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Non-linear vibrations of the beam-like model of an axially moving paper
web with time-dependent tension have been investigated in this paper.
The considered paper parameters have been determined experimentally.
The beam model material is considered as the Kelvin-Voigt element.
The Galerkin method and the 4-th order Runge-Kutta method have
been used to solve the governing non-linear partial-differential equation.
The effects of the transport speed, tension perturbation amplitude and
internal damping on the dynamic behaviour of the system have been
numerically investigated.
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Notations

A – cross-section area of the web
b – width of the web
c – transport speed of the web
cw – wave speed
E = EMD – Young’s modulus with respect to the longitudinal direction
h – thickness of the web
J – inertial moment of the cross-section
l – length of the web
Mx,My – sectional flexural moments with respect to the x and y

axis, respectively
Mxy – sectional torsional moment
Nx, Ny – sectional membrane forces
Nxy – sectional shear force
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qi – generalized coordinate
s – dimensionless transport speed of the web
t – time
u, v,w – components of the displacement of a surface along the di-

rections x, y, z, respectively
x, y, z – Cartesian coordinates
β – dimensionless coefficient of internal damping
γ – coefficient of internal damping
ε – longitudinal strain of the beam
ρ – density of the web material
σ – normal stress along the x direction
τ – dimensionless time.

1. Introduction

The paper is devoted to dynamics of axially moving material objects of low
flexural stiffness that are referred to as webs. Problems connected with dyna-
mical behaviour of such objects are clearly visible in paper manufacturing and
printing industry. Transport speeds at which a paper web moves during manu-
facturing and processing can reach even 50m/s. Under certain circumstances,
such high transport speeds can lead to resonance vibrations, instability or
web flattering. This behaviour can result in web folding or breaking during its
motion. Changes in web tension that follow from vibrations can bring about
alternations in thickness of the paper being manufactured. To ensure that the
operating system is under stable working conditions, full analysis of its dyna-
mics has to be performed. Complete knowledge of the dynamical behaviour
allows the prediction and control of instabilities.

In the modelling of axially moving continua, one can use the one-
dimensional string and beam theory (e.g. Wickert and Mote, 1990; Wickert,
1992; Yang and Chen, 2005) or two-dimensional plate theory (e.g. Lin, 1997;
Luo and Hamidzadeh, 2004). Although the plate theory gives the most ac-
curate description of physical phenomena that occur in the web, it is very
complicated mathematically and requires time-consuming calculations. On the
other hand, the results of analyses obtained so far indicate that application
of the beam model of a moving web in dynamical calculations can sometimes
result in satisfactory results (e.g. Moon and Wickert, 1997). One can suppose
that in some dynamical calculations aiding the designing and building devices
that rewind a broad web, its beam model can be useful as less complex in
comparison to the plate model.
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An additional argument supporting the application of the beam model is
the possibility to consider various rheological models of the web material in a
much simpler way than in the case of the plate model. A lot of earlier works
in this field focused on dynamic investigations of string-like and beam-like
axially moving elastic systems. However, paper webs need more realistic rhe-
ological models. Fung et al. (1998) studied transverse vibrations of an axially
moving viscoelastic string subjected to a constant initial stress. Zhang and
Zu (1999) investigated nonlinear vibrations of parametrically excited moving
viscoelastic belts. The regular and chaotic vibrations of an axially moving vi-
scoelastic string subjected to tensional variation were studied in Chen et al.
(2003). Dynamic stability of an axially moving beam with time-dependent ten-
sion were investigated by using the three-parameter Zener rheological model
(Marynowski and Kapitaniak, 2007).

Basing on the beam theory, equations of motion of an axially moving web
with time-dependent tension have been derived in this paper. The beam model
material as the Kelvin-Voigt element is considered. The Galerkin method and
the 4-th order Runge-Kutta method have been used to solve the governing
non-linear partial-differential equation. Non-linear vibrations of the beam-like
model of an axially moving paper web with time-dependent tension have been
investigated. The effects of the transport speed, tension perturbation ampli-
tude and internal damping on the dynamic behaviour of the system have been
numerically investigated.

2. Non-linear beam model of a viscoelastic web

The viscoelastic axially moving beam model of a web with a length l is con-
sidered. The beam moves at an axial velocity c. The geometry of the system
and its co-ordinates are shown in Fig. 1.

Fig. 1. Axially moving beam model of the web
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Dynamics of the axially moving plate model of the web in the state of a
uniform initial stress was investigated in Marynowski and Kołakowski (1999).
The mathematical model that describes motion and the field of cross-sectional
forces has the form of a system of three coupled differential equations of equ-
ilibrium (2.1)

ρh(−w,tt − 2cw,xt − c
2w,xx) +Mx,xx + 2Mxy,xy +My,yy + qz +

+(Nxw,x),x + (Nyw,y),y + (Nxyw,x),y + (Nxyw,y),x = 0

ρh(−u,tt − 2cu,xt − c
2u,xx) +Nx,x +Nxy,y = 0 (2.1)

ρh(−v,tt − 2cv,xt − c
2v,xx) +Nxy,x +Ny,y = 0

where qz is the external loading.

In the case of transverse oscillations of the beam model, one should take
into account only the first equation. The application of this model gives the
following equation of motion in the y direction

ρheq(−w,tt − 2cw,xt − c
2w,xx) +Mx,xx + (Nxw,x),x = 0 (2.2)

where heq is the equivalent thickness of the beam.

The nonlinear strain component in the x direction is related to the displa-
cement w by

ε(x, t) =
1

2
w2,x(x, t) (2.3)

Dependence (2.3) shows that the geometrical type of non-linearity has been
taken into consideration in the beam model of the web.

The model of internal damping introduced by Kelvin-Voigt (K-V) is shown
in Fig. 2. The differential constitutive equation is as follows

σ = Eε+ γε,t (2.4)

Fig. 2. Kelvin-Voigt model
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Displacement of the web w is a function of the x and t variables, and
substituting (2.3) into (2.4), we obtain

σ =
1

2
Ew2,x + γw,xw,xt + γcw,xw,xx (2.5)

Let us assume that the axial tension is characterised as a periodic pertur-
bation on the steady-state tension

Nx = Nx0 +N1 cos(Ωt) (2.6)

where Nx0 is the initial axial tension, N1 – amplitude of the axial tension.
Then, Eq. (2.2) can be written in the following form

−w,tt − 2cw,xt − c
2w,xx +

1

ρhz
Mx,xx +

1

ρ
σ,xw,x +

(2.7)

+[Nx0 +N1 cos(Ωt)]w,xx +
1

ρ
σw,xx = 0

The bending moment M is related to the displacement w by

M = −EJzw,xx − Jeqγw,xxt (2.8)

where Jeq is the equivalent inertial moment of the cross-section.
Using Eqs. (2.5), (2.7) and (2.8), one receives a nonlinear equation of the

viscoelastic beam model with the K-V element

w,tt + 2cw,xt + c
2w,xx +

EJeq
ρAeq
w,xxxx +

Jeqγ

ρAeq
wxxxxt −

P0 + P1 cos(Ωt)

ρAeq
w,xx +

(2.9)

−

3

2

E

ρ
w2,xw,xx − 2

γ

ρ
(w,xw,xtw,xx + cw,xw

2
,xx)−

γ

ρ
(w2,xw,xxt + cw

2
,xw,xxx) = 0

The boundary conditions are as follows

w(0, t) = w(l, t) = 0 w,xx(0, t) = w,xx(l, t) = 0 (2.10)

Let the dimensionless parameters be

z =
w

heq
ξ =
x

l
s =
c

cw
= c

√

Aeqρ

P0
(2.11)

τ = t
cf
l
=
t

l

√

P0
Aeqρ

ω = Ωl

√

Aeqρ

P0
cw =

√

P0
Aeqρ
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The substitution of Eq. (2.11) into Eq. (2.9) and (2.10) gives the dimen-
sionless nonlinear equation of motion of the viscoelastic beam model

z,ττ + 2sz,ξτ + [s
2
− 1− α cos(ωτ)]z,ξξ + ε1z,ξξξξ + βz,ξξξξτ +

(2.12)

−

3

2
κz2,ξz,ξξ − ηs(2z

2
,ξξz,ξ + z

2
,ξz,ξξξ)− η(2z,ξz,ξτz,ξξ + z

2
,ξz,ξξτ ) = 0

where

β =
Jeqγ

l3
√

PρAeq
ε1 =

EJeq
Pl2

κ =
Eh2eqAeq

Pl2

η =
γh2eqAeq

l3
√

PρAeq
α =
P1
P0

(2.13)

The boundary conditions in the dimensionless form are

z(0, τ) = z(1, τ) = 0 z,ξξ(0, τ) = z,ξξ(1, τ) = 0 (2.14)

Equation (2.12) together with boundary conditions (2.14) constitute the
mathematical model of the beam with the K-V element.

3. Solution to the problem

The problem represented by Eq.(2.12) together with boundary conditions
(2.14), has been solved using the Galerkin method. The following finite series
representation of the dimensionless transverse displacement has been assumed

z(ξ, τ) =
n
∑

i=1

sin(iπξ)qi(τ) (3.1)

The 4-term finite series representation of the dimensionless transverse di-
splacement of the beam has been taken in the numerical investigations. The
even order truncations are recommended because the gyroscopic coupling in
the mathematical model is taken into consideration. Substituting Eq. (3.1) into
the governing equation and using the orthogonality condition, one determines
a set of ordinary differential equations. To analyse the dynamic behaviour
of the considered system, the set of ordinary differential equations has been
integrated.
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Poincaré maps and bifurcation diagrams are modern techniques used to
analyse non-linear systems. These maps are convenient tools to identify the
dynamical behaviour, especially chaos. In bifurcations diagrams, the dyna-
mic behaviour may be viewed globally over a range of parameter values and
compared simultaneously with various types of motion.

The Poincaré maps and bifurcation diagrams have been determined for
the non-dimensional displacement of the center of the moving beam in the
following form

v
(1

2
, iT
)

= q1(iT )− q3(iT ) (3.2)

where: T = 2π/ω, i = 1, 2, 3, . . ..

The fourth-order Runge-Kutta method has been used to integrate the or-
dinary differential equations and to analyse the dynamical behaviour of the
system. The bifurcation diagrams are presented by varying the dimensionless
parameters: the transport speed s, the amplitude of the tension periodic per-
turbation α, and the internal damping coefficient β, while the dimensionless
frequency of the periodic perturbation ω = π is kept constant. For each set
of parameters, the first 2000 points of the Poincaré map have been discarded
in order to exclude transient vibration, and the displacement of the next 100
points have been plotted on the bifurcation diagrams.

4. Parameters of the paper web

The considered paper parameters have been determined in an experimental
way. The experimental investigations were carried out at the Papermaking and
Printing Institute in Łódź, Poland (Szewczyk et al., 2006). The liner paper used
in the corrugated board was employed in those investigations. The parameters
describing physical properties of the liner paper are shown in Table 1.

Numerical investigations have been carried out for the beam model of the
liner paper web. Parameters of the liner paper in the longitudinal direction
(machine direction – MD) have been taken into account. For the data of the
web: l = 1.0m, b = 1.0m, initial stress N0 = 50N/m, the equivalent parame-
ters of the beam are

Jeq =
DMD
EMD

= 3.577 · 10−12 m4 heq =
3

√

12Jeq
b
= 3.5 · 10−4 m (4.1)
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Table 1. Physical parameters of paper

Parameter, notation Liner paper

Thickness, h [mm] 0.347

Density, ρ [kg/m3] ([g/m2]) 634.01 (220)

Young’s modulus, EMD [N/m
2] 5354 · 106

Young’s modulus, ECD [N/m
2] 2285 · 106

Kirchhoff’s modulus, G [N/m2] 1186 · 106

Poisson’s ratio, ν [–] 0.25

Poisson’s ratio, νyx [–] 0.11

Plate stiffness, DMD [Nm] 19.15 · 10−3

Plate stiffness, DCD [Nm] 8.18 · 10−3

Then, the dimensionless parameters are

ε1 =
EMDJeq
P0l2

= 3.83 · 10−4 κ =
EMDh

2
eqAeq

P0l2
= 4.595 · 10−3 (4.2)

5. Investigations results

The numerical investigations have been carried out for the beam model of the
paper web. At first, the linearized beam model of the system was investigated.
To show the dynamical behaviour of the web, natural damped oscillations of
the dimensionless displacement v given by Eq. (3.2) for different values of the
axial speed s of the beam model were investigated. In the subcritical region
of transport speeds (s < scr), one can observe free flexural damped vibrations
around the trivial equilibrium position (Fig. 3). In the supercritical transport
speeds (s > scr), for small internal damping, the web experiences divergent
instability and, next, flutter instability (Fig. 4). The location of instability
regions of the linearized system with the K-V model of the axially moving
material is shown in Fig. 5.

In dynamical analysis of the non-linear system, a parametrically unexcited
system was firstly investigated. To show the dynamical behaviour of the web,
a bifurcation diagram of the dimensionless displacement v given by Eq. (3.2)
is presented in Fig. 6. The dimensionless transport speed s has been used
as the bifurcation parameter. One can observe a supercritical pitchwork-type
bifurcation at the transport speed s = sb1 = 1.01. For s < scr, only one
attractor exists (v = 0), and for s > scr this critical point becomes a repeller,
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Fig. 3. Phase portrait (a) and time history (b) of the solution of the linearized
system; s = 0.95, β = 5 · 10−4

Fig. 4. Phase portrait (a) and time history (b) of the solution of the linearized
system; s = 1.04, β = 5 · 10−4

Fig. 5. Instability regions of the linearized beam model with the K-V element

and one can observe two attractors (non-zero critical points). Though the
analysis of the linearized system predicts exponentially growing oscillations
in the parametrically unexcited system, non-linear damped oscillations which
tend to the stable critical point occur (Fig. 7).
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Fig. 6. Bifurcation diagram; β = 5 · 10−4, α = 0

Fig. 7. Phase portrait (a) and time history (b) of the solution of the non-linear
system; s = 1.05, β = 5 · 10−4

Fig. 8. Phase portrait (a) and time history (b) of the solution of the non-linear
system; s = 1.15, β = 5 · 10−4

If the transport speed is further increased at sb2 = 1.08, then a Hopf-type
bifurcation occurs. This bifurcation leads to the appearance a limit cycle mo-
tion (Fig. 8). It is worth to note that this region of the transport speed covers
the flutter instability regions of the linearized beam model. The Poincaré map
of the dimensionless displacement v in this region has a regular form, which
is shown in Fig. 9.
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Fig. 9. Poincaré map; s = 1.15, β = 5 · 10−4, α = 0

If the transport speed is further increased at sb3 = 1.18, then the third
bifurcation occurs. At the transport speeds above the bifurcation point, the
parametrically unexcited non-linear system exhibits global irregular motion.
Next, a non-linear parametrically excited system was investigated. A bifur-

cation diagram of the dimensionless displacement v versus the dimensionless
transport speed s for specific values of the parameters α and β is shown in
Fig. 10. Only the stable region of the transport speed (s < sb1) of the para-
metrically unexcited system has been considered in these investigations.

Fig. 10. Bifurcation diagram; β = 5 · 10−4, α = 0.5

At the transport speed s = 0.795, much lower than in the unexcited ca-
se, a Hopf-type bifurcation of the zero critical point occurs. This bifurcation
leads to the appearance of the limit cycle motion. Figures 11 and 12a show
a phase portrait and Poincaré map of the system in this region of the trans-
port speed. This limit cycle coexists with the zero critical point in the range
0.795 < s < 0.92.
If the transport speed is further increased (s > 0.92), the limit cycle

motion coexists with chaotic motion. The Poincaré map in Fig. 12b shows the
dynamical behaviour of the investigated system in this region of the transport
speed.
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Fig. 11. Phase portrait (a) and time history of the solution of the non-linear system;
s = 0.798, α = 0.5, β = 5 · 10−4

Fig. 12. Poincaré map; (a) s = 0.798, α = 0.5, β = 5 · 10−4, (b) s = 0.99, α = 0.5,
β = 5 · 10−4

The bifurcation of the dimensionless displacement v against the non-
dimensional internal damping coefficient β for fixed s = 0.9, α = 0.5 is
shown in Fig. 13a. When the damping coefficient has been taken as the bi-
furcation parameter, one can observe dynamical behaviour characteristic for
non-linear systems which are determined in a multi-dimensional phase space.
In this case, for small values of internal damping (β < 10−4), irregular motion
occurs. The Poincaré map in Fig. 13b shows the dynamical behaviour of the
investigated model in this region of internal damping. With an increase in β,
one can observe direct transition from a chaotic to quasi-periodic attractor
(Fig. 14a).

In the region of damping β > 3 · 10−4, the quasi-periodic attractor coexist
with the periodic attractor. Figure 14b shows the Poincaré map of a period-6
motion. Six points represent six periodic orbits in the bifurcation diagram in
Fig. 13a. At β = 3 · 10−3, an inverse Hopf bifurcation occurs and the system
is asymptotically stable with its response tending to zero.
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Fig. 13. (a) Bifurcation diagram, s = 0.9, α = 0.5; (b) Poincaré map, s = 0.9,
α = 0.5, β = 1.8 · 10−4

Fig. 14. Poincaré map; (a) s = 0.9, α = 0.5, β = 3.9 · 10−4, (b) s = 0.9, α = 0.5,
β = 7.8 · 10−4

The bifurcation diagram in Fig. 15a shows Poincaré maps of the dimension-
less displacement v against the perturbation amplitude α for fixed s = 0.95
and β = 5 · 10−4. In this case, the system is asymptotically stable with its
response tending to zero for α < 0.2. At the perturbation amplitude α = 0.2,
the zero critical point looses its stability and a Hopf-type bifurcation occurs.
With an increase in α, quasi-periodic motion appears (Fig. 15b). At the per-
turbation amplitude α = 0.39, an explosive bifurcation occurs and irregular
motion appears (Fig. 15c).

6. Conclusions

The paper discusses the results of dynamical investigations of the axially mo-
ving web of liner paper obtained by means of the beam model. The two-
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Fig. 15. Bifurcation vs. the amplitude of the periodic perturbation, s = 0.95,
β = 5 · 10−4; (a) bifurcation plot, (b) Poincaré map, α = 0.38, (c) Poincaré map,

α = 0.39

parameter Kelvin-Voigt rheological model has been employed to describe ma-
terial properties of the web. The generated mathematical model in the form
of a differential equation with partial derivatives has been discretized to find
approximate solutions by means of the Galerkin method. The dynamical be-
haviour of the systems has been analysed through direct integration of the set
of ordinary differential equations.

While comparing the dynamical behaviour of the nonlinear beam model
with the K-V element and the nonlinear plate model analysed earlier, we can
see that the transport speed at which a pitchwork-type bifurcation of the zero
critical point occurs is slightly higher than that predicted by the plate model
with respect to the bifurcation of the static equilibrium position. A similar
dependence was also found in the investigations of the linear beam and plate
models by Lin (1997).

In the case of parametric excitation of the beam model with the K-V
element generated by an alternation in the tension force, the bifurcation of
the zero solution occurs much earlier than the linear model predicts. First,
quasi-periodic motion appears, and then with an increase in the transport
speed, irregular chaotic motion takes place.
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Nieliniowe drgania przesuwającej się osiowo wstęgi papieru

Streszczenie

W artykule badane są nieliniowe drgania belkowego modelu przesuwającej się
osiowo wstęgi papieru, będącej pod wpływem zmiennego obciążenia rozciągającego.
Parametry badanego papieru zostały wyznaczone doświadczalnie. Do opisu własności
reologicznych papieru został użyty model Kelvina-Voigta. Różniczkowe równania ru-
chu o pochodnych cząstkowych poddano procesowi dyskretyzacji, wykorzystując me-
todę Galerkina. Otrzymany układ równań różniczkowych zwyczajnych był całkowany
metodą Runge-Kutta. Wpływ prędkości transportowej wstęgi, amplitudy obciążenia
rozciągającego oraz tłumienia wewnętrznego na zachowanie dynamiczne układu był
przedmiotem badań numerycznych.

Manuscript received xx yy, 2008; accepted for print April 9, 2008


