y) with which
the graph G(y) and the data structure S(y) are connected. The data structure
S(y) stores items of the set R(y) which are intervals on the line λ(y). This
data structure S(y) is introduced to enable the O(logN) query time. The
simplest example with this property is a binary search tree. It will be shown
later, however, that different data structures (red-black binary search tree)
can be more efficient in a dynamic case.

Furthermore, the data structure S(y) depends on the topology, and not
on specific geometrical parameters. The particular interval from the set R(y)
forms a key used while constructing and accessing S(y), i.e., the key depends
on geometrical boundaries of the interval. But as long as the order of items of
G(y) does not change (none are inserted to or deleted from the set) the data
structure itself does not differ. It leads to the following lemma (Preparata and
Tamassia, 1992).

Lemma 2.2. The same data structure is sufficient for searching in the sub-
divisions represented by graphs which are isomorphic.

The keys of the data structure S(y) are parameterised by the height of
the horizontal line λ(y) because that line intersects edges of the mesh, and
points of that intersection give geometric coordinates of the intervals. If the
line λ(y) is such that yi < y < yi+1, then it fulfills conditions of Lemma 2.1,
and additionally the same edges trim the intervals. Therefore, it follows that
the definition of the keys (that is a way of parameterising the intervals) re-
mains unchanged. The interval between two consecutive vertices of the mesh
is called now a level. Taking heed of Lemma 2.2, we can assert that the data
structure needs no changes at a given level. If there are n vertices in the mesh,
N − 1 levels exists. In particular, σi = {y : yi < y < yi+1}. The entities Ri,
Gi and Si can be now parameterised by the level number.

Suppose now that the point p = (x∗, y∗) belongs to the level σ, i.e. y∗ ∈ σ,
while the corresponding search data structure is S(σ). The keys present in
S(σ) are all in fact linear functions of the height y. Therefore, all localisations
at the level σ are performed at the same computational cost.

One should consider now what are the differences between the levels i
and i + 1 (when the line λ(y) crosses the vertex vi). Obviously, the graph
G(y) changes its topology, while Si+1 is different than Si.

An important remark, however, is that the change reduces to few basic
possibilities (see Fig. 2):

a) deleting the cells for which vi is the top vertex

b) inserting the cells for which vi is the bottom vertex



Fast point location algorithm... 319

c) modifying the keys in the cells for which the vertex is the middle vertex.

This results in the following lemma:

Lemma 2.3. The number of elementary changes (see above) necessary to
transform S(y′) into S(y′′) is equal to mi (where mi is the number
of cells containing the vertex vi).

Consider an example. Two horizontal lines in Fig. 2 (light and dark gray)
correspond to the levels σi and σi+1, σi = σ9 and σi+1 = σ10. If the horizontal
line λ leaves the lower level σi and enters σi+1, the following changes are
necessary:

• cells g and h are deleted,
• cells j and k are inserted,
• the keys in f and i are modified.

This modification consists in replacing the formulas describing the edges (i.e.
the edge fj replaces fg).
Suppose that we already have the data structure Si. The new structure

Si+1 can be obtained from Si by applying the changes, i.e. by adding the
difference between these levels. In fact only, the differences have to be stored.

3. The algorithm

It is possible now to present the point location algorithm with the query cost
proportional to O(logN). The data structure S supporting this algorithm
contains N substructures Si. Each substructure Si) is (for example) a bi-
nary tree consisting of ordered nonintersecting segments (as described in the
previous Section).
The point location algorithm consists of two queries. In the first one, y∗ is

located on an appropriate level, in the second, p is located between appro-
priate segments. The query cost is therefore at most 2 logN . The number of
segments M is at most N + 1. Therefore, the size of the data structure S
is proportional to N · M ∼ N2. For large meshes (N > 106), this is fully
unacceptable.

The reader may notice that the assumption M ∼ N is very pessimistic,
since M ∼

√
N on more regular meshes. Yet, even N

√
N = N3/2 is too

large for practical purposes. In order to overcome this problem, we can still



320 M. Wichulski, J. Rokicki

use the fact that the consecutive substructures, say Si and Si+1, differ only
by a few elementary operations. Thus, we will attempt to add the persistence
trying to store the changes to the structure, rather than keeping the structures
themselves. One must observe, however, that the persistence is difficult to
implement if Si is an ordinary binary tree. Every time the node is deleted or
inserted, the tree needs re-balancing in order to keep the optimal height. This
means that the change between Si and Si+1 may concern almost all vertices.
Therefore, another data structure is necessary to alleviate this problem.
The possible choice is a red-black binary search tree (see Fig. 3). As in every

binary search tree, the node contains three fields: the key, the left pointer and
the right pointer. The search through the tree, from node to node, starts at the
topmost node called the root. In every node, the comparison (in sense of the
total order) between the wanted and the current key is done and, depending
on the result, a proper branch is chosen. Without going into details, one should
note that in the red-black tree node another field exists, called colour, which
is necessary to preserve the balancing. For all details of the algorithms of
inserting, finding and deleting an item from the tree, see Cormen (1990). It is
enough to say that as a result of re-balancing of the tree some changes may
occur on the path from the root to an inserted node. The re-balancing itself
is performed using rotations of the tree branches.

Fig. 3. The tree corresponding to the level σ9 (a) and level σ10 (b)

The red-black binary search trees in Fig. 3a and 3b were built from intervals
on the level σ9 and σ10, respectively (see Fig. 2). The letters in the nodes
represent these intervals. Principles of construction of the red-black binary
search tree follow the algorithm presented in Cormen (1990). Considering that
the sets of intervals R9 and R10 are totally ordered, this ordering allowed one
to build the structures S9 and S10.
To add persistence to the data structure, we have chosen the fat node

method (Discroll et al., 1989). It is based on recording all changes made to a
node in the node itself. As a consequence, each node contains a collection of
pointers, each corresponding to a different level.



Fast point location algorithm... 321

Let η be the number of changes during a single operation on the tree, and
let ζ be the number of nodes in which these changes occur. The rotation of a
single branch consists of three changes in the pointer fields. To insert a node,
no more than two rotations are necessary and three are sufficient to delete the
node (Discroll et al., 1989). In such a way (in the most pessimistic case), there
are five changes of the pointer fields for inserting a node, and seven changes
for deleting the node with four and six nodes involved respectively (all from
one sub-tree). Important thing is that η and ζ are both O(1), and not O(N).
Similarly, the scope of changes within the tree is limited and relates to nodes
neighbouring in the sub-tree. Thus, since the red-black binary search tree is
balanced, the changes concern nodes located in the immediate neighbourhood
of the deleted or inserted node.

As it was mentioned earlier, the full data structure S can be seen as a
sequence of red-black binary search trees S̃i. Each node represents a cell (or
strictly speaking a slice of the cell at the present level). This node has a left
and right child.

Consider now an equivalent structure consisting of all cells. Each cell has
two own collections of left and right children (each child corresponding to
a different level σi) – see Fig. 4. These collections must contain only these
levels, at which the cell changes location in the red-black binary search tree.
The number sj of entities in these collections, as it was mentioned earlier,
is expected to be O(1). Additionally to speed up the search, the collections
themselves can be ordered.

Fig. 4. The persistent binary search tree for two σ9 and σ10 levels in the mesh



322 M. Wichulski, J. Rokicki

It remains to show that the total size M of the full date structure is now
estimated as

M = βN (3.1)

while the point location query cost C remains

C = α logN (3.2)

where α and β are coefficients that depend on properties of the algorithm.
This hypothesis will be verified by a numerical experiment in the next section.

4. Numerical experiment

In order to verify the presented algorithm, the following numerical experiment
was performed. A sequence of meshes was generated in a pentagonal doma-
in with N ranging from 1239 to 1846197. Each experiment consisted in the
localising of one million random points. Every elementary step performed by
the algorithm was counted to measure the search cost. The largest value for
all queries was chosen for each mesh.
The obtained total cost is presented in Fig. 5 which indicates perfect lo-

garithmic behaviour. The coefficient α, Eq. (3.2), is additionally shown in
Fig. 6.

Fig. 5. The cost of the point location (measured by counting elementary operations)

Similarly, the total memory storage was measured in each experiment by
making use of the Linux ps command. The result measured in bytes is shown
in Fig. 7. One can see that this value grows linearly with the number of cells.
The coefficient β, Eq. (3.1), is shown in Fig. 8. It must be noted that this
result represents the size of memory used by the process, and not necessarily



Fast point location algorithm... 323

Fig. 6. The point location query cost coefficient α

Fig. 7. Memory size of the data structure (measured in bytes)

Fig. 8. The memory size coefficient β

the size of the data structure (which, we believe, is smaller). The suspected
discrepancy may be caused by the memory leakage typical when the space is
allocated and deallocated in a repetitive manner.



324 M. Wichulski, J. Rokicki

5. Concluding remarks

The paper presented a practical algorithm for the point location problem with
the α logN query cost and βN memory storage. This fact was proven in an
numerical experiment in which α and β were estimated. Further research is
under way to extend this algorithm to 3D tetrahedral meshes.

References

1. de Berg M., van Kreveld M., Overmars M., Schwarzkopf O., 1997,
Computational Geometry: Algorithms and Applications, Springer-Verlag

2. Cormen T.H., Leiserson C.E., Rivest R.L., 1990, Introduction to Algori-
thms, The MIT Press

3. Discroll J.R., Sarnak N., Sleator D.D., Tarjan R.E., 1989, Making
data structures persistent, J. Comput. Syst. Sci., 38, 1, 267-280

4. Preparata F.P., Tamassia R., 1992, Efficient point location in a convex
spatial cell-complex, SIAM J. Comput., 21, 2, 267-280

Algorytm szybkiej lokalizacji punktu na siatkach trójkątnych

Streszczenie

Artykuł przedstawia wyniki badań nad zastosowaniem dynamicznych struktur da-
nych (ang. persistent data structures) do planarnej i przestrzennej lokalizacji punktu
w siatce obliczeniowej, z wykorzystaniem czerwono-czarnych drzew poszukiwań binar-
nych, które odpowiadają strukturze dwuwymiarowego kompleksu komórek. Rozważa-
na siatka obliczeniowa składa się z komórek trójkątnych (w dwóch wymiarach) albo
czworościennych (w trzech wymiarach). Ten fakt zezwala na znaczne uproszczenia re-
alizacja totalnego porządku niezbędnego do budowy drzewa poszukiwań, jak również
konstrukcji samego czerwono-czarnego drzewa poszukiwań binarnych. Wydajność al-
gorytmu jest sprawdzone dla różnych siatek obliczeniowych (zawierających od 1239 do
1846197 komórek). Wyniki eksperymentu numerycznego potwierdzają logarytmiczny
czas lokalizacji i liniowo rosnące zużycie pamięci przy wzroście rozmiaru siatki.

Manuscript received January 7, 2007; accepted for print February 7, 2008


