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In this paper, we present nonlinear dynamic behaviour of a system which
consists of a mass connected to a rigid support by a shape memory alloy
(SMA) element and a damper. In order to disturb the system, a DC motor
with limited power supply is connected to the mass, causing an interaction
between the vibrating structure and the energy source. The SMA element is
characterised using a one-dimensional phenomenological constitutive model,
based on the classical Devonshire theory. We analyse the non-ideal system in
form of two coupled nonlinear differential equations. Some interesting nonli-
near phenomena as the Sommerfeld effect and nonlinear resonance including
periodic, chaotic and hyperchaotic regime are presented.
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1. Introduction

Intelligent and adaptive material systems and structures have become very
important in engineering applications. The fundamental characteristic of these
systems is the ability to adapt to environmental conditions. A new class of
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materials with promising applications in structural and mechanical systems
is the shape memory alloy (SMA). Mechanical behaviour of shape memory
alloys, in particular, shows strong dependence on temperature.

Here, the focus is on certain aspects of shape memory alloy (SMA) ac-
tuators in smart structures, a task that goes beyond classical modelling ap-
proaches as it has to combine constitutive modelling with structural one in a
highly interdisciplinary way.

Shape Memory Alloys (SMAs) consist of a group of metallic materials that
demonstrate the ability to return to some previously defined shape or size when
subjected to the appropriate thermal procedure. The SMAs appear in a low
(usually martensite) and a high temperature phase (austenite). In literature,
the shape memory effects (SMEs) are classified into the following three types:
two-way effect, one-way effect and pseudoelasticity. The effects can appear in
this sequence with increasing temperature. In the pseudoelastic effect, a SMA
material achieves a very large strain upon loading that is fully recovered in a
hysteresis loop upon unloading.

The shape memory effect occurs due to temperature and stress-dependent
shift in the crystalline structure between two different phases called martensite
and austenite. Martensite, the low temperature phase, is relatively soft whereas
austenite, the high temperature phase, is relatively hard.

In the theoretical study by Bernardini and Vestroni (2003) a nonlinear
dynamic non-isothermal response of pseudoelastic shape-memory oscillators
was presented. Based on the work done by Bernardini and Vestroni (2003),
Lacarbonara et al. (2004) studied a periodic and non-periodic thermomecha-
nical response of a shape-memory oscillator and considered both isothermal
and non-isothermal conditions under forced vibration.

In the recent work by Lagoudas et al. (2004) the authors presented nu-
merically the response of a single-degree of freedom dynamic system having
pseudoelastic SMA spring elements for damping and vibration isolation. Sa-
vi and Pacheco (2002) studied some characteristics of shape memory oscil-
lators with one and two-degrees of freedom, showing the existence of chaos
and hyperchaos through numerical simulations in such systems. Piccirillo et
al. (2007a,b) presented a nonlinear dynamical characteristic of the thermome-
chanical response of the primary and secondary pseudoelastic oscillator where
the method of multiple scales was used in order to obtain an approximate
analytical solution.

We also remark that the study of non-ideal vibrating systems, that is,
those where the excitation is influenced by the response of the system, is still
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considered to be a major challenge in the theoretical and practical engineering
research.

When the excitation is not influenced by the response, it is said to be an
ideal excitation or an ideal source of energy. On the other hand, when the
excitation is influenced by the response of the system, it is said to be non-
ideal. Thus, depending on the excitation, one refers to vibrating systems as
ideal or non-ideal.
This work concerns special kinds of problems called non-ideal problems.

Non-ideal vibrating systems have two important properties: the jump pheno-
mena and the increase in power required by the energy source operating near
the resonance. This means that the steady state frequencies of the motor will
usually increase as more power (voltage) is given to it in a step by-step fashion.
When the resonance condition in the structure is reached, a greater part of
this energy is consumed to generate large amplitude vibrations of the founda-
tion without a sensible change in the motor frequency as before. If additional
increase steps in voltage are made, one may reach a situation where the rotor
will jump to higher rotation regimes, with no steady states being stable in
between.

These above properties are known, in the current literature, as the Som-
merfeld effect (Sommerfeld 1904). It was described in the classical book by
Kononenko (1969), entirely devoted to this subject. A comprehensive and com-
plete review of different approaches was given by Balthazar and Pontes (2005),
Balthazar et al. (2003), Felix et al. (2005), Nayfeh and Mook (1979), Piccirillo
et al. (2007c), without undeserving others authors.

Here we analyse the problem by taking a nonlinear SMA spring and a DC
motor of limited power supply, exciting the considered dynamical system.
The goal of this paper is to analyse through numerical simulations the

response of the proposed vibrating system and verify possible interactions
between of the motor and vibrating structure.

2. Modelling of the system

We consider an electric motor operating on a structure. Figure 1 shows the
model of such a system to be investigated in this paper. The vibrating system
consists of a mass M , SMA element and linear damping element with the
viscous damping coefficient c. On the object with the mass M , a non-ideal
DC motor is placed, with the driving rotor having the moment of inertia J .
r is the eccentricity of the unbalanced mass (Fig. 1b).
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Fig. 1. (a) Physical model, (b) mathematical model with limited power supply

The shape memory behaviour is described by a polynomial constitutive
model (Falk, 1980). This is a one-dimensional model which represents the
shape memory and pseudoelastic effects considering polynomial free energy
that depends on temperature and one-dimensional strain E. Therefore, the
restoring force of the oscillator is given by

K = K(x, T ) = q(T − TM )x− bx
3 + ex5 (2.1)

where

q =
qA

L
b =
bA

L3
e =
eA

L5
(2.2)

The parameters q, b and e are positive constants, while TM is the tempe-
rature below which the martensitic phase is stable. The variable x represents
the displacement associated with the SMA element.

We will denote by φ the angular displacement of the rotor.

The total kinetic KE and potential PE energies of the coupled system and
the non-conservatives forces G and torque Γ are given by

KE =
1

2
Mẋ2 +

1

2
Jφ̇2 +

1

2
(ẋ− rφ̇ cosφ)2 +

1

2
m(rφ̇ sinφ)2

PE =
1

2
q(T − TM )x

2
−
1

4
bx4 +

1

6
ex6 (2.3)

G = cẋ Γ (φ̇) = S(φ̇)−H(φ̇)

where S(φ̇) is the controlled torque of the unbalanced rotor and H(φ̇) is the
resistant torque of the unbalanced rotor.

Thus, we will obtain the following Lagrange’s equations of motion

(M +m)ẍ+ cẋ−mr(φ̈ cosφ− φ̇2 sinφ) + q(T − TM )x− bx
3 + ex5 = 0

(2.4)

(J +mr2)φ̈−mrẍ cosφ = Γ (φ̇)
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It is convenient to proceed with a dimensionless position and time, accor-
ding to

u =
x

L
τ = ω0t (2.5)

in such a way that Eq. (2.4) is rewritten in the following form

ü+ 2µu̇+ (θ − 1)u− αu3 + γu5 − λ(φ̈ cosφ− φ̇2 sinφ) = 0
(2.6)

φ̈− ηü cosφ = ξ1 − ξ2φ̇

where the dot represents time differentiation, and the dimensionless variables
are given by

ω20 =
qATM
(M +m)L

α =
bA

(M +m)Lω20
θ =

T

TM

µ =
c

2(M +m)ω0
γ =

eA

(M +m)Lω20
λ =

mr

(M +m)L

η =
mrL

(J +mr2)
(2.7)

Characteristic curves of the energy source (DC motor) are assumed to be
straight lines

Γ = ξ1 − ξ2φ̇ (2.8)

Note that the parameter ξ1 is related to the voltage of the considered DC
motor and ξ2 is a constant for each of the considered motors (Warmiński et
al., 2001). The voltage is a possible control parameter for the problem.

3. Numerical simulation

The objective of this section is to analyse the vibrating problem defined by
Fig. 1, taking into account the linear torque defined by equation (3.1). Nu-
merical simulations were carried out by using the Matlab-Simulink R©. In all
numerical simulations, to analyse the behaviour of the non-ideal dynamical
system, the spring was assumed to be made of a (Cu-Zn-Al-Ni) alloy with
properties presented in Table 1.
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Table 1. Material constants for Cu-Zn-Al-Ni alloy (Savi et al., 2002)

q [MPa/K] b [MPa] e [MPa] TM [K] TA [K]

523.29 1.868 · 107 2.186 · 109 288 364.3

Putting down Eq. (2.6) into state variables, we obtain

u̇1 = u2 u̇3 = u4

u̇2 =
1

1− λη cos2 u3
·

·

{

λ[(ξ1 − ξ2u4) cos u3 − u
2
4 sinu3] + αu

3
1 − γu

5
1 − (θ − 1)u1 − 2µu2

}

(3.1)

u̇4 =
ξ1

1− λη cos2 u3
+

+
η cos u3

1− λη cos2 u3

[

αu31 − γu
5
1 − (θ − 1)u1 − 2µu2 −

ξ2u4
η cos u3

− λu24 sinu3
]

Furthermore, in all numerical simulations, we considered the parameters:
µ = 0.01, η = 0.6, λ = 0.4 and ξ2 = 1.5. Note that the passage through the
resonance is obtained by varying the angular velocity φ̇ of the DC motor.
In order to illustrate the response of the non-ideal system, we consider a

temperature where the martensitic phase is stable (θ = 0.7). In the second
situation, we examine an intermediate temperature where the martensitic and
austenitic phases are both present in the alloy (θ = 1.03), and we analyse the
response at higher temperatures (θ = 2) when the alloy is fully austenitic.
We also plot the Poincaré section which represents a surface of the section
(x1(τn), x2(τn)). The points (x1(τn), x2(τn)) are captured for τn = nT , where
n = 1, 2, 3, . . ., with the period T = 2π/ΩM (Zukovic and Cveticanin, 2007).
The average angular velocity ΩM is obtained numerically

ΩM =
φ(τ1)− φ(0)

τ1
=
u3(τ1)− u3(0)

τ1
(3.2)

where τ1 is a long time period for numerical calculation.
The greatest interaction between the vibrating system and the energy so-

urce occurs at the resonance. We define the resonance region as

dϕ

dt
− ω = O(ε) (3.3)

where dϕ/dt is the angular velocity, ε is the small parameter of the order
of 10−3, ω – natural frequency of the system.



On a nonlinear and chaotic non-ideal vibrating system... 603

Generally, for a wide range of physical parameters, when the system was
started off, the angular velocity of the rotor increases until it reaches the ne-
ighbourhood of the natural frequency ω. Then, depending upon physical para-
meters, values of dϕ/dt increase beyond the resonance region (pass through)
or remains close to ω (capture).

3.1. Martensitic phase

In this section, we study the problem of a vibrating system depicted in
Fig. 1, taking into account temperature θ = 0.7, where the martensitic phase
is stable.

It is known that dynamics of a system close to the fundamental resonance
region may be analysed through a frequency-response diagram, which is obta-
ined by plotting the amplitude of the oscillating system versus the frequency
of the excitation term. For the non-ideal system, this graph is estimated by
numerical simulation defining the amplitude as the maximum absolute value
of the amplitude of oscillation, and the frequency as the mean value of the
rotational speed of the motor (Belato et al., 2001).

In Fig. 2, the amplitude of motion is plotted as function of φ̇. As expected,
we observe the occurrence of the Sommerfeld effect. In vibrating nonlinear
systems, the Sommerfeld effect is an important irregular sink of irregular vi-
brations (Tsuchida et al., 2005). The curves were obtained by allowing the
system to achieve steady-state motion, while the control parameter was fixed.
Then, the amplitude of the steady-state response was measured. The curve
was calculated, using an increment ∆ξ1 = 0.1, as the variation of the control
parameter ξ1 in the interval [0, 3.1] and holding in the new position until a
new steady state was achieved. The circle symbols represent the steady state
solutions. Figure 2a shows the results for increasing ξ1, while Fig. 2b shows
the results for decreasing ξ1.

For the chosen parameter, we may note that the jump phenomena occur
in different forms, when the motor frequency is increased or decreased, where
there is a discontinuous jump. This jump appears on the frequency response
curve as a discontinuity which indicates a region where steady-state conditions
do not exist. This resonance curve has an untypical shape.

In Fig. 2a, the solution exhibits more complicated and different behaviour
confirmed by the presence of three jumps in the graph. The first jump occurs
between the points A and B. In the first case, the velocity of the rotor passes
through the superharmonic resonance of the motor frequency for 0 < φ̇ ¬ 0.14.
As ξ1 increases, the secondary jump from the point C to D takes place. In this
case, the velocity of the rotor passes through the subharmonic resonance for
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Fig. 2. Frequency-response curves for the non-ideal system for θ = 0.7: (a) for
increasing ξ1, (b) for decreasing ξ1

0.92 ¬ φ̇ ¬ 1.02. As ξ1 increases, the amplitude slowly increases through the
point D to E. As ξ1 increases further, a jump takes place from the point E
to F . In this case, the velocity of the rotor passes through the subharmonic
resonance for 1.32 ¬ φ̇ ¬ 1.4. These jumps cause an increase in the amplitude
of motion. In Fig. 2b the amplitude decreases slowly as the control parameter
is reduced, a jump from the point A to B takes place. In this case, the velocity
of the rotor passes through the superharmonic resonance for 0.2 < φ̇ < 0.28.
The Lyapunov exponent may be used to measure the sensitive dependence

upon initial conditions. It is an index for chaotic behaviour. Different solutions
of a dynamical system, such as fixed points, periodic motions, quasiperiodic
motion and chaotic motion can be distinguished by it. If two chaotic trajecto-
ries start close one to another in the phase space, they will move exponentially
away from each other for short times on the average.
We evaluate the Lyapunov exponents using the classical method described

in Wolf et al. (1985). The main formula is

λ =
1

tN

N
∑

i=1

ln
di(t)

di(0)
(3.4)

where λ denotes the Lyapunov exponents, the index i corresponding initial
positions, and d is the separation between two close trajectories.
Assume that λi (i = 1, 2, 3, 4) are the Lyapunov exponents of system

(2.6), satisfying the condition λ1 ­ λ2 ­ λ3 ­ λ4. The dynamical behaviours
of system (2.6) can be classified as follows based on the Lyapunov exponents:
— the non-ideal system has a chaotic attractor

λ1 > 0 λ2 = 0 λ3 < 0 λ4 < 0
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— the non-ideal system has a periodic attractor

λ1 = 0 λ2 < 0 λ3 < 0 λ4 < 0

— the non-ideal system is hyperchaotic

λ1 > 0 λ2 > 0 λ3 < 0 λ4 < 0

in all simulations, we consider that: λ1, λ2, λ3 and λ4.
The Lyapunov exponents of the solution to the non-ideal dynamical sys-

tem, Eq. (2.6), are plotted in Fig. 3 for ξ1 ranging form 0.1 to 2.

Fig. 3. Lyapunov exponent versus control parameter

Through Fig. 3, we can build Table 2 that shows types of attractors of
system (2.6), which are encountered as the parameter ξ1 is varied in the range
0.1 ¬ ξ1 ¬ 2 and θ = 0.7.

Table 2. Attractor types for θ = 0.7

Control parameter (ξ1) θ Attractor type

0.1 – 0.67 0.7 periodic

0.68 – 0.78 0.7 chaotic

0.79 – 0.98 0.7 periodic

0.99 – 1.32 0.7 hyperchaotic

1.33 – 2.00 0.7 periodic

In order to complete the dynamic analysis of the problem, a number of
numerical simulations are done for various control parameters ξ1.
When ξ1 is varied in the intervals 0.1 ¬ ξ1 ¬ 0.67, 0.79 ¬ ξ1 ¬ 0.98

and 1.33 ¬ ξ1 ¬ 2 we observe that the considered non-ideal system vibrates
periodically. For example, Fig. 4 illustrates the case when the angular velocity
is captured into the resonance region for ξ1 = 0.8218. The nature of motion
is confirmed in Fig. 4c through the power spectrum.
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Fig. 4. (a) Angular velocity time response, (b) phase portrait and (c) power
spectrum for ξ1 = 0.8218 and θ = 0.7

In the next case, to obtain a chaotic regime in the interval 0.68 ¬ ξ1 ¬ 0.78,
we assumed ξ1 = 0.7. Solving numerically system (2.6), we obtain Fig. 5.
A strange attractor on the Poincaré section (see Fig. 5d) obtained for the

Fig. 5. (a) Angular velocity time response, (b) phase portrait, (c) power spectrum
and (d) Poincaré section for ξ1 = 0.7 and θ = 0.7



On a nonlinear and chaotic non-ideal vibrating system... 607

non-ideal system has a complicated fractal structure with features chaotic
motion. Positive sign of the maximal Lyapunov exponents in Fig. 3, for
θ = 0.7, confirms that the system vibrates chaotically. In this case, the angular
velocity of the rotor is below the resonance region.

For the parameter values mentioned in the previous section and the control
parameter ξ1 = 1, the phase trajectory and Poincaré’s section are plotted in
Fig. 6. The existence of the strange attractor signifies hyperchaotic motion,
which is evident because two Lyapunov exponents are positive. Furthermore,
we observe that the angular velocity of the rotor is above the resonance region.

Fig. 6. (a) Angular velocity time response, (b) phase portrait, (c) power spectrum
and (d) Poincaré section for ξ1 = 1 and θ = 0.7

3.2. Martensitic and austenitic phases

The cases where the shape memory elements have intermediate tempera-
tures, i.e., both martensitic and austenitic phases are stable θ = 1.03 is now
considered.

Figure 7 shows the presence of the Sommerfeld effect during the passage
through the resonance region by varying the control parameter ξ1 in the inte-
rval 0.1 ¬ ξ1 ¬ 0.7. The curve was calculated using an increment ∆ξ1 = 0.02
as the variation of the control parameter. The circle symbols represent steady
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state solutions. Figure 7a shows the results for increasing ξ1, while Fig. 7b
shows the results for decreasing ξ1.

Fig. 7. Frequency-response curves for the non-ideal system for θ = 1.03: (a) for
increasing ξ1, (b) for decreasing ξ1

In Fig. 7a it is seen that when the control parameter ξ1 is gradually in-
creased, the motor frequency is increased slowly and the amplitude of motion
slowly increases until the point A is reached. As ξ1 is increased further, a
jump from the point A to point B takes place with accompanying increment
in the amplitude. In this case, the velocity of the rotor passes through the
resonance region for 0.18 < φ̇ < 0.2. The experiment is started at a frequency
corresponding to the control parameter ξ1 = 0.7 on the curve in Fig. 7b. As
the motor frequency is reduced, the amplitude of motion decreased slowly to
the point A. As the motor frequency is decreased further, a jump form the po-
int A to point B takes place, with accompanying decrement in the amplitude
of motion, in this case, the velocity of the rotor passes through the resonance
region for 0.13 < φ̇ < 0.17.

As in the previous section, the Lyapunov exponent of the system is com-
puted and its connection with the control parameter ξ1 is shown in Fig. 8. The
results show that there appears a positive exponent, which is an indicator of
chaotic dynamics.

Here, the Lyapunov exponent of the non-ideal system is listed in Table 3
for different values of ξ1.

Several aspects of nonlinear dynamic behaviour of the system were discus-
sed in previous sections. They show that the non-ideal system exhibits both
regular and chaotic motion.

In order to illustrate the nonlinear response of the non-ideal system with
shape memory elements for θ = 1.03, different control parameters are consi-
dered.
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Fig. 8. Lyapunov exponent versus control parameter

Table 3. Attractor type for θ = 1.03

Control parameter (ξ1) θ Attractor type

0.1 – 0.74 1.03 periodic

0.75 – 1.06 1.03 chaotic

1.07 – 1.3 1.03 periodic

1.31 – 1.39 1.03 chaotic

1.4 – 1.59 1.03 hyperchaotic

1.6 – 1.69 1.03 chaotic

1.7 – 2.00 1.03 hyperchaotic

When ξ1 is varied in the intervals 0.1 ¬ ξ1 ¬ 0.74 and 1.07 ¬ ξ1 ¬ 1.3,
we observe that the considered non-ideal system vibrates in periodically. If
ξ1 = 1.2, the results are shown in Fig. 9. In this case, we observe that the
angular velocity of the rotor is above the resonance region.

The chaotic attractor of the non-ideal system is obtained in the intervals
0.75 ¬ ξ1 ¬ 1.06, 1.31 ¬ ξ1 ¬ 1.39 and 1.6 ¬ ξ1 ¬ 1.69. This behaviour of
the non-ideal system with the parameter ξ1 = 0.75 is shown in Fig. 10. Figu-
re 10a illustrates that the angular velocity of the rotor is above the resonance
region. In Fig. 10c, a broadband character observed in the power spectrum is
characteristic for the chaotic solution. Here, we use the Poincaré section to
characterise the dynamics of the system. In Fig. 10d a strange attractor of the
system for ξ1 = 0.75 and θ = 1.03 is presented.

When we consider the intervals 1.4 ¬ ξ1 ¬ 1.59 and 1.7 ¬ ξ1 ¬ 2, it
is possible to observe that the response becomes hyperchaotic (see Table 2).
In order to illustrate this behaviour, the system with ξ1 = 1.7 is considered.
Figure 11a presents the response of the system where the angular velocity is
above the resonance region. In Figs. 11b,c,d the phase portraits and Poincaré
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Fig. 9. (a) Angular velocity time response, (b) phase portrait and (c) power
spectrum for ξ1 = 1.2 and θ = 1.03

Fig. 10. (a) Angular velocity time response, (b) phase portrait, (c) power spectrum
and (d) Poincaré section for ξ1 = 0.75 and θ = 1.03
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sections related to this motion are shown. The strange attractor appears on
the phase space, indicating hyperchaotic motion. The existence of two positive
Lyapunov exponents assures this behaviour.

Fig. 11. (a) Angular velocity time response, (b) phase portrait, (c) power spectrum
and (d) Poincaré section for ξ1 = 1.7 and θ = 1.03

3.3. Austenitic phase

Now, higher temperature is considered and the austenitic phase is stable
(θ = 2). In Fig. 12 the presence of the Sommerfeld effect during the passage
through the resonance region by varying the control parameter ξ1 in the in-
terval 0.1 ¬ ξ1 ¬ 2 is shown. The curve was calculated using an increment
∆ξ1 = 0.1 as the variation of the control parameter. The circle symbols re-
present steady state solutions. Figure 12a shows the results for increasing ξ1,
while Fig. 12b shows the results for decreasing ξ1.

For the chosen parameter (θ = 2), no change in the curve shape, except a
near jump region when the mean frequency φ̇ is increased or decreased, was
observed.

Suppose that the experiment is started at ξ1 = 0.1 in Fig. 12a. As ξ1 is
increased, the amplitude of motion increases until the point A is reached.
As ξ1 is increased further, a jump takes place from the point A to point B,
with accompanying increment in the amplitude of motion, after which the
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Fig. 12. Frequency-response curves for the non-ideal system for θ = 2: (a) for
increasing ξ1, (b) for decreasing ξ1

amplitude of motion increases with ξ1. In this case, the velocity of the rotor
passes through the resonance region for 0.26 < φ̇ < 0.34.

If the process is reversed, the amplitude of motion decreases as the motor
angular velocity decreases until the point A is reached. As motor frequency is
decreased further, a jump from the point A to point B takes place with ac-
companying decremennt in the amplitude of motion, after which the amplitude
of motion decreases slowly with decreasing motor frequency. In this case, the
velocity of the rotor passes through the resonance region for 0.32 < φ̇ < 0.4.

To characterise irregular chaotic response forms creating a transition zone
between one and another type of regular steady resonant motion, a Lyapunov
exponent diagram is constructed. Figure 13 shows the dynamics of the Ly-
apunov exponents for θ = 2, where, in this case, the Lyapunov exponents are
positive, negative or null, depending of the control parameter.

Fig. 13. Lyapunov exponent versus control parameter

Based on Fig. 13, Table 4 is built. Negative Lyapunov exponent in Fig. 13
confirms that the system vibrates periodically in the interval 0.1 ¬ ξ1 ¬ 1.31.
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Positive Lyapunov exponent in Fig. 13 confirms that the system vibrates cha-
otically in the intervals 1.32 ¬ ξ1 ¬ 1.6 and 2.31 ¬ ξ1 ¬ 2.4. In the case where
two Lyapunov exponents are positive, the system vibrates hyperchaotically.

Table 4. Attractor type for θ = 2

Control parameter (ξ1) θ Attractor type

0.1 – 1.31 2 periodic

1.32 – 1.6 2 chaotic

1.61 – 2.3 2 hyperchaotic

2.31 – 2.4 2 chaotic

2.41 – 2.5 2 hyperchaotic

Figure 14 shows interesting dynamical behaviour for θ = 2 and ξ1 = 1. We
observe that the angular velocity of the rotor is below the resonance region.
In this case, the motion is periodic.

Fig. 14. (a) Angular velocity time response, (b) phase portrait, (c) power spectrum
for ξ1 = 1 and θ = 2

Figure 15 shows another kind of behaviour, for ξ1 = 1.5 and θ = 2. We
observe that when the angular velocity of the rotor is captured in the resonance
region, chaos is found.

Figure 16 shows interesting dynamical behaviour. For ξ1 = 2 and
θ = 2, we observe that the angular velocity of the rotor is above the reso-
nance region. Here, we have two positive Lyapunov exponents, meaning that
there is hyperchaos.
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Fig. 15. (a) Angular velocity time response, (b) phase portrait, (c) power spectrum
and (d) Poincaré section for ξ1 = 1.5 and θ = 2

Fig. 16. (a) Angular velocity time response, (b) phase portrait, (c) power spectrum
and (d) Poincaré section for ξ1 = 2 and θ = 2
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3.4. Influence of temperature on system response

In the design of (SMA) vibrating systems, temperature is of great impor-
tance. It was noticed that in such systems, the control parameter ξ1 (related
to voltage of the DC motor) and temperature, have strong influence on the
system response. Now, we present results found by variation of temperature
with the control parameter dept constant.

In this section, the numerical results are plotted to illustrate the influence
of temperature on the dynamical behaviour of the system. In order to illustrate
this problem a simulation where temperature varies between two levels, as
indicated in Fig. 17, is presented.

Fig. 17. Temperature history

In Fig. 17, we notice that for the time interval 0 ¬ τ ¬ 1000 the system
has θ = 0.7. In this interval the martensitic phase is stable. From τ = 1000
the system starts to exhibit gradually increasing temperature. In the interval
1000 < τ < 1266, the system still remains with the martensitic phase stable,
however it has θ ∈ [0.7, 1], but for τ = 1266 the martensitic phase transfor-
mation (martensitic for austenitic) in the interval 1266 ¬ τ ¬ 1493 begins.
From τ > 1493, the alloy becomes fully austenitic and θ ∈ [1.26, 2.9] with
1493 < τ < 3000. For 3000 ¬ τ ¬ 4000 it has θ = 3.

Considering the value of ξ1 = 0.7 and variation of temperature in Fig. 17,
we obtain a new representation of the time history in this situation, Fig. 18.

Figure 19a shows the angular velocity of the motor. Figure 19b shows the
dynamical response, and Fig. 19c shows the phase diagram.

Notice (see Fig. 19) that there occurs a decrease as much in the velocity
as in the displacement of the system. The source of the distinctive mechanical
behaviour of these materials is a crystalline phase transformation between low
symmetry and a less ordered product phase (martensite) that occurs between
θ ∈ [0.7, 1]. In this case, the behaviour of the system is irregular, but when
the phase transformation occurs for high symmetry, the highly ordered parent
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Fig. 18. Time history for ξ1 = 0.7

Fig. 19. (a) Angular velocity of the motor, (b) phase portrait and (c) phase diagram
for ξ1 = 0.7 and θ ∈ [0.7, 3]

phase (austenite) for θ ∈ [1.26, 3] appears and the behaviour of the system is
then regular.

Figure 20 shows the Lyapunov exponent for variation of the parameter θ,
making noticeable the moment when the motion becomes chaotic.

By comparing the Fig. 19 and Fig. 20, notice that for θ = 0.7 and
0 ¬ τ ¬ 1000 the angular velocity is below the resonance region and the dyna-
mical behaviour is chaotic because a positive Lyapunov exponent exists. With



On a nonlinear and chaotic non-ideal vibrating system... 617

Fig. 20. Lyapunov exponent for ξ1 = 0.7

the increase of the temperature between 0.7 ¬ θ ¬ 1 and 1000 < τ < 1266,
the angular velocity continually decreases below the resonance region, however
the dynamics of the system drastically changes and becomes periodic, which
is reflected by the Lyapunov exponent (see Fig. 20), which changes its sign
from positive to negative near θ = 0.8. As θ is increased further, the marten-
sitic phase transformation happens (martensitic to austenitic) in the interval
1 < θ ¬ 1.26 and 1266 < τ ¬ 1493. In this situation the angular velocity is
captured by the resonance region between 1.21 < θ ¬ 1.24 and motion of the
system comes back to chaos. In the interval 1.26 < θ ¬ 1.59 with the angular
velocity outside the resonance region, the system continues having chaotic be-
haviour (a positive Lyapunov exponent exists) and, finally, for 1.6 ¬ θ ¬ 3, the
Lyapunov exponent abruptly changes the sign to negative and the behaviour
of the system becomes periodic.

4. Conclusion

In this paper, we analysed the influence of SMA spring on an non-ideal system
during the passage through the resonance. The torque generated by a DC
motor is limited and, according to the classical Kononenko theory, assumed as
a straight line. An important characteristic of such systems is the temperature
dependence, which changes the dynamical behaviour according to each phase
of SMA.
The analysis is developed by considering different temperature sets for the

shape memory element. Depending on the parameter configuration, the system
displays various dynamical responses.

During the passage through the resonance of the motor-structure system,
which is modelled as a SMA oscillator with an non-ideal excitation, ”seve-
re” vibrations appear. Poincaré sections, Lyapunov exponents and phase por-
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traits have been used to examine the system dynamics. The interaction be-
tween the motor and the oscillating system is evidenced in different phase
portraits.

The numerical results presented, in this paper show that it is possible to
get regular, chaotic and hyperchaotic motion depending on the control pa-
rameter ξ1. The Lyapunov exponents have been calculated in order to cha-
racterise chaotic and hyperchaotic orbits. The model displays the occurence
of the expected Sommerfeld effect of getting stuck at resonance and jump
phenomena.
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O nieliniowym, chaotycznym i nieidealnym układzie drgającym
z elementami wykazującymi efekt pamięci kształtu

Streszczenie

W pracy przedstawiono opis dynamiki nieliniowego układu złożonego z masy po-
łączonej ze sztywnym podłożem za pośrednictwem elementu z pamięcią kształtu i tłu-
mikiem. W celu realizacji wymuszenia w układzie zastosowano silnik prądu stałego
z ograniczonym poborem mocy, który pobudza do ruchu masę, tworząc w ten spo-
sób sprzężenie mechaniczne pomiędzy układem drgającym a źródłem energii. Element
z pamięcią kształtu opisano za pomocą jednowymiarowego modelu fenomenologicz-
nego opartego na teorii Devenshire’a. Przeanalizowano rozważany nieidealny układ
opisany dwoma sprzężonymi nieliniowymi równaniami ruchu. Zaobserwowano i opi-
sano interesujące zjawiska nieliniowe w postaci efektu Sommerfelda i nieliniowego
rezonansu w zakresie drgań okresowych, chaotycznych i hiperchaotycznych.
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