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The dynamic vibration absorber is a kind of mechanical device with inertia, stiffness, and
damping. Once connected to a given structure or machine, it is capable of absorbing vibratory
energy. As a result, the primary system can be protected from excessively high vibration
levels. In this paper, we deal with classical Den Hartog’s model to clarify the known results
and improve the mathematical component of this approach. We suggest the optimal choice
of absorber parameters, which is slightly different and more general analytical approach.
The comparison of two methods of optimization is carried out, and the corresponding error
of calculus is estimated.
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1. Introduction

The problem of elimination or reduction of undesired vibration in various technical systems
has long history and great achievements. The concept of vibration control is widely accepted
nowadays and has been applied in many different areas, such as civil, mechanical, and aero-
nautical engineering. Passive vibration control is the most widespread, and effective methods
are available. The typical simplest and most reliable device is the dynamic vibration absorber
(DVA) or tuned-mass damper (TMD). A simple DVA consists of a mass and a spring. When the
primary system is excited by a harmonic force, its vibration can be suppressed by attaching a
DVA. The main purpose of adding the secondary oscillator is to move the resonant frequency of
the mechanical system away from the operating frequency of the vibratory force. So, the system
becomes a 2-DOF (degree of freedom) mechanical system, but with coincidence of the exciting
frequency with one of the two natural frequencies it will be again at resonance. To eliminate
this effect, a damper is added to the DVA (Fig. 1).

The idea of vibration control was originally proposed by Frahm (1911), and many various
DVA configurations were designed during the past century (Ormondroyd and Den Hartog, 1928;
Brock, 1946; Mead, 2000; Hunt, 1979; Korenev and Reznikov, 1993; Viet et al., 2011; Marano et
al., 2007). Good surveys on the subject were presented in (Johnson, 1995; Sun et al., 1995). With
reference to the DVA optimal design, the first criterion was offered by Ormondroyd and Den
Hartog (1928). This criterion concerned the minimization of the system response with respect
to the stationary harmonic excitation with the most “dangerous” frequency value which results
in the largest increase of the amplitude.
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Fig. 1. Damped DVA connected to a primary system

2. Formulation of the problem

The equations of motion of the mechanical system under consideration are

mpẍp + ca(ẋp − ẋa) + kpxp + ka(xp − xa) = F0eiωt

maẍa + ca(ẋa − ẋp) + ka(xa − xp) = 0
(2.1)

In this formulation, we use the notions according to (Johnson, 1995), F (t) = F0e
iωt is a harmonic

excitation force acting on the primary system.

The amplitudes of steady state harmonic responses are

Xp = F0
ka −maω2 + iωca

(kp −mpω2)(ka −maω2)−makaω2 + iωca(kp −mpω2 −maω2)

Xa = −F0
ka + iωca

(kp −mpω2)(ka −maω2)−makaω2 + iωca(kp −mpω2 −maω2)

(2.2)

In terms of dimensionless parameters, we can rewrite

|Xp|
(Xp)st

=

√

(2ζg)2 + (g2 − η2)2
(2ζg)2(g2 − 1 + µg2) + [µη2g2 + (g2 − 1)(g2 − η2)] (2.3)

where µ = ma/mp is the mass ratio; ωa =
√

ka/ma – undamped natural frequency of the

DVA considered separately; ωp =
√

kp/mp – undamped natural frequency of the primary sys-

tem considered separately; η = ωa/ωp – tuning factor; g = ω/ωp – forcing frequency ratio;
ζ = ca/(2maωp) – damping ratio; (Xp)st = F0/kp – static displacement of the primary mass.

Many methods of optimization have been developed to opportunely design this vibration
control technique. In the classical textbook on mechanical vibrations, Den Hartog (1940) pointed
out a remarkable feature: for any fixed values of η and µ, curves (2.3) intersect in two points P
and Q (named “invariant points“), as shown in Fig. 2, independently of the value of ζ. These
points are situated close enough to the peaks of the frequency-amplitude curve. Den Hartog
suggested to choose the parameter η to equalize ordinates of P and Q. Secondly, ζ was taken to
satisfy the condition of “almost horizontal” tangents in the invariant points. Thus the values

ηopt =
1

1 + µ
ζopt =

√

3µ

8(1 + µ)3
(2.4)

were obtained.
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Fig. 2. Invariant points for η = 0.9, µ = 0.1. Solid line ζ = 0.027, long dash line ζ = 0.16, dot-dash line
ζ = 0.5

3. Mathematical analysis of the problem

The approach of Den Hartog has undoubted advantages: simplicity, which is essential for applied
researchers, and rather high accuracy, as was shown in numerical simulations. At the same time,
it is possible to note two drawbacks of this approach. The first one is the absence of analytical
assessment of the difference between the maximum response value proposed and the true value.
The second is that the scheme of determining the optimal values is based on the existence of
invariant points, which is an exception rather than the rule. For example, this approach does not
fit in the case when the main body is damped itself (Warbrton and Ayorinde, 1980), or for sky-
-hooked (Griffin et al., 2002; Liu and Liu, 2005) DVA. So, in such cases, one have to rely upon
numerical methods for optimization. It should be added that from the theoretical viewpoint,
the question on the existence of the exact solution of the problem in an algebraic form is not
closed.

Considering the above-mentioned, our aims are: 1) to provide a more general approach which
does not rely on exclusive properties of (2.3) (invariant points existence); 2) to evaluate the error
of formulas (2.4).

At the beginning, let us consider a function

f(µ, δ, h, γ) =
hγ + (γ − δ)2

hγ(γ + µγ − 1)2 + [µδγ − (γ − 1)(γ − δ)]2 (3.1)

which we believe is more suitable for the analysis. Here

δ = η2 h = 4ζ2 γ = g2 f =
( |Xp|
(Xp)st

)2
(3.2)

Obviously, the optimization of function (2.3) is the same as function (3.1). The optimal
values from (2.4) in the new notions are

δ =
1

(1 + µ)2
h =

3µ

2(1 + µ)3
(3.3)

The typical shapes of the surface f(γ, µ) with fixed values δ, h are presented in Fig. 3.
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Fig. 3. Typical character of surface (3.1): (a) δ = 1− 2.5µ, h = 0.5, (b) according to Eqs. (3.3)

It is remarkable that for any given set of (δ, h, µ), zeros of the derivative df/dγ lead to the
following equation

γ5 − γ4[4δ − 2h+ µ(δ − h)− 1
2
hµ2] + γ3[6δ2 + 4δ − 4hδ + h2 − 2h+ 2µ(2δ2 − 3hδ + h2)

− hµ2(2δ − h)] − γ2[4δ3 − 2hδ2 + 6δ2 − 4hδ + h2 + µ(5δ3 − 4hδ2 + δ2 − 3hδ + h2)]
+ γδ2[δ2 + 4δ − 2h+ 2µ(δ2 + δ − h) + µ2δ2]− δ4(1 + µ) = 0

(3.4)

This equation of the 5-th order cannot be solved in an explicit form and, therefore, there is
no way to make a conclusion on the maximum value of f . Because of this, we require an indirect
method to achieve our goal.1

Let f0 = 1/κ be some fixed number. Then the equation f = f0 is equivalent to the following
polynomial equation

u(γ) = γ4 + (h+ hµ2 + 2hµ− 2− 2δ − 2µδ)γ3 + (µ2δ2 + 4δ − 2h+ 2µδ − 2hµ+ 1
+ δ2 − κ+ 2µδ2)γ2 + (h− 2δ2 − 2µδ2 + 2δκ − 2δ − hκ)γ + δ2 − δ2κ = 0

(3.5)

In the case when curve (3.1) has two peaks, for some values of κ the line

f =
1

κ
(3.6)

intersects this curve four times, and equation (3.5) has four real positive roots. Otherwise, when
line (3.6) is above curve (3.1), equation (3.5) has no positive roots. On the assumption that
both peaks have the same height, we conclude that this is a borderline between two cases. In
other words, the discriminant of the polynomial u(γ) is equal to zero, and (3.5) has two pairs of
multiple roots. Thereby, there exist such expressions M(µ, δ, h), N(µ, δ, h) that

u(γ) = (γ2 +Mγ +N)2 M2 − 4N > 0 (3.7)

Then, we conclude from (3.7) that

(−2δ + 2µh+ µ2h− 2µδ − 2M − 2 + h)γ3

+ (1 + 2µδ2 + 2µδ − 2h− κ+ 4δ + δ2 − 2δN − 2µh+ µ2δ2 −M2)γ2

+ (−2δ2 − hκ+ 2δκ − 2δMN − 2δ + h− 2µδ2)γ + δ2(1− κ)−N2 = 0
1An approach based on investigation of equation (3.4) with Taylor expansions representation was

presented in (Pozdniakovich and Puzyrov, 2009). It allowed one to achieve some progress, comparatively
with (3.3), but again, no explicit form and error estimation were gained.
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Now we have a system of four equations with five variables κ, δ, h,M ,N , and can consistently
find

κ = 1−
(N

δ

)2
h =
2[(1 + µ)δ +M + 1]

(1 + µ)2

M = −δ
2(1 + µ)3 + µδN2(1 + µ)−N2

N [δ(1 + µ)2 −N ]

(3.8)

The last equation is

(δ −N)[δ9(1 + µ)6 + δ8N(1 + µ)6 − 4δ7N(1 + µ)4 − 4δ6N2(1 + µ)4

+ 2δ5N2(1 + µ)2(3 + µ) + 2δ4N3(1 + µ)2(3 + µ)− 4δ3N3(1 + µ)
− 2δ2N4(2 + 2µ+ µ2) + δN4 +N5] = 0

(3.9)

Condition (3.9) gives an equation of the 9-th order on δ (and 5-th order on N), but with the
substitution

δ =
δ1

(1 + µ)2
N =

N1δ
2
1

(1 + µ)2
(3.10)

it may be rewritten as

N21 δ
2
1 [N

4
1 (1 + µ)

2 − 2N31 (2 + 2µ+ µ2) + 2N21 (3 + µ)− 4N1 + 1] + 2N41µ2δ1
− [N41 (1 + µ)2 − 4N31 (1 + µ) + 2N21 (3 + µ)− 4N1 + 1] = 0

The last one being factorized as

(N1δ1 − 1)
{

δ1[N
4
1 (1 + µ)

2 − 2N31 (2 + 2µ+ µ2) + 2N21 (3 + µ)− 4N1 + 1]
+ [N41 (1 + µ)

2 − 4N31 (1 + µ) + 2N21 (3 + µ)− 4N1 + 1
}

= 0

finally leads to

(1 −N1δ1)
{

−N1δ1[µ
√

N31 2(
√
2−
√

N1)− (1−N1)2][µ
√

N31 2(
√
2 +
√

N1) + (1−N1)2]

+ [µN21 + (1−N1)2]2
}

= 0

(3.11)

Evidently,

µ
√

N31 (
√
2 +
√

N1) + (1−N1)2 > 0 [µN21 + (1−N1)2]2 > 0

and, due to the condition κ > 0, the expression in the first square brackets must be positive to
fulfill (3.11). With this, we have the following restrictions on N1

N1δ1 < 1 µ
√

N31 (
√
2−
√

N1) > (1−N1)2 (3.12)

So, we have

δ1(N1) =
2µ2N21

2µ2N31 − [µN21 + (1−N1)2]2
− 1
N1

(3.13)

and now we can find the maximum of κ, i.e. the minimum of ϕ(N1) = N/δ = N1δ1(N1)

dϕ

dN1
= 2µ2N21

(1 + µ)2N41 − 2(3 + µ)N21 + 8N1 − 3
{2µ2N31 − [µN21 + (1−N1)2]2}2
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The numerator has two real and two complex roots

√
4 + 3µ− 1
1 + µ

−
√
4 + 3µ+ 1

1 + µ

1 + i
√
µ

1 + µ

1− i√µ
1 + µ

Only the first of them is positive and for any given value of µ provides the absolute minimum
of the function ϕ(N1).
Substituting N1 = (

√
4 + 3µ− 1)/(1 + µ) in (3.13), after simplifications we get

δ⋆1 =
8

3

16 + 23µ+ 9µ2 + 2(2 + µ)
√
4 + 3µ

64 + 80µ+ 27µ2
(3.14)

The last expression is obviously positive, so the second inequality in (3.12) holds. Now we
verify the first one. It leads to

N =
64

3

64 + 112µ + 61µ2 + 9µ3 + (64 + 136µ+ 103µ2 + 27µ3)
√
4 + 3µ

(1 + µ)2(64 + 80µ+ 27µ2)
< δ (3.15)

Eliminating the square root, one may see that

729µ6 + 5778µ5 + 19279µ4 + 32758µ3 + 27809µ2 + 9344µ > 0

So, for any µ > 0 we have N < δ, and (3.12) are fulfilled. Finally, we have

δ⋆ =
8

3

16 + 23µ+ 9µ2 + 2(2 + µ)
√
4 + 3µ

(1 + µ)2(64 + 80µ+ 27µ2)

h⋆ =
2

3

64 + 248µ+ 255µ2 + 81µ3 − 2(16 + 20µ+ 9µ2)√4 + 3µ
(64 + 80µ+ 27µ2)(1 + µ)3

(3.16)

and respectively

η⋆ = 2

√

2

3

16 + 23µ+ 9µ2 + 2(2 + µ)
√
4 + 3µ

(1 + µ)2(64 + 80µ+ 27µ2)

ζ⋆ =

√

64 + 248µ+ 255µ2 + 81µ3 − 2(16 + 20µ+ 9µ2)√4 + 3µ
6(64 + 80µ+ 27µ2)(1 + µ)3

(3.17)

which determine the optimal values of stiffness and damping for DVA. For µ = 0.1, the curve f(γ)
in the vicinity of peaks is presented in Figs. 4a and 4b for both cases – according to (3.3) and
(3.16).

Fig. 4. Frequency-amplitude curve in the neighbourhood of peaks. Long dash line – according to (3.3),
solid line – according to (3.16)
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Also, substituting δ and N into (3.8)2, we get

M = −414µ
2 + 1104µ + 768 + (54µ2 + 168µ+ 192)

√
4 + 3µ

9(1 + µ)(64 + 80µ+ 27µ2)
(3.18)

The rigorous mathematical proof of the fact that any pair of δ, h which differs from (3.16)
is worse (gives larger maximum of f) is too cumbersome to be given here. But, at least, this
verification versus pair (3.3) is rather simple. Indeed, substituting (3.3) and (3.16) one after the
other in (3.4), we determine the extremal values of γ for each case separately with the help of
Taylor expansions by

√
µ

γ
upon(3.3)
1 = 1−

√
2

2

√
µ− 7
8
µ− 139

√
2

256
(
√
µ)3 +

1797

2058
µ2 + . . .

γ
upon(3.3)
2 = 1 +

√
2

2

√
µ− 7
8
µ+
139
√
2

256
(
√
µ)3 +

1797

2058
µ2 + . . .

γ
upon(3.16)
1 = 1−

√
2

2

√
µ− 7
8
µ− 37

√
2

64
(
√
µ)3 +

107

128
µ2 + . . .

γ
upon(3.16)
1 = 1 +

√
2

2

√
µ− 7
8
µ+
37
√
2

64
(
√
µ)3 +

107

128
µ2 + . . .

And then, we may estimate the gain of using the values by (3.16)

max fupon(3.3) −max fupon(3.16) = f(γupon(3.3)2 )− f(γupon(3.16)2 )

=
5
√
2

256

√
µ+
101

8192
µ+
9859
√
2

131072
µ2 + . . .

(3.19)

Numerically, such verification is even easier – we may just combine (3.1) with condition (3.4)
for both cases separately and plot the curve

ψ(µ) = max fupon(3.3) −max fupon(3.16)

This curve is presented in Fig. 5, the dash line corresponds to γ
upon(3.3)
1 , so the distance between

the two branches is the height difference between the two peaks for case (3.3).

Fig. 5. Difference in fmax values for two cases
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As the last step, let us write down the analytical expression for |Xp|/(Xp)st. Substituting δ⋆,
h⋆ according to (3.16) and γ2 = (−M +

√
M2 − 4N )/2 in f , we have

( |Xp|
(Xp)st

)2
= f⋆ =

A+BR

C +DR

where

A = 2(A0 +A1r) B = 3(1 + µ)σ(B0 +B1r) C = 2(C0 + C1r)

D = 3(1 + µ)σ(D0 +D1r) R =
√
M2 − 4N r =

√
4 + 3µ

σ = 64 + 80µ+ 27µ2

Here, the polynomial coefficients are given by formulas

A0 = 8192 + 57856µ + 145536µ
2 + 181000µ3 + 122048µ4 + 43764µ5 + 7083µ6 + 243µ7

A1 = −4096 − 8960µ − 1152µ2 + 13252µ3 + 15443µ4 + 7149µ5 + 1242µ6

B0 = 64 + 376µ+ 564µ
2 + 331µ3 + 69µ4 B1 = −32 + 4µ+ 63µ2 + 46µ3 + 9µ4

C0 = µ
2(1437696 + 5792256µ + 9830592µ2 + 8976744µ3 + 4645404µ4 + 1291545µ5

+ 150903µ6)

C1 = µ
2(387072 + 1278720µ + 1804896µ2 + 1411020µ3 + 652725µ4 + 170586µ5 + 19683µ6)

D0 = µ
2(155713536 + 906854400µ + 2321104896µ2 + 3410021376µ3 + 3146726016µ4

+ 1871659224µ5 + 705324672µ6 + 157181148µ7 + 17380089µ8 + 531441µ9)

D1 = µ
2(35389440 + 177389568µ + 397799424µ2 + 529362432µ3 + 463738176µ4

+ 275945292µ5 + 108628209µ6 + 25572591µ7 + 2716254µ8)

Eliminating the root R from the denominator, we have

(AC −BDR2) + (BC −AD)R

in the numerator, and multiplier before R must be zero, because of f(γ
upon(3.16)
2 ) = f(γ

upon(3.16)
1 ),

i.e. f⋆ is an even function of R (direct calculation confirms this fact). To simplify the fraction
obtained, we also need to eliminate the “small‘” root r from the denominator. The final expres-
sion

|Xp|
(Xp)st

=

√

(8 + 9µ)2(16 + 9µ)− 128
√

(4 + 3µ)3

27µ2(32 + 27µ)
(3.20)

is a quite remarkable recognition because reduction of the fraction is possible only at the final
stage, and the denominator before this reduction is the polynomial of the 48-th(!) order in µ.

4. Conclusion

We have discussed the problem of selection of optimal parameters of a DVA according to the
classical Den Hartog model (Den Hartog, 1940). We have shown that the solution may be given in
an accurate algebraic form which updates somewhat the known result. The analytical approach
presented here may be more applicable for solving problems connected with the use of passive
damping devices. We have also compared the results of two approaches and determined the error
estimation which has been illustrated by the corresponding frequency-amplitude curves.
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