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This paper deals with the problem of determination of Lyapunov expo-
nents in dynamical systems with noise or fluctuating parameters. The
method for identifying the character of motion in such systems is pro-
posed. This approach is based on the phenomenon of complete synchro-
nization in double-oscillator systems via diagonal, master-slave coupling
between them. The idea of effective Lyapunov exponents is introduced
for quantifying the local stability in the presence of noise. Examples of
the method application and its comparison with bifurcation diagrams
representing the system dynamics are demonstrated. Finally, the pro-
perties of the method are discussed.
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1. Introduction

The fundamental tasks in studies of dynamical systems are the modelling
and the analysis of their dynamics. The crucial problem here is to construct
realistic models which are capable to reflect dynamics of a system observed
during an experiment. However, we can often observe a quantitative or even
qualitative difference between the dynamical behaviour of a real system and
its numerical model. It happens, because not all dynamical effects appearing
in a real system can be represented by strict mathematical formulas. The
factors connected with the influence of environment or unstable conditions
of the system work cause indefinite perturbations in its dynamical beha-
viour. Usually, such an unexpected disturbance of the system dynamics is
modelled as a noise with some stochastic process or defined by a parameter
mismatch.
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One of the most sophisticated tools for identifying the character of motion
of dynamical systems are Lyapunov exponents (LEs) (Benettin et al., 1976;
Lyapunov, 1947; Oseledec, 1968; Shimada and Nagashima, 1979; Wolf, 1986).
These numbers should account for exponential convergence or divergence of
trajectories that start close to each other. For practical applications, it is eno-
ugh to know the largest Lyapunov exponent (LLE). If the LLE is positive,
then the system is chaotic. A non-positive maximum number indicates re-
gular system dynamics (periodic or quasi-periodic). The classical algorithms
for calculating the spectrum of LEs (Benettin et al., 1976, 1980a,b; Shima-
da and Nagashima, 1979; Wolf, 1986) have been developed on the basis of
Oseledec’s theorem (Oseledec, 1968), and they can be applied to the system
given by continuous and differentiable ODEs. However, these approaches do
not work for systems with discontinuities and in the case when exact equations
of motion describing its dynamics are unknown, e.g. due to the presence of
noise. Then, the estimation of LEs is not straightforward. In the recent years,
several methods for calculation or estimation of LEs of non-smooth dyna-
mical systems have been proposed (De Souza and Caldas, 2004; Hinrichs and
Oestreich, 1997; Jin et al., 2006; Müller, 1995; Oestreich et al., 1996; Stefański,
2000, 2004; Stefański and Kapitaniak, 2000, 2003). One of them, elaborated
by the author of this paper, is based on the synchronization phenomenon and
it allows us to evaluate LLE of an arbitrary dynamical system (smooth or
non-smooth). Previously, this approach has been successfully employed for
dynamical systems with discontinuities (Stefański, 2000, 2004; Stefański and
Kapitaniak, 2000), discrete-time maps (Stefański, 2004; Stefański and Kapi-
taniak, 2003) and systems with time delay (Stefański, 2004, Stefański et al.,
2005).

Here, a proposal how to implement this technique to mechanical systems
with noise is presented. During numerical simulations, a classical Duffing oscil-
lator has been considered. In all the above mentioned examples, the pheno-
menon of synchronization between the identical systems has been used to
estimate the LLE. On the other hand, in the case under consideration the
process of determining the LLE is based on the synchronization of two sligh-
tly different oscillators. Such a parameter mismatch models the influence of
the noise. Hence, the term ”effective Lyapunov exponents (ELE)” has been
introduced in order to define the LLE in such cases. This idea has an innova-
tive character in comparison with previous attempts of the application of the
method.

In general, the paper is organized as follows. In Section 2, an issue of the
synchronization method of the LLE estimation and the way of its application
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in the case under consideration is revealed. The detailed model of the analyzed
Duffing oscillator and results of its bifurcation analysis are demonstrated in
Section 3. The case with a noise and its undisturbed equivalent are compared.
In the last Section, brief conclusions are drawn.

2. The method of LLE estimation

The proposed method of LLE estimation exploits the phenomenon of the so
called complete synchronization (CS) between two identical dynamical systems
(ẋ = f(x), ẏ = f(y), when separated), say, they are given with the same
ODEs with identical system parameters. If some kind of linking between them
is introduced (direct diffusive or inertial coupling, common external signal,
etc), the CS, i.e., full coincidence of phases (frequencies) and amplitudes of
their responses becomes possible. Then, for two arbitrarily chosen trajectories
x(t) and y(t), representing the coupled systems, we have

lim
t→∞
‖x(t)− y(t)‖ = 0 (2.1)

Whereas, in the case of slightly different coupled systems (the same ODEs with
a small mismatch in the parameters), an imperfect complete synchronization
(ICS) can be observed, i.e.

lim
t→∞
‖x(t)− y(t)‖ < ε (2.2)

where ε is a small scalar quantity determining the ICS threshold. Thus, the
ICS manifests in a non-ideal correlation of amplitudes and phases of the sys-
tems responses, while the synchronization error remains relatively small during
the time evolution.

In order to carry out the estimation procedure, a double-oscillator system
with a unidirectional, uniformly diagonal coupling (i.e. realized by all coordi-
nates of the response oscillators with the same coupling strength) has to be
constructed. Such a system is described as follows

ẋ = f(x) ẏ = f(y) + dIn[x− y] (2.3)

where x,y ∈ R
n represent the master (reference trajectory) and slave (distur-

bed trajectory) system, respectively, In is an n× n unit matrix and d ∈ R is
a coefficient of coupling strength.
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After introducing a new variable z = y−x, which represents the synchro-
nization error between both oscillators, and next subtracting Eq. (2.3)1 from
Eq. (2.3)2, the ODE describing time evolution of z takes the following form

ż = f(x+ z)− f(x)− dInz (2.4)

The variational form of Eq. (2.4) is

ζ̇ = (Df [x(t),x0]− dIn)ζ (2.5)

where Df [x(t),x0] is the Jacobi matrix of the master system, (2.3)1, which
is initializing from the generic initial conditions x0. On the basis of this ma-
trix, the LEs of system (2.3)1 can be calculated according to the classical
formula (Benettin et al., 1976; Kapitaniak and Wojewoda, 2000; Shimada and
Nagashima, 1979)

λj = lim
t→∞

1

t
ln |rj(t)| (2.6)

where j = 1, 2, . . . , n. From Eq. (2.5) the following relation between the eige-
nvalues sj(t) of the Jacobi matrix of the linearized synchronization error (Eq.
(2.5)) defining the transverse stability of the synchronization manifold x = y,
and the eigenvalues rj(t) of the linearized Jacobi matrix Df [x(t),x0] of the
reference system (2.3)1 is given

sj(t) = exp(−dt)rj(t) (2.7)

On the basis of eigenvalues sj(t), Eq. (2.7), the transversal Lyapunov expo-
nents (TLEs – λTj ), quantifying the synchronizability of diagonally coupled
oscillators, Eqs. (2.3), can be calculated in the following way

λTj = lim
t→∞

1

t
ln |sj(t)| = lim

t→∞

1

t
ln |rj(t)|+

1

t
ln exp(−dt) (2.8)

Hence,
λTj = λj − d (2.9)

The synchronous state is stable if all the TLEs are negative, so the largest
one also has to fulfill the condition λT1 < 0. Thus, the condition of the com-
plete synchronization of the reference (Eq. (2.3)1) and perturbed (Eq. (2.3)2)
systems is provided by the inequality

d > λ1 (2.10)

where λ1 is the LLE of the reference system.
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Thus, the diagonal coupling of identical systems (2.3) leads to the ap-
pearance (for a sufficiently small distance z) of two mutually counteracting
effects: exponential divergence or convergence (it depends on the sign and ma-
gnitude of λ1 and d) of the reference x(t) and disturbed y(t) trajectories.
This property of diagonal coupling causes a linear dependence between the
LLE and the value of the coupling coefficient for which synchronization ap-
pears (see inequality (2.10)). Consequently, it can be used to determine the
LLE via numerical investigations of the synchronization process. Such a direct
approach works equally well in an arbitrary kind of a dynamical system (not
only given by continuous ODEs), because it allows us to avoid the problem of
defining the Jacobi matrices for some singular points on the system trajectory,
e.g. during transition via discontinuity.

In fact, inequality (2.10) states that the smallest value of the coupling
coefficient d, for which the synchronization occurs, is approximately equal
to λ1. Thus, in order to apply this method to numerical simulations, it is
necessary to build an augmented system according to Eqs. (2.3). The next
step is numerical search for the synchronous value of d approaching the largest
LLE of the investigated system. The simplest way to evaluate the smallest
synchronous value of the coupling d is to construct a bifurcation diagram of
the synchronization error z versus d. The magnitude of the synchronization
error can be computed according to the following formula

z = ‖z‖ =
√

(x1 − y1)2 + (x2 − y2)2 (2.11)

Then, the largest LLE can be estimated as a value of d where z approaches
zero, i.e. when the CS takes place. However, such a way of LLE estimation is
usually time-consuming.

Therefore, for the calculations presented in this paper, a method of fast
search for the synchronous value of d has been applied. This method uses the
following numerical procedures improving its effectiveness and speeding up the
time of estimation:

• The application of the ICS (inequality (2.2)) also allows us to reduce
the estimation time, because in practice it is enough to confirm that the
synchronization state is asymptotically stable for a currently investigated
value of d. For this purpose, for each iteration of d, a constant estimation
period and transient period has to be assumed. If during the testing
period the ICS condition (inequality (2.2)) is fulfilled for all the time,
then the synchronization is recognized to be stable. In the opposite case,
it is unstable.
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• Elastic coupling, i.e. a dependence of the parameter d on the synchro-
nization error z. If this error crosses the boundary value ε of the ICS
threshold (inequality (2.2)), then a strong coupling (D ≫ d) is intro-
duced between systems (2.3) in order to avoid a disadvantageous effect
of long time transient motion before the appearance of synchronization.
Consequently, it accelerates the CS process because the slave system
(2.3)2 is forced to evolve in the neighborhood of the master one (Eq.
(2.3)1).

The application of the above described procedures in the numerical simula-
tion allows us to estimate the LLE relatively fast with a satisfactory precision.
Their more detailed description can be found in Stefański (2004), Stefański
and Kapitaniak (2000, 2003).
Up to now, the presented method, and its variant for maps, has been ap-

plied to various cases of non-smooth oscillators (with impacts and friction),
systems with time-delay and discrete maps (as mentioned in Introduction).
Here, a small modification of the method in order to apply it effectively for
the systems with noise is proposed. This is connected with a bit different
dynamical nature of such systems in comparison with typical, unperturbed
oscillators. Generally, noise can be treated as a relatively small but an une-
xpected disturbance of the input/output signal or the system parameters,
which is of an unknown source and character. Thus, the classical algorithmic
methods for calculating the LEs cannot be used here because such a system is
non-differentiable. Normally, in a periodic system, the convergence of nearby
trajectories leading to the CS should be observed. However, after introducing
noise, there appears divergence of close orbits due to permanent disturbance
caused by the noise, while the dynamics of the systems remains still regular.
Obviously, the proposed method of the LLE estimation can be used for sys-
tems with noise exactly in the form described above. We can add the same
stochastic component modelling the noise to Eqs. (2.3) and next simulate the
estimation procedure. However, in such a case, the noise plays in fact the role
of external drive only and, then, the CS of systems (2.3)1 and (2.3)2 is possible.
This is, the author’s opinion, in contradiction with the real nature of systems
with noise, where the ideal convergence (say, the CS) of trajectories should
not take place. Therefore, a mismatch between systems (2.3) is introduced by
adding the noise component to the slave system (Eq. (2.3)2) only. Then, Eq.
(2.3)2 assumes the form

ẏ = f(y) +∆(y) + dIn[x− y] (2.12)
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where ∆(y) ∈ R
n represents the mismatch vector. Applying the proposed

method to slightly different systems (2.3)1 and (2.12), we can estimate the
magnitude of the trajectories divergence in the presence of noise (detecting
their ICS – Eq.(2.2)), which is quantified with the coupling parameter appro-
aching the practical value of the LLE. Such an effective Lyapunov exponent
(ELE) can be treated as a measure of ICS robustness between the reference
system and its replica disturbed by the noise. The most decisive factor for
ELE evaluation is the ICS threshold ε assumed in numerical investigations.
Hence, the ELE can be defined as follows:

The number called the practical Lyapunov exponent λE is equal to the
minimum strength of the diagonal coupling coefficient d linking the re-
ference and the disturbed (with noise) systems Eqs. (2.3)1 and (2.12),
which is required to maintain the synchronization error z, Eq. (2.11),
between them in the specified ε-range.

The ELE has an analogical practical sense like the LLE, because it is
also based on the definition of stability by Lyapunov (1947). Therefore, it has
been named similarly, although the above informal definition of the ELE is
not directly related to the basic definition of Lyapunov exponents (Oseledec,
1968).

3. Numerical example

In this Section, examples of determination of the LLE and the ELE by me-
ans of the proposed method are presented. The numerical experiments have
been carried out by means of dynamics (Nusse and Yorke, 1997) and del-
phi (www.borland.com) software with the use of a mechanical oscillator of
Duffing’s type with the non-linear spring characteristic kx2, linear viscous
friction c and a harmonic excitation by a force of the amplitude F0 and fre-
quency Ω (see Fig. 1), in which the influence of noise is also considered. The
dynamics of this oscillator is governed by the following non-autonomous, di-
mensionless equations of motion

ẋ1 = x2 ẋ2 = −αx
3
1 − hx2 + q sin(ητ) (3.1)

where the parameters α, h, q, η and τ are dimensionless representations of the
real parameters k, c, F0, Ω and time t (Fig. 1), respectively. In all numerical
experiments presented here: α = 10.0, h = 0.3 and q = 10.0. In the bifurcation
analysis, the frequency of excitation η has been used as the control parameter.
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Fig. 1. Non-linear mechanical oscillator of Duffing’s type

In order to compare the outcomes of LEs estimation with and without the
noise, an auxiliary double system has been constructed in two variants:

(a) by substituting Eq. (3.1) to Eqs. (2.3) for estimation of the LLE of the
oscillator without noise, i.e.

ẋ1 = x2 ẋ2 = −αx
3
1 − hx2 + q sin(ητ)

ẏ1 = y2 + d(x1 − y1) ẏ2 = −αy
3
1 − hy2 + q sin(ητ) + d(x2 − y2)

(3.2)
(b) by substituting Eq. (3.1) to Eqs. (2.3) in order to determine the ELE of
the system disturbed with noise, i.e.

ẋ1 = x2 ẋ2 = −αx
3
1 − hx2 + q sin(ητ)

ẏ1 = y2 + d(x1 − y1) (3.3)

ẏ2 = −[α+∆α(t)]y
3
1 − hy2 + q sin(ητ) + d(x2 − y2)

where ∆α(t) represents the time-varying mismatch of the parameter α. Hence,
the related mismatch vector from Eq. (2.12) is ∆(y) = [0,∆α(t)y31 ]

⊤. As we
can see, in the example under consideration, the influence of noise is manifesed
with the randomly fluctuating parameter α. Such a fluctuation can be gene-
rated using numerical techniques modelling any stochastic process, e.g. Gaus-
sian process by the spectral representation method (Shinozuka and Deodatis,
1992; Wiercigroch and Cheng, 1997). In the simulations carried out, a random
number generator embedded in the delphi environment (www.borland.com)
has been applied. Time variations of the mismatch parameter are determined
with the formula

∆α(t) = 0.03rand[−1, 1] (3.4)
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where rand [−1, 1] is a stochastic function returning a random number uni-
formly distributed over the interval [−1, 1] in each step of numerical computa-
tions. These computations have been carried out employing the RK4 method
with a fixed time step dt = 0.01. The assumed form of noise (Eq. (3.4)) means
that the fluctuations of the parameter α are restricted to the range ±3% of
its magnitude.

Fig. 2. Bifurcation diagrams of the Duffing oscillator (Eq. (3.1)) versus excitation
frequency η: (a) undisturbed, (b) disturbed with Eq. (3.4), and exemplary phase

portraits for η = 0.95: (c) without noise, (d) with noise

The results of typical bifurcation analysis (variable x1 versus control pa-
rameter η) of the considered Duffing oscillator are presented in Fig. 2. We can
see (Fig. 2a) that for smaller values of η chaotic motion appears as a result
of period-doubling bifurcations, η ≈ (0.83, 0.94). In the middle of this region,
a ”periodic window” is observed η ≈ (0.87, 0.91). Next, with the increase of
the frequency η, chaos disappears in a few sequences of the inverted period
doubling bifurcations. Comparing the bifurcation diagrams depicted in Figs.
2a and 2b, i.e. computed for the perturbed and unperturbed versions of the
oscillator (Eq. (3.1)), respectively, we can evaluate the influence of the fluctu-
ating parameter α on its dynamics. This influence is clearly visible especially
in the intervals of regular motion (see Fig. 2b), where it is manifested with
significantly thicker branches of the plot in parallel with the undisturbed case
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(Fig. 2a). However, the disturbance does not introduce qualitative changes to
the global view of the system dynamics (Fig. 2b), because the overall structure
of the bifurcation plot is kept in spite of noise. The same effect can be observed
in the accompanying phase portraits illustrating the dynamics of both cases
of the system under consideration (Figs. 2c and 2d). Here, the noise-induced
perturbation of the system trajectory is also evident (Fig. 2d).
In Fig. 3, bifurcation graphs of the synchronization error z which corre-

spond to the diagrams in Figs. 2a and 2b are demonstrated. The intervals
of desynchronous motion (large z) reflect the chaotic ranges from Figs. 2a
and 2b. In the case of identical master and slave systems (Eq. (3.2)), the
distance z is equal to zero (Fig. 3a) in the range of regular motion due to
asymptotical convergence of the periodic trajectories, i.e. the CS takes place
there. Obviously, the CS is impossible for non-identical systems (Eq. (3.3)).
However, we can see that the synchronization error remains relatively small
when motion is regular (Fig. 3b), i.e., the ICS occurs. As it was mentioned
above, the crucial parameter for quantifying the ICS and estimating the ELE
is the ICS threshold ε. The bifurcation graph shown in Fig. 3b helps us to
evaluate the boundary value of ε, for which the disturbed motion can be still
recognized as the regular one. From simulations it results that the value of ε
should be related to the magnitude of the mismatch, i.e. the ratio of ε and
the maximum synchronization error sup(z) should approximate the maximum
variations of the mismatch. Thus, in the case under consideration, we have

ε

sup(z)
≈
sup (∆α(t))

α
(3.5)

Fig. 3. Bifurcation diagrams of the synchronization error z corresponding to Figs. 2a
and 2b, respectively, computed for (a) identical systems (Eq. (3.2)) and (b) systems

with mismatch (Eq. (3.3))

In the given example, the maximum variation of the parameter α amounts
6% percent of its value (between 97% and 103% – see Eq. (3.4)). Therefore, it
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has been taken ε = 0.25 in the numerical experiment, i.e. about 5-6% of the
maximum synchronization error approaching value 5 (see Fig. 3).

The plots of LLE (in grey) and ELE (in black) corresponding to Figs. 2a
and 2b, respectively, are depicted in Fig. 4. They were determined using the
proposed method on the basis of Eqs (3.2) (the LLE) and (3.3) (the ELE). It is
observable that in the chaotic ranges of bifurcation diagrams (Figs. 2a and 2b),
the positive LLE and ELE are detected and vice versa. The intervals of the
positive ELE are wider than the analogous range of the LLE and additional
fields, where the ELE is larger than zero, appear in the neighborhood of the
control parameter values corresponding to period-doubling bifurcation. The
comparison of LLE and ELE plots allows us to evaluate the qualitative and
quantitative influence of noise on the system dynamics.

Fig. 4. Bifurcation plots of LLE (in grey) found from Eq. (3.2) and ELE (in black)
found from Eq. (3.3) for the ICS threshold ε = 0.25 which correspond to Figs. 2a

and 2b, respectively

4. Conclusions

In this paper, the synchronization based approach for determination of the
dominant Lyapunov exponent of the systems with noise and fluctuating para-
meters has been discussed. This technique can be treated as a slight develop-
ment of its existing version, which is based on the properties of the CS via a
diagonal coupling of two identical systems (Eqs. (2.3)). The method has been
modified by introducing a small mismatch between them, which models the
influence of noise on the system dynamics. This change can be considered as
an innovative consequence of this paper. After such a modification, the esti-
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mation procedure is based on numerical investigations of the ICS process of
slightly different oscillators.

Therefore, a new instrument called the effective Lyapunov exponent (ELE),
quantifying the local stability of the system responses in the presence of noise,
has been introduced. For the precision of the ELE estimation, the proper choice
of the ICS threshold ε determining the limit of stability of the disturbed solu-
tion plays the decisive role. Its connection to the magnitude of the mismatch
in practical applications is proposed in Sec. 3 (see Eq. (3.5)). The presented
examples of LLE and ELE estimation (Sec. 3) show that this method allows
us to quantify the dynamical character of the disturbed oscillator response.
This fact is confirmed by the coincidence of the estimated ELE (Fig. 4) with
the corresponding bifurcation diagram (Fig. 2b).

However, at the end of this paper it should be pointed out that particular
conclusions refer to the case when the amplitude of noise oscillations is uni-
formly distributed over the range [−1, 1], i.e. it is restricted with a probability
equal to 1. Thus, there is no possibility to observe a sudden jump of the noise
amplitude.

To summarize, an important practical advantage of this approach, in com-
parison to other known algorithmic methods, is its universality, i.e. it works
equally well both for time-continuous, undisturbed, disturbed and non-smooth
systems. The applications of the proposed method in various kinds of dyna-
mical systems will be reported soon.
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Wykładniki Lapunowa układów dynamicznych z szumem i oscylującymi

parametrami

Streszczenie

Niniejszy artykuł dotyczy problemu wyznaczania wykładników Lapunowa ukła-
dów dynamicznych z szumem lub zmiennymi w czasie parametrami. Zawiera on pro-
pozycję nowej metody identyfikacji charakteru ruchu tych układów, która wykorzy-
stuje zjawisko synchronizacji kompletnej dwóch oscylatorów połączonych jednokie-
runkowym diagonalnym sprzężeniem. Istotą proponowanej metody są tzw. efektyw-
ne wykładniki Lapunowa, które są miarą lokalnej stateczności układu dynamicznego
w obecności szumu lub zaburzenia. W artykule przedstawiono zastosowanie efektyw-
nych wykładników Lapunowa na przykładzie zaburzonego oscylatora typu Duffinga
w zestawieniu z jego analizą bifurkacyjną. We wnioskach zawarto dyskusję własności
proponowanej metody.
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