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Machines have many faults which evolve during their operation. If one
observes some number of symptoms during the machine operation, it is
possible to capture fault oriented information. One of the methods to
extract fault information from such a symptom observation matrix is to
apply the Singular Value Decomposition (SVD), obtaining in this way
the generalized fault symptoms. The problem of this paper is to find if
the total damage symptom, being a sum of all generalized symptoms
is the best way to infer on machine condition or is it better to use the
first generalized symptom for the same purposes. There were some new
software created for this purpose, and two cases of machine condition
monitoring considered, but so far it is impossible to state that one of the
inference methods is better. Moreover, it seems to the author that both
inference methods are complimentary for each other, and should be used
together to increase the reliability of diagnostic decision.
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1. Introduction

The contemporary advancement in measurement technology allows us to me-
asure almost any component of the phenomenal field inside or outside the
working machine. The only condition for such diagnostic is some kind of
proportionality to gradual worsening of the machine condition which takes
place during it operation. If it is so, we can name the measured component
of the machine phenomenal field as the symptom of condition. In this way,
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we measure a dozen of would be symptoms, and our condition monitoring is
multidimensional from the beginning. Due to this situation, the application
of multidimensional machine condition observation is now a well established
fact, see Cempel (1999), Korbicz et al. (2004), Tumer and Huff (2002), Ja-
siński (2004) – for example. And there exist some differences in application
and processing of the multidimensional signals and/ or symptom observation
matrix. For signals and symptoms one can also apply the so called data fusion
(Hall and Llinas, 1997; Roemer et al., 2001; Korbicz et al., 2004), and similar
techniques developed lately. In the case of multi symptom observation, one
can apply Principal Component Analysis (PCA), or Singular Value Decompo-
sition (SVD), looking for principal or singular components, which may have
some diagnostic meaning. For the case of Singular Value Distribution (SVD)
method, there exists the body of experimental evidence (Cempel, 2004; Cem-
pel and Tabaszewski, 2007a,b)that singular components and the quantities
created from them can be treated as generalized fault symptoms.

All that transformation and symptom processing starts from the data base
called the Symptom Observation Matrix (SOM). Let us explain now how the
SOM is structured and obtained.

During the machine life θ we can observe its condition by means of several
symptoms Sm(θ) measured at some moments of life θn, n = 0, 1, . . . , p > r,
θp < θb, (θb – anticipated breakdown time). This creates sequentially the Symp-
tom Observation Matrix (SOM), the only source of information on the condi-
tion evolution of a machine in its lifetime 0 < θ < θb. We assume additionally
that the condition degradation is also multidimensional and is described by
semi-independent faults Ft(θ), t = 1, . . . , u < r, which are evolving in the
machine body, as the expression of gradual degradation of the overall ma-
chine condition. This degradation proceeds from the not faulty condition1up
to its near breakdown state. Generalizing, one can say now that we have m-
dimensional symptom space for condition observation, and r-dimensional fault
space (m > r), which we are trying to extract from the observation space by
using SVD or PCA.

Moreover, some of would be symptoms are redundant; it means not carry-
ing enough information on the evolving faults during the machine life. But of
course there is not a unique criterion of the redundancy. During the course of
our research, several measures of redundancy have been applied, the volume of
observation space (V ol1), pseudo Frobenius norm (Frob1) of SOM (Cempel
and Tabaszewski, 2007a,b), and others. But they seem to be not good enough
with respect of the quality of the final diagnostic decision. This means addi-

1We assume machine is new, or after the overhaul and repair process.
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tionally, when optimizing the observation space, we should take into account
the adequate assessment of the current and the future machine condition, in
the form of condition forecast with a possibly small error. The paper considers
this problem, and it is done on the level of previous SVD works of the author.
As the forecasting technique with minimal error, the grey system model with
rolling window (Yao and Chi, 2004) was adopted for diagnostic purposes, and
has been applied here (Cempel and Tabaszewski, 2007a). But having the mul-
tidimensional problem of fault assessment and the observation, it is important
now what type of generalized symptom we use for the forecasting. Do we use
the overall degradation symptom of the machine or some specified generalized
symptom proportional to one fault only.
The results of such a new approach to multidimensional diagnosis presented

here were verified on the real data of machine vibration condition monitoring.
Concerning the software, some modification of the last program for the data
processing was needed as well. As a result it was found that this approach se-
ems to be promising and enabling a better understanding of machine condition
and also better current and future condition assessment.

2. Extraction method of partial faults of the system

As it was said in the introduction, our information on machine condition evo-
lution is contained in p · r Symptom Observation Matrix (SOM), where in
r columns are presented p rows of the successive readings of each symptom
made at equidistant system lifetime moments θn, t = 1, 2, . . . , p. The columns
of such SOM are next centered and normalized to three point average of the
three initial readings of every symptom. This is in order to make the SOM
dimensionless, to diminish starting disturbances of symptoms, and to present
the evolution range of every symptom from zero up to few times of the initial
symptom value S0n, measured in the vicinity of lifetime θ1 = 0.
After such preprocessing, we will obtain the dimensionless Symptom Ob-

servation Matrix (SOM) in the form

SOM ≡ Opr = [Snm] Snm =
S̃nm

S0m
− 1 (2.1)

where S̃nm letters indicate primary measured and averaged dimensional symp-
toms.
As was said in the introduction, we apply now to the dimensionless SOM

(2.1) the Singular Value Decomposition (SVD) (Golub, 1983; Will, 2005), to
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obtain singular components (vectors) and singular values (numbers) of SOM
in the form

Opr = UppΣprV
⊤

rr (⊤ − matrix transposition) (2.2)

where Upp is a p-dimensional orthonormal matrix of the left-hand side singular
vectors, Vrr is a r-dimensional orthonormal matrix of the right-hand side
singular vectors, and the diagonal matrix of singular values Σpr is defined as
below

Σpr = diag (σ1, . . . , σl) (2.3)

with nonzero singular vectors

σ1 > σ2 > . . . > σu > 0

and zero singular values

σu+1 = . . . = σl = 0
l = max(p, r)
u ¬ min(p, r)
u < r < p

In terms of machine condition monitoring, above (2.3) means that from
the r primarily measured symptoms (dimension of observation space) we can
extract only u ¬ r nonzero independent sources of diagnostic information,
describing the evolving generalized faults Ft(θ), t = 1, . . . , u, and creating in
this way the less dimensional fault space. But only a few faults developing
in a machine are making essential contribution to total fault information (are
enough developed). The rest of potential generalized faults, symbolized here by
small σu, are usually below the standard 10% level of noise. What is important
here, that such SVD decomposition can be made currently, after each new
observation (reading) of the symptom vector Sm; n = 1, . . . , p, and in this
way we can trace the faults evolution, and their advancement in any operating
mechanical system.

3. Diagnostic interpretation of SVD

From the current research and implementation of this idea (Cempel, 2003),
one can say that the most important fault oriented indices obtained from
SVD is the generalized fault symptom SD t t = 1, 2, . . ., and also the sum of
all generalized fault symptoms SumSD i, as some equivalent symptom of total
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(cumulated) machine damage. In another way, the generalized fault symptom
SD t can be named also as discriminant, or the generalized symptom of the
fault order t, and one can obtain this as the SOM product and singular vec-
tor vt, or in general in matrix notation as below

SD = OprV = UΣ (3.1)

and in particular

SD t = Oprvt = σtut t = 1, . . . , u < r

We know from SVD theory (Golub, 1983; Will, 2005) that all singular vectors
vt and ut, as the components of singular matrices, are normalized to one, so
the energy norm of this new discriminant (generalized fault symptom) gives
simply the respective singular value σt

Norm(SD t) ≡ ‖SD t‖ = σt t = 1, . . . , u (3.2)

The above defined discriminant SD t(θ) can also be named as the lifetime fault
profile, and the respective singular value σt(θ) as the function of the lifetime
seems to be its life advancement (energy norm) and the same the measure
of importance of the fault. That is the main reason why we use dimensional
or dimensionless singular values for the ordering of importance of generalized
symptoms (faults).
The similar fault inference can be postulated to the meaning, and the

evolution of summation quantities, the total damage profile SumSD i(θ) as
below

SD t(θ) ∝ F t(θ) t = 1, 2, . . .
(3.3)

SumSD i(θ) =
z∑

i=1

SD i(θ) =
z∑

i=1

σi(θ)ui(θ) ∝ F (θ)

Currently it seems that the condition inference based on the first summation
damage measure; SumSD i, (total damage measure) may stand as the first
approach to multidimensional condition inference, as it was lately shown in
the previous papers (see for example Cempel, 2004, 2005, 2006).
Going back to SVD itself, it is worthwhile to show that every perpendicular

matrix has such decomposition, and it may be interpreted also as the product
of three matrices (Will, 2005), namely

Opr = (Hanger)× (Stretcher)× (Aligner)
⊤ (3.4)



782 C. Cempel

This is very metaphorical description of SVD transformation, but it seems
to be a useful analogy for the inference and decision making in our case.
The diagnostic interpretation of formulae (3.4) one can obtain very easily.
Namely, using its left hand side part, we are stretching our SOM over the life
(observations) dimension, obtaining the matrix of generalized symptoms as the
columns of the matrix SD (see below). And using its right hand side part of
(3.4), we are stretching SOM over the observed symptoms dimension obtaining
the assessment of contribution of every primary measured symptoms in the
matrix AL, assessing in this way the contribution of each primary symptom
to the generalized fault symptom SD i

SD = OprVrr = UppΣrr and AL = U⊤ppOpr = ΣrrV
⊤

rr (3.5)

This means that SD matrix is stretched along the life coordinate giving us the
life evolution of the weighted (σi) singular vectors. And AL matrix is aligned
along the symptom dimension with the same way of weighting by σi, giving
the assessment of information contribution of each primary symptom.

We will calculate numerically the above matrices and use them for better
interpretation of monitoring results (SD), and optimization of dimension of
the observation space (AL).

4. SOM information measure and optimization

Having in mind the redundancy of some primary symptoms, i.e. the primary
observation space, some additional considerations should be made concerning
the SOM information assessment. In terms of previous findings this can be
done by calculating the Frobenius norm (Frob) of this matrix, and the volume
(Vol) created by u-dimensional generalized fault space identified by applica-
tion of SVD. One can calculate easily both information indices as the sum and
the product of singular values in the following way (Golub, 1983; Kiełbasiński,
1992)

Frob (SOM) ≡

√√√√
u∑

i=1

σ2i and Vol (SOM) ≡
u∏

i=1

σi

But squaring the small singular values of σi (less than one) make them much
smaller, giving seemingly smaller contributions to the matrix information as-
set, and to the volume of the observation space. Due to this it was proposed
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by Cempel and Tabaszewski (2007a,b) to use not the exact Frobenius norm
but its modification as below

Frob1 =
u∑

i=1

σi and Vol 1 =
u∏

i=1

σi (4.1)

This will give us possibility to look for small, just evolving faults, not omit-
ting them when we try to reduce the redundancy of the observation vector.
Consequently, one can get less redundancy of a new optimized SOM with a
less number of columns, but also keeping in observation the small just evolved
fault information (σi).

The use of Frobenius measure for a matrix has also mathematical valida-
tion. In general, one can understand this as the problem of approximation of
matrix B, by the so called k-rank approximation. Following the paper Ber-
ry et al. (1999), we can make the quantitative assessment of such a k-rank
approximation of the matrix B as the difference below

‖B− Bk‖F =
√
σ2k+1 + . . .+ σ

2
u (4.2)

where the subscript u stands for the maximal dimension of nonzero singular
value, i.e. the rank of our primary SOM.
This also means that instead of (3.5) we write a simplified measure of

approximation of SOM in the form of deviation from primary SOM rank, as
below

∆k Frob1 ≡ Frob1o − Frob1k = {σk+1 + . . .+ σu} (4.3)

Using this quality index of matrix approximation measure, we can form an ad-
ditional objective measure of the SOM redundancy. And minimization of the
SOM rank may be carried out by excluding some primary measured symp-
toms Sm with low information contribution, which produces mainly small
(less than one) singular vales σu.
Such criteria of redundancy minimization we have used quite recently. But

following the last papers Cempel and Tabaszewski (2007a,b), one may notice
that after some symptom rejection, it gives an expected increase in the volume
of information space (Vol 1). Also the rank approximation of SOM gives only
a slight drop in Frob1 measure, but the result of prognosis is not good enough,
giving erroneous future values, even less than the previous one. How to avoid
such errors in forecasting? There seem to be one possibility more to make
the symptom rejection more objective and anticipating the goodness of the
condition forecast. We have to consider the contribution of primary measured
symptoms to the creation of first generalized symptoms SD1, and also the
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creation of the total damage generalized symptom SumSD i. The first overall
contribution measure can be calculated separately to each primary symptom
from the correlation matrix of our SOM (with appended lifetime in the first
column) as the centered and normalized sum of column elements. The second
measure can be obtained if we append additionally to the previous matrix the
vector SumSD i as the first column. When calculating the covariance matrix
from these and in the first row, we will have needed information. After needed
normalization to the first element of this row, this will give us the contribution
of every primary symptom to the total damage symptom SumSD i.

5. The global and partial fault inference

We have gathered above all necessary analytical and inference knowledge con-
cerning the processing of the symptom observation matrix, the extraction of
fault information and optimization of the SOM rank. So, there is a right mo-
ment to validate these findings and proposal by some experimental data taken
from real situations of vibration condition monitoring. In order to do this,
the last Matlab R© program svdopt1gs.m presented in Cempel and Tabaszew-
ski (2007a) has been modified to svdopt2gs.m. The inference basis for the first
program is the total damage generalized symptom SumSD i, while in the mo-
dified program such on inference basis is the first generalized symptom SD1.
Just to catch the inference and the followed diagnostic decision difference, we
will take some uneasy case of a heavy fan (power of 3MW) working in unstable
and load uncontrolled regime (random supply of the air to the mine shaft),
serving as the source of fresh air for ventilation at a deep copper mine. The
main troubles with this fan were the unbalance and nonalignment between the
fan and the driving electric motor. Due to that, it was constantly monitored.

Figure 1 presents below six pictures as a result of fan data processing by
specially prepared program svdopt1gs.m2 made in the Matlab R© environment,
and here is adopted the inference according to the total damage symptom
SumSD i. The first top left picture shows results of 30-week measurements
of symptom life curves of vibration velocity at five points located on the fan
aggregate structure. One may notice here the great instability of symptom re-
adings, symptom No. 4 in particular. This is better seen at the picture middle
left when the data are centered and normalized to the average value of the

2Author is indebted to Dr M. Tabaszewski for the help in making the program
and for the vibration condition monitoring data.
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three initial symptom readings. The picture bottom left presents the gene-
ralized symptoms as the result of SVD processing, indicating also the symp-
tom limit value calculated for the generalized symptom of the total damage
SumSD i. We may notice here that the initial instability of primary symptoms
is even enlarged, giving a situation where the main generalized symptoms are
falling down at the end of the fan life, giving erroneous assessment of the fan
condition.

Fig. 1. Results of SVD processing of vibration data of a huge fan pumping air into
the copper mine shaft

From the diagnostic decision point of view, it is a very critical situation to
observe such instability of primary and generalized symptoms. The next pictu-
re top right at this figure (dimensionless singular values) give us the indication
how much independent sources of diagnostic information can be observed by
these five primary symptoms with appended lifetime θ. One can see here that
in reality we can count on two independent sources of information, it may
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mean two independent faults, like shaft unbalance and machine aggregate mi-
salignment. The picture middle right gives us the contribution of each primary
symptom (the first = lifetime) to creation of the first three generalized fault
symptoms taken directly from SVD as the product of SOM and U matrices.
We may notice that primary symptom No. 5 gives small contribution to all
three generalized symptoms, and may serve as one of the candidates to re-
jection in the course of further processing. The last picture, the bottom right
one, gives us the result of current calculation of the symptom limit value Sl
by our concept of symptom reliability (Cempel et al., 2000). This program
calculates Sl with data of the total damage generalized symptom SumSD i
(the picture bottom left). One may notice that the limit value Sl is steadily
evolving up to the value Sl = 1.0306. But the application of this limit value to
the total damage symptom SumSD i is impossible as this symptom is falling
down. Having this in mind, we should decide now which symptom we should
reject here in order to obtain stable course of the generalized fault symptom of
the total damage SumSD i in order to make a reliable forecast and diagnostic
inference.

Let us now change the inference basis and calculate the symptom limit
value Sl not from the total damage generalized symptom SumSD i but from
the first generalized symptom SD1 only. So, let the same SOM of the fan will
be treated by modified program svdopt2gs.m, as below.

With this modified program and our primary data, only the last row of
pictures in Fig. 2 has been changed, namely the course of the symptom limit
value calculation and its value (as it is seen at the bottom right picture).
But due to this change, the assessed value of Sl is lower and can serve us
for further elaboration of diagnostic decision, as one can see from the bottom
left picture. Let us now check if we can correct the situation by reducing the
SOM redundancy. As one can see from Fig. 2, there is a big redundancy of
the observation space (SOM), which is reflected here by a very small volume
of the fault space Vol 1 = 0.00383. This means that some primary symptoms
carry minimal fault information, which is reflected by a very small σI , much
smaller than one.

Trying to diminish this redundancy, let us now use the already mentioned
correlation calculation of information contribution, i.e. contribution of each
primary symptom to the overall information resource of our data and to the
generalized symptom of total damage SumSD i. The calculation of these was
described in the previous Section. Figure 3 gives the result of such a contribu-
tion assessment, and one can notice that the primary symptom number 4 is the
first candidate (not symptom No. 5) as it influences negatively (decreasing)
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Fig. 2. The vibration symptom observation matrix of a huge fan (see Fig. 1)
processed by the modified program, where Sl value is calculated on the basis of the

first generalized symptom SD1

Fig. 3. The assessment of overall contributions of primary symptoms (top picture)
and the contribution to the total damage generalized symptom
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the total damage symptom (bottom picture), and also makes the smallest
contribution to the overall information resource (top picture of Fig. 3).

Having such strong indication which a symptom to reject as the first
(No. 4), we have performed this by the same program, and the results can
be seen in Fig. 4 presented in the same manner as it was explained in detail
for Fig. 1 and Fig. 2. Now one can see from Fig. 4 that the rejected symptom
No. 4 was the symptom with the greatest amplitude and instability. One can
also notice that the course of all generalized symptoms (bottom left picture)
and the limit value (bottom right picture) evolves smoothly, giving a strong
basis for the future diagnostic decision. It is also good to notice here a drop of
the Frobenius measure after symptom rejection; ∆Frob1 = 2.4073, and more
than a double increase of the volume of the observation space V ol1 = 0.0082.

Fig. 4. Condition inference of a huge fan by the same program svdopt1gs, but with
rejection of primary symptom No. 4, and total damage symptom SumSD i

It will be very interesting what result can be achieved in calculation of the
symptom limit value rejecting the same symptom No. 4, but using modified
the program svdopt2gs.m, which calculates the symptom limit value Sl on the
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basis of the first generalized symptom SD1. Figure 5 shows the result of such
calculations, presenting the detailed results in the same manner as it was done
before (Fig. 1 and Fig. 2).

Fig. 5. The huge fan monitoring data with a change of inference basis to the first
generalized symptom SD1

Analyzing now the last two figures (Fig. 1 and Fig. 2), one can find that the
only change is noted at the bottom pictures where the symptom limit value Sl
has been calculated and presented against the generalized symptoms (bottom
left pictures). One can notice here that the calculation of the limit value using
the first generalized symptom SD1 gives us a lower value, and this can give
us a more safe assessment of the lifetime moment for machine shut down, and
renewal. From the point of view of reliability of diagnostic decision, this seems
to be important to have two sources of the symptom limit vale assessment,
and to confront these values with the associated knowledge.
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6. Forecasting of global system damage and partial faults
advancement

The final quality of diagnostic decision one may judge by making the forecast
of the future condition in terms of the total damage symptom SumSD i and
the first generalized fault symptom SD1. It was said in the introduction that
the forecast will be made by the Grey System Theory (GST) (Deng, 1989),
together with the rolling window method using the first order grey model
GM(1, 1) (Yao and Chi, 2004).

In general, GST assumes that our incomplete and uncertain observation
can be the output of some dynamic multi-input system of high order, described
by a grey differential or difference model (Wen and Chang, 2005). In the
condition monitoring, we may assume that it is enough to take the first order
system described by the grey differential equation, and one forcing or control
input. This simplest case in GST is denoted as GM(1, 1), which means the
grey model of order 1 with one input only. The output of the system is the
series of discrete observations (our symptom readings) denoted here as

x
(0) = {x(0)(1), x(0)(2), . . . , x(0)(n)} (6.1)

where n ­ 4 is the number of observation made on the system (machine).

We will not present GST theory here, just using the final formulae for the
forecasting, and the rolling window concept is implemented into the forecasting
software only.

The application of GST to the above symptom readings gives the possibi-
lity to forecast the future symptom value, starting from a very small number
observation, and using the formula

x̂(0)(k + 1) =
[
x(0)(1)−

u

a

]
(e−ak − e−a(k−1)) k = 2, 3, . . . , n (6.2)

where u and a are parameters to be estimated by a special least square matrix
procedure using the observed data (6.1), and the hat (̂·) in (6.2) means the
future value of the forecasted quantity.

This concept was adjusted to the purposes of vibration condition moni-
toring in one of the earlier papers Cempel and Tabaszewski (2007a,b). One
can notice now from the top left picture of Fig. 6 that the total damage ge-
neralized symptom SumSD i after rejection of the primary symptom No. 4
is well evolved, enabling a good forecast even without the rolling widow. But
of course, as usually in the case of grey system modelling, the rolling window
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forecast gives the smallest error. This error can be even smaller if we diminish
the span of window (w) as it is clearly seen from the picture bottom right in
Fig. 6.

Fig. 6. Grey rolling forecast of the total damage generalized symptom SumSD i for
the huge fan sier1

It is also worthwhile to focus on other pictures of this figure. The picture
top left clearly presents that the rejection of No. 4 symptom was a good
idea allowing us to determine the symptom limit value Sl and having this
information act properly to shut down the fan ahead of the breakdown time.
The picture top right presents the total forecast of the total damage symptom
SumSD i with the model GM(1, 1). It seems to be a good forecast with a small
average error, but the picture bottom left with the rolling window forecast
have a smaller error and the actual forecast adapts smoothly to the course of
SumSD i.

Knowing this, let us take into consideration the first generalized symp-
tom SD1 and the way and property of inference obtained by this new appro-
ach. Next figure (Fig. 7) presents the results obtained according to this new
way of thinking by the modified program svdopt2gs.m, where the basic quan-
tity for the Sl and forecast calculation is the first generalized symptom SD1.
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Fig. 7. Grey rolling forecast of the fan condition using the first generalized
symptom SD1

It is seen in the left top picture of Fig. 7 that the course of SD1 symptom
is decreasing at the end of the fan life, but the assessed symptom limit value Sl
warns enough in advance to undertake shut down decision on time. However,
comparatively to Fig. 6, this is some drawback in the clarity of diagnostic
decision. On the contrary, the forecasting error is smaller here, having some
minimum around the chosen window span w = 5.

As one can see from the above, it is hard to decide in advance if we should
use for inference the total damage symptom SumSD1, or the first generali-
zed symptom SD1. We need more experimental validation of this important
issue. Let us take now quite another object, a small ball bearing of the type
6305, which was tested at the durability test-stand, where 7 symptoms were
measured, each hour of the test. This particular bearing (krak3) broke down
after 40 hours, and the results of observation were processed by these two
mentioned programs. Figures 8 and 9, as the analogy to the Figs. 6 and 7,
present the last stage of calculation of the forecast for the bearing krak3. One
can conclude from these data that, again, the forecasting error is smaller if we
use the first generalized symptom SD1 (Fig. 9 bottom left), but the transpa-
rency of diagnostic decision is better if one takes the total damage symptom
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SumSD i (Fig. 8 top left). Hence, it is impossible to decide in advance which
quantity we should use for diagnostic inference – the total damage generalized
symptom SumSD i or the first generalized symptom SD1. We should decide
on this important issue each time separately if we know the machine and the
data.

Fig. 8. The diagnostic decision and forecast premise for ball bearing krak3 on the
basis of the total damage symptom (see next figure)

7. Conclusions

The premise to write this paper was supposition that a separate inference based
on the first generalized machine symptom may be better than an inference on
the basis of the total damage generalized symptom of the machine condition.
As tipical in the multidimensional condition monitoring, we used the singu-
lar value decomposition to extract the fault information from the symptom
observation matrix. Having calculated the just mentioned generalized symp-
toms, the symptom reliability and the symptom limit value Sl were assessed
on that basis for the total damage symptom SumSD i and for the dominating
generalized symptom SD1. The last stage of inference was the forecast of the



794 C. Cempel

Fig. 9. The diagnostic decision and forecast premise for the same situation (as in
Fig. 8), but on the basis of the first generalized symptom

future value of both symptoms made by the grey system theory and GM(1, 1)
model. However, taking into consideration two cases of system monitoring, it
was impossible to validate which one of these two approaches was better. Mo-
reover, it seems that they are complementary, and both calculation should be
made and the decision on machine condition carefully undertaken on a such
basis.
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Prognozowanie globalnego i cząstkowego stanu za pomocą metod
wielowymiarowej diagnostyki maszyn

Streszczenie

Maszyny mają wiele uszkodzeń, które ewoluują podczas ich pracy (życia). Jeśli ob-
serwujemy pewną liczbę symptomów stanu podczas pracy maszyny, to jesteśmy w sta-
nie uchwycić informację uszkodzeniową zorientowaną, za pomocą tzw. symptomowej
macierzy obserwacji (SOM). Jedną z metod dalszej ekstrakcji tej informacji diagno-
stycznej jest zastosowanie rozkładu według wartości szczególnych (SVD) do SOM.
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Problem postawiony w tej pracy polega na rozstrzygnięciu kwestii, czy w diagnosty-
ce stanu używać uogólnionego symptomu całkowitego uszkodzenia maszyny, czy też
posłużyć się tylko uogólnionym symptomem dominującego uszkodzenia. W tym celu
stworzono dodatkowe oprogramowanie, dzięki któremu pokazano, że takie dychoto-
miczne postawienie kwestii nie jest niewłaściwe. Najlepiej używać obydwa symptomy
uogólnione, wtedy nasza wiedza o stanie maszyny jest pełniejsza.
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