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The problem discussed in the paper concerns the numerical modeling of thermal processes
proceeding in micro-scale described using the Dual Phase Lag Model (DPLM) in which
the relaxation and thermalization time appear. The cylindrical domain of a thin metal film
subjected to a strong laser pulse beam is considered. The laser action is taken into account by
the introduction of an internal heat source in the energy equation. At the stage of numerical
modeling, the Control Volume Method is used and adapted to resolve the hyperbolic partial
differential equation. In particular, the Alternating Direction Implicit (ADI) method for
DPLM is presented and discussed. The examples of computations are also presented.
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1. Introduction

Thermal processes proceeding in the microscale are characterized, as a rule, by an extremely
short duration, extreme temperature gradients and very small geometrical dimensions of the
domain considered. It is a reason that typical mathematical models basing on the macroscopic
Fourier-type equations are not suitable for the analysis of this type problems. In the recent
years, the problem of heat transfer through domains subjected to an strong external heat source
(e.g. an ultrafast laser pulse) has been of vital importance in microtechnology applications, and
it is a reason that the problems connected with fast heating of solids has become a very active
research area (Tzou, 2015; Zhang, 2007; Chen et al., 2004).

From the mathematical point of view, nowadays there exist different models describing the
mechanism of the process discussed. In this group, the microscopic two-temperature parabolic
or hyperbolic models (belonging to a group of continuum models) should be mentioned (Chen
and Beraun, 2001; Kaba and Dai, 2005; Lin and Zhigilei, 2008; Majchrzak, 2012; Majchrzak and
Dziatkiewicz, 2015). The two-step parabolic and hyperbolic models involve two energy equations
determining the thermal processes in the electron gas and the metal lattice. The coupling factor
combining these equations is introduced. Depending on the variant of the model, parabolic or
hyperbolic PDEs are considered. Assuming certain simplifications, the two-temperature model
can be transformed into a single equation containing the second order time derivative and higher
order mixed derivative in both time and space (known as the dual phase lag model (DPLM)). In
this equation, two positive constants τq, τT appear and they correspond to the relaxation time,
which is the mean time for electrons to change their energy states and the thermalization time,
which is the mean time required for electrons and lattice to reach equilibrium (Orlande et al.,
1995).

The Cattaneo-Vernotte and the dual phase lag models belong also to the group of continuum
ones. They result from the generalization of the well-known Fourier law. To take into account
the finite velocity of a thermal wave the lag time between the heat flux and temperature gradient
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has been introduced (Cattaneo, 1958). The Cattaneo-Vernotte hyperbolic equation (CVE) can
be treated as a certain microscale heat transfer model, but for this purpose is rarely used. The
model discussed often finds application in the case of bioheat transfer problems, e,g. (Ciesielski
et al., 2016). In fact, according to literature, e.g. (Mitra et al., 1995) the lag time (relaxation
time) for processed meat is of the order of several seconds.

Introduction of two lag times in the generalized form of the Fourier law (relaxation and
thermalization ones) leads, after relatively simple mathematical manipulations, to the dual phase
lag equation. At present, in literature one can find big number of analytical and (first of all)
numerical solutions of various thermal problems described by this model. The majority of the
solutions presented in the literature concerns the 1D problems. Such an assumption is often
fully acceptable. For example, considering the laser pulse interactions with thin metal films it
is reasonable to treat the interactions as a one-dimensional heat transfer process (Chen and
Beraun, 2001). In this paper, the axially-symmetrical problem is analyzed.

Most of the works in this field concerns direct problems. Homogeneous and also heterogeneous
domains are considered. The problem of the single layer heating was discussed, among others,
by Tang and Araki (1999), Kaba and Dai (2005), Mochnacki and Ciesielski (2012), Majchrzak
and Turchan (2016). In the subject of non-homogeneous micro-domains, one can mention the
paper presented by Dai and Nassar (2000), in which the heat transfer in a double layered gold-
chromium film is analyzed, and the papers prepared by Majchrzak et al. (2009a,b) concerning
a multi-layered film subjected to ultrafast laser heating.

Both in the case of the CVE and DPLE, the typical boundary conditions appearing in heat
transfer problems should be modified in a adequate way.

In literature, one can find works devoted to sensitivity of the transient temperature field in
microdomains with respect to the dual phase lag model parameters (Majchrzak, and Mochnacki,
2014). The issue of the inverse problems was also developed, e.g. by Mochnacki and Paruch
(2013), Dziatkiewicz et al. (2014), Mochnacki and Ciesielski (2015).

A next group of microscale heat transfer models is based on the Boltzmann transport equ-
ation (BTE). It is a conservation equation where the conserved quantity is the number of particles
(Tian and Yang, 2008). The general form of BTE is rather complex, but it can be modified to
analyze special tasks, for instance systems created by phonons, electrons, etc. In this field, de-
serving special attention is repeatedly cited paper presented by Escobar et al. (2006). One can
also mention the work by Belhayat-Piasecka and Korczak (2016) in which the microscale heat
transport was analyzed using the interval lattice Boltzmann method.

Microscale heat transfer processes can be also considered using the molecular approaches
(Smith and Norris, 2003; Theodosiou and Saravanos, 2007; Chen et al., 2007; Liu and Tsai,
2009).

2. Governing equations

Let us consider the diffusion equation in the domain Ω

(r, z) ∈ Ω c
∂T (r, z, t)

∂t
= −∇ · q(r, z, t) +Q(r, z, t) (2.1)

where c = c(T ) is the volumetric specific heat, q(r, z, t) is the heat flux vector, Q(r, z, t) is the
capacity of internal heat sources, r, z, t are the geometrical co-ordinates and time.

The value of heat flux is determined by Tzou’s dual-phase-lag theory (Tzou, 2015), as the
generalization of the Fourier law, in particular

q(r, z, t + τq) = −λ∇T (r, z, t+ τT ) (2.2)
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where τq is called the relaxation time, while τT is the thermalization time, λ = λ(T ) is the
thermal conductivity, ∇T (r, z, t) is the temperature gradient. For τT = 0, this model leads to
the Cattaneo-Vernotte equation, while for τT = 0 and τq = 0 it corresponds to the Fourier law.
The Taylor series expansions of equation (2.2) is the following

q(r, z, t) + τq
∂q(r, z, t)

∂t
= −λ

[

∇T (r, z, t) + τT
∂∇T (r, z, t)
∂t

]

(2.3)

Introducing formula (2.3) into equation (2.1) one obtains

c
[∂T (r, z, t)

∂t
+ τq
∂2T (r, z, t)

∂t2

]

= ∇ · [λ∇T (r, z, t)] + τT
∂∇ · [λ∇T (r, z, t)]

∂t

+Q(r, z, t) + τq
∂Q(r, z, t)

∂t

(2.4)

In the case of the axially-symmetrical task discussed in this work, the component∇·[λ∇T (r, z, t)]
is the following

∇ · [λ∇T (r, z, t)] = 1
r

∂

∂r

[

rλ
∂T (r, z, t)

∂r

]

+
∂

∂z

[

λ
∂T (r, z, t)

∂z

]

(2.5)

It should be pointed out that the boundary conditions (which appear in the typical Fourier heat
conduction models) for the DPL should be transformed to the form

(r, z) ∈ Γ : qb(r, z, t) + τq
∂qb(r, z, t)

∂t
= −λ

[

n · ∇T (r, z, t) + τT
∂[n · ∇T (r, z, t)]

∂t

]

(2.6)

In Fig. 1, the domain considered (limited by the planes z = 0, z = Z and surface r = R) is
shown.

Fig. 1. Cylindrical micro-domain

The effects of femtosecond laser pulse irradiation on the upper surface limiting the system
causes that the energy is delivered to metal and its absorption occurs. The internal heat source
Q(r, z, t) generated inside metal is related with action of the laser beam (Chen and Beraun,
2001)

Q(r, z, t) =

√

β

π

1−Rf
tpδ
I0 exp

(

−z
δ

)

exp
(

−r
2

r2d

)

exp

(

− β
( t− 2tp
tp

)2
)

= IΩ(r, z)It(t) (2.7)

where

IΩ(r, z) = I0
1−Rf
δ
exp

(

−r
2

r2d

)

exp
(

−z
δ

)

It(t) =

√
β

tp
√
π
exp

(

− β
( t− 2tp
tp

)2
)

(2.8)
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and I0 is laser intensity, Rf is reflectivity of the irradiated surface, δ is optical penetration depth,
rd is characteristic radius of Gaussian laser beam, β = 4 ln 2 and tp is characteristic time of the
laser pulse. Here, it is assumed that the total time of the laser action beam on the surface is
equal to 4tp.

So, action of the laser beam is taken into account by introduction of the internal heat source
Q(r, z, t). At the same time the dimensions Z and R are large enough that on the appropriate
boundaries adiabatic conditions qb(r, z, t) = 0 can be assumed. In the case of the problem
considered (see: Eq. (2.6)) one has

(r, z) ∈ Γ : −λ
[

n · ∇T (r, z, t) + τT
∂[n · ∇T (r, z, t)]

∂t

]

= 0 (2.9)

The initial conditions (the initial temperature of domain T0(r, z) and the initial heating rate
v0(r, z) are also given

t = 0 : T (r, z, 0) = T0(r, z)
∂T (r, z, t)

∂t

∣

∣

∣

∣

∣

t=0

= v0(r, z) (2.10)

3. Numerical solution using the Control Volume Method

To solve the problem presented in the previous Section, the control volume method (CVM) is
used. This method constitutes a very effective tool for numerical modeling of heat transfer pro-
cesses described by the Fourier-type equations. In the case of numerical simulation of microscale
heat transfer and the models based on the DPL equation, this method has so far been applied
only to the numerical solution using an ‘explicit’ scheme (Mochnacki and Ciesielski, 2015).

The first stage of the method application is the division of the domain considered into small
cells (known as the control volumes CV). In this work, the shape of control volumes is regular
one (it corresponds to the rings of a rectangular cross-section). The more complex discretization
using e.g. the Voronoi polygons can be also taken into account (Ciesielski and Mochnacki, 2014).

In Fig. 2, the domain discretization is presented, while in Fig. 3 the selected internal and
boundary (top) control volumes are shown.

Fig. 2. Discretization of the domain
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Fig. 3. The internal and boundary control volumes

On the basis of simple geometrical considerations, one can determine values of the successive
volumes ∆Vi,j and surfaces (∆Ak)i,j limiting ∆Vi,j in each k-direction. Numerical modelling of
transient problems requires introduction of the time grid, too: 0 = t0 < t1 < . . . < tf < . . . < tF ,
tf = f∆t.
The aim of the CVM is to find the transient temperature field at the set of control volumes.

The thermal capacities are concentrated at the elements, whereas the thermal resistances are
concentrated on the sectors connecting nodes of the control volumes. The average temperatures
in all control volumes can be found on the basis of energy balances for the successive volumes.
The energy balances corresponding to the heat exchange between the analyzed control volume
and adjacent control volumes results from integration of the energy equation with respect to
volume and time.

3.1. Integration of the energy equation with respect to volume

Integration of Eq. (2.4) over the control volume Ωi,j leads to
∫

Ωi,j

c
(∂T (r, z, t)

∂t
+ τq
∂2T (r, z, t)

∂t2

)

dΩ

=

∫

Ωi,j

(

∇ · [λ∇T (r, z, t)] + τT
∂∇ · [λ∇T (r, z, t)]

∂t

)

dΩ +

∫

Ωi,j

(

Q(r, z, t) + τq
∂Q(r, z, t)

∂t

)

dΩ

(3.1)

The integral occurring on the left-hand side of equation (3.1) can be approximated in the form
∫

Ωi,j

c
(∂T (r, z, t)

∂t
+ τq
∂2T (r, z, t)

∂t2

)

dΩ

∼= ci,j







∂T (r, z, t)

∂t

∣

∣

∣

∣

∣

r=ri
z=zj

+ τq
∂2T (r, z, t)

∂t2

∣

∣

∣

∣

∣

r=ri
z=zj






∆Vi,j = ci,j

(dTi,j
dt
+ τq
d2Ti,j
dt2

)

∆Vi,j

(3.2)

where Ti,j = T (ri, zj , t), while ci,j = c(Ti,j) is the integral mean of thermal capacity in the
volume Ωi,j. In a similar way, the numerical approximation of the source term in Eq. (3.1) can
be found

∫

Ωi,j

(

Q(r, z, t) + τq
∂Q(r, z, t)

∂t

)

dΩ ∼=
(

Qi,j + τq
dQi,j
dt

)

∆Vi,j (3.3)
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where Qi,j is determined as the integral mean of the heat source in the volume Ωi,j

Qi,j ≡ Qi,j(t) ∼=
1

∆Vi,j

∫

Ωi,j

Q(r, z, t) dΩ = It(t)
1

∆Vi,j

∫

Ωi,j

IΩ(r, z) dΩ

= It(t)
I0π(1−Rf )r2d
∆Vi,j

[

exp
(

− r̄
2
1

r2d

)

− exp
(

− r̄
2
2

r2d

)][

exp
(

− z̄1
δ

)

− exp
(

− z̄2
δ

)]

(3.4)

and r̄1, r̄2, z̄1, z̄2 are the limits of the control volume Ωi,j = {(ri, zi)| r̄1 ¬ ri ¬ r̄2, z̄1 ¬ zi ¬ z̄2}.
In the case of a more complex form of the function Q, one can compute Qi,j(t) = Q(ri, zj , t),
but this estimation is less accurate.

Applying the divergence theorem to the term determining heat conduction (right hand side
of Eq. (3.1)) between the volume Ωi,j bounded by the surfaces ∆Ai,j and its neighbourhoods,
one obtains

∫

Ωi,j

(

∇ · [λ∇T (r, z, t)] + τT
∂∇ · [λ∇T (r, z, t)]

∂t

)

dΩ

=

∫

Ωi,j

∇ · λ
(

∇T (r, z, t) + τT
∂∇T (r, z, t)
∂t

)

dΩ

=

∫

Ai,j

[

n · λ
(

∇T (r, z, t) + τT
∂∇T (r, z, t)
∂t

)]

dA

(3.5)

and then this term can be written in the form

∫

Ai,j

[

n · λ
(

∇T (r, z, t) + τT
∂∇T (r, z, t)
∂t

)]

dA

=
4
∑

k=1

∫

(Ak)i,j



(nk)i,j · (λk)i,j
(

∇T (r, z, t)
∣

∣

k
+ τT
∂∇T (r, z, t)
∂t

∣

∣

∣

k

)

i,j



 dAk

∼=
4
∑

k=1

(nk)i,j · (λk)i,j
(

∇T (r, z, t)
∣

∣

k
+ τT
∂∇T (r, z, t)
∂t

∣

∣

∣

k

)

i,j

(∆Ak)i,j =
4
∑

k=1

(qk)i,j(∆Ak)i,j

(3.6)

where (qk)i,j is approximated by the following finite differences (taking into account also the
adiabatic boundary conditions (2.9) on the boundary surfaces)

(q1)i,j =







(λ1)i,j
[Ti,j−1 − Ti,j

∆z
+ τT

d

dt

(Ti,j−1 − Ti,j
∆z

)]

if j > 0

0 if j = 0
(3.7)

(q2)i,j =







(λ2)i,j
[Ti+1,j − Ti,j

∆r
+ τT

d

dt

(Ti+1,j − Ti,j
∆r

)]

if i < nr

0 if i = nr

(3.8)

(q3)i,j =







(λ3)i,j
[Ti,j+1 − Ti,j

∆z
+ τT

d

dt

(Ti,j+1 − Ti,j
∆z

)]

if j < nz

0 if j = nz

(3.9)

(q4)i,j =







(λ4)i,j
[Ti−1,j − Ti,j

∆r
+ τT

d

dt

(Ti−1,j − Ti,j
∆r

)]

if i > 0

0 if i = 0
(3.10)
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and (λk)i,j are harmonic mean thermal conductivities between two central points of adjoining
control volumes

(λ1)i,j =
2λi,jλi,j−1
λi,j + λi,j−1

(λ2)i,j =
2λi,jλi+1,j
λi,j + λi+1,j

(λ3)i,j =
2λi,jλi,j+1
λi,j + λi,j+1

(λ4)i,j =
2λi,jλi−1,j
λi,j + λi−1,j

(3.11)

and next, the thermal resistances are defined as follows

(R1)i,j =
∆z

(λ1)i,j
(R2)i,j =

∆r

(λ2)i,j
(R3)i,j =

∆z

(λ3)i,j
(R4)i,j =

∆r

(λ4)i,j

(3.12)

Then, Eq. (3.6) takes the form

∫

Ai,j

[

n · λ
(

∇T (r, z, t) + τT
∂∇T (r, z, t)
∂t

)]

dA ∼=
4
∑

k=1

(θk)i,j
(Rk)i,j

(∆Ak)i,j (3.13)

where

(θ1)i,j =
(

Ti,j−1 − Ti,j + τT
d(Ti,j−1 − Ti,j)

dt

)

∣

∣

∣

∣

∣

if j>0

(θ2)i,j =
(

Ti+1,j − Ti,j + τT
d(Ti+1,j − Ti,j)

dt

)

∣

∣

∣

∣

∣

if i<nr

(θ3)i,j =
(

Ti,j+1 − Ti,j + τT
d(Ti,j+1 − Ti,j)

dt

)

∣

∣

∣

∣

∣

if j<nz

(θ4)i,j =
(

Ti−1,j − Ti,j + τT
d(Ti−1,j − Ti,j)

dt

)

∣

∣

∣

∣

∣

if i>0

(3.14)

while the notation expression |if condition introduced above, means

expression
∣

∣

∣

if condition
=

{

expression if condition = true

0 otherwise
(3.15)

After the introduction of all discrete terms into equation (3.1), one obtains

ci,j
(dTi,j
dt
+ τq
d2Ti,j
dt2

)

∆Vi,j =
4
∑

k=1

(θk)i,j
(Rk)i,j

(∆Ak)i,j +
(

Qi,j + τq
dQi,j
dt

)

∆Vi,j (3.16)

or

ci,j
(dTi,j
dt
+ τq
d2Ti,j
dt2

)

=
4
∑

k=1

(θk)i,j
(Rk)i,j

(Φk)i,j +Qi,j + τq
dQi,j
dt

(3.17)

where (Φk)i,j = (∆Ak)i,j/∆Vi,j.
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3.2. Integration of the equation with respect to time

The second stage of CVM is integration of equation (3.17) with respect to time. The same
effect can be obtained introducing the approximation of time derivatives occurring in (3.17) by
appropriate finite differences.

The idea of the ADI method is to split the time step ∆t = tf+1 − tf into two half-steps and
apply two different finite difference schemes for each half time step. In the first half time step, a
simple implicit scheme for directions (d1, d2) is used and simultaneously an explicit scheme for
directions (d3, d4) is applied. Next, in the second half time step, the difference schemas are written
by reversing the directions of the explicit and implicit schemes. The notation ‘(d1, d2)-(d3, d4)’,
where the indexes di indicate directions of the neighbouring CV (see Fig. 1), is introduced.

For passing: tf → tf+0.5 → tf+1, f = 1, . . . , F , and using the variant of ADI: (1,2)-(3,4), the
following differential schemas are proposed

cfi,j

(

T f+0.5i,j − T fi,j
0.5∆t

+ τq
T f+0.5i,j − 2T fi,j + T

f−0.5
i,j

(0.5∆t)2

)

=
∑

k=1,2

(θk)
f+0.5
i,j

(Rk)
f
i,j

(Φk)i,j +
∑

k=3,4

(θk)
f
i,j

(Rk)
f
i,j

(Φk)i,j +Q
f+0.5
i,j + τq

Qf+0.5i,j −Qfi,j
0.5∆t

(3.18)

and

cf+0.5i,j

(

T f+1i,j − T
f+0.5
i,j

0.5∆t
+ τq
T f+1i,j − 2T

f+0.5
i,j + T fi,j

(0.5∆t)2

)

=
∑

k=1,2

(θk)
f+0.5
i,j

(Rk)
f+0.5
i,j

(Φk)i,j +
∑

k=3,4

(θk)
f+1
i,j

(Rk)
f+0.5
i,j

(Φk)i,j +Q
f+1
i,j + τq

Qf+1i,j −Q
f+0.5
i,j

0.5∆t

(3.19)

and (θk)
s
i,j for s ∈ {f, f + 0.5, f + 1} for this method are approximated in the following way

(θ1)
s
i,j =

[

T si,j−1 − T si,j + τT
(

T si,j−1 − T s−0.5i,j−1

0.5∆t
−
T si,j − T s−0.5i,j

0.5∆t

)]∣

∣

∣

∣

∣

if j>0

(θ2)
s
i,j =

[

T si+1,j − T si,j + τT
(

T si+1,j − T s−0.5i+1,j

0.5∆t
−
T si,j − T s−0.5i,j

0.5∆t

)]∣

∣

∣

∣

∣

if i<nr

(θ3)
s
i,j =

[

T si,j+1 − T si,j + τT
(

T si,j+1 − T s−0.5i,j+1

0.5∆t
−
T si,j − T s−0.5i,j

0.5∆t

)]∣

∣

∣

∣

∣

if j<nz

(θ4)
s
i,j =

[

T si−1,j − T si,j + τT
(

T si−1,j − T s−0.5i−1,j

0.5∆t
−
T si,j − T s−0.5i,j

0.5∆t

)]∣

∣

∣

∣

∣

if i>0

(3.20)

After transformations, the first system of equations (3.18) can be written in the final form
as

(A′0)
f
i,jT
f+0.5
i,j + (A′1)

f
i,jT
f+0.5
i,j−1

∣

∣

∣

if j>0
+ (A′2)

f
i,jT
f+0.5
i+1,j

∣

∣

∣

if i<nr
= (D′)fi,j (3.21)

where
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(A′k)
f
i,j = −(1 + 2µT )

(Φk)i,j

(Rk)
f
i,j

k = 1, 2

(A′0)
f
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(

T f−0.5i,j − T f−0.5i,j+1

)

] (Φ3)i,j

(R3)
f
i,j

∣

∣

∣

∣
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(
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)
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f
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∣

∣

∣

∣
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if i>0

+ 2cfi,j
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f
i,j − 2µqT

f−0.5
i,j

∆t
+ (1 + 2µq)Q

f+0.5
i,j − 2µqQfi,j

(3.22)

while the second system of equations (3.19) – in the following form

(A′′0)
f+0.5
i,j T

f+1
i,j + (A

′′

3)
f+0.5
i,j T

f+1
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∣

∣

∣
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f+1
i−1,j

∣

∣

∣

if i>0
= (D′′)f+0.5i,j (3.23)

where
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(
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∣
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(
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T fi,j − T
f
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if i<nr

+ 2cf+0.5i,j

(1 + 4µq)T
f+0.5
i,j − 2µqT fi,j
∆t

+ (1 + 2µq)Q
f+1
i,j − 2µqQ

f+0.5
i,j

(3.24)

The initial conditions (1.10) are implemented as

T 0i,j = T0(ri, zj) T 0.5i,j = T
0
i,j + 0.5∆tv0(ri, zj) (3.25)

In a similar way, one can obtain the other variants of ADI, e.g. (1,3)-(2,4), (2,4)-(1,3), etc,
by replacing the indexes of directions in the sums in Eqs. (3.18) and (3.19).

Both systems of equations lead to systems with three-diagonal matrices.

4. Results

Numerical simulations of the thermal process in a thin film (chromium) subjected to the short-
pulse laser heating have been done. Thermophysical parameters of chromium are the following:
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λ = 93W/(mK), c = 3.2148 · 106 J/(m3K), τq = 0.136 · 10−12 s, τT = 7.86 · 10−12 s (Tang and
Araki, 1999). The cylindrical domain with dimensions Z = 100 · 10−9m, R = 100 · 10−9m
is considered. The parameters of the Gaussian-shaped pulse are equal to: rd = 50 · 10−9m,
I0 = 13.7W/m

2, Rf = 0.93, δ = 15.3 · 10−12m, tp = 100 · 10−15 s. The initial temperature and
the initial heating rate of the metal are equal to: T0(r, z) = 20

◦C and v0(r, z) = 0K/s. Different
mesh steps: ∆z, ∆r and different time step ∆t are tested in this example.

Fig. 4. Heating curves at the selected control volumes Ωk and the average temperature of the domain

In Fig. 4, the temperature histories (calculated as the average temperature) at five selected
control volumes of the domain

ΩA =

{

(r, z)| 0 ¬ r ¬ ∆r
2
, 0 ¬ z ¬ ∆z

2

}

ΩB =

{

(r, z)| R
4
− ∆r
2
¬ r ¬ R

4
+
∆r

2
, 0 ¬ z ¬ ∆z

2

}

ΩC =

{

(r, z)| R
2
− ∆r
2
¬ r ¬ R

2
+
∆r

2
, 0 ¬ z ¬ ∆z

2

}

ΩD =

{

(r, z)| 0 ¬ r ¬ ∆r
2
,
Z

5
− ∆z
2
¬ z ¬ Z

5
+
∆z

2

}

ΩE =

{

(r, z)| R
2
− ∆r
2
¬ r ¬ R

2
+
∆r

2
,
Z

5
− ∆z
2
¬ z ¬ Z

5
+
∆z

2

}

(4.1)

are shown. In this figure, the course of the average temperature Tavg of the whole cylindrical
domain is also presented. Here, the calculations are performed using the ADI variant: (1,2)-(3,4)
for the following parameters of meshes: ∆z = 10−9m, ∆r = 10−9m, ∆t = 10−16 s.
The courses of isotherms for the selected moments of time: 0.3, 0.5, 1 and 10 ps are presented

in Fig. 5.
Next, the comparison of different variants of the ADI method (here: schemas (1,2)-(3,4) and

(1,3)-(2,4) are chosen) for different sizes of meshes is studied. Adequate numerical simulations
have been performed. The differences in the numerical solutions are hard to see in the graphs.
So, the numerical results (as the average temperature at the selected control volumes (4.1) at
time t = 0.3 ps) for different sizes of meshes are collected in Table 1. The analytical solution
of the problem considered is so far unknown in literature and, hence, it is difficult to estimate
which numerical scheme is the best.
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Fig. 5. Courses of isotherms in the cross-section of the domain for different times

Table 1. Numerical results (temperature) for different sizes of meshes

∆r = ∆z ∆t
Method

Average temperature at time t = 0.3 ps at selected CV [◦C]
[m] [s] ΩA ΩB ΩC ΩD ΩE

10−8

(nr = nz
= 10)

10−15
(1,2)-(3,4) 29.407462 28.175041 23.939626 25.296615 22.257754
(1,3)-(2,4) 29.407477 28.175054 23.939633 25.296637 22.257766

10−16
(1,2)-(3,4) 29.423528 28.188169 23.943812 25.297708 22.256563
(1,3)-(2,4) 29.423528 28.188169 23.943812 25.297709 22.256563

10−17
(1,2)-(3,4) 29.425095 28.189446 23.944210 25.297781 22.256427
(1,3)-(2,4) 29.425095 28.189446 23.944210 25.297781 22.256427

10−9

(nr = nz
= 100

10−15
(1,2)-(3,4) 29.385557 27.542517 23.924927 25.361719 22.284553
(1,3)-(2,4) 29.387539 27.544204 23.926049 25.365099 22.286141

10−16
(1,2)-(3,4) 29.403565 27.555886 23.930159 25.366322 22.284954
(1,3)-(2,4) 29.403585 27.555903 23.930170 25.366356 22.284970

10−17
(1,2)-(3,4) 29.405160 27.557048 23.930567 25.366453 22.284839
(1,3)-(2,4) 29.405159 27.557046 23.930567 25.366452 22.284839
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The total energy (∆Q [J]) applied to the considered domain during one laser pulse is equal
to

∆Q =

4tp
∫

0

Z
∫

0

R
∫

0

2π
∫

0

Q(r, z, t)r dΦ dr dz dt

= I0(1−Rf )π
r2d
2

[

1− exp
(

−R
2

r2d

)][

1− exp
(

−Z
δ

)]

[ erf (2β) − erf (−2β)]

(4.2)

The laser energy causes a rise in temperature equal to ∆T [◦C] in the domain (assuming
adiabatic conditions at all boundaries)

∆T =
∆Q

cV
(4.3)

where V = πR2Z [m3] is the volume of the whole domain. For the above mentioned values of
parameters, the temperature increases by ∆T = 0.731048◦C after one laser pulse. This value is
used, among others, to compare the correctness of the numerical results. It should be pointed
out that the analytical value and numerical values are practically the same (the errors are of
the order 0.00001◦C).

5. Conclusion

The dual phase lag model seems to be adequate for mathematical description of microscale heat
transfer. In many situations when analytical solutions are not known, the numerical solutions
are desired to be found. To obtain an effective solution to the considered problem, the algorithm
based on the control volume method is presented. The DPLM consists of the partial differential
equation of a hyperbolic type, and thus the more complex numerical schemes should be deve-
loped, of course. In this paper, the Alternating Direction Implicit scheme is constructed. This
scheme can be easily implemented in computer programs. In opposite to other schemes, such
as the Crank-Nicolson scheme, where it is necessary to solve the system of equations characte-
rized by a 5-band matrix, the ADI method requires double solving of the systems with 3-band
matrices. From the computational point of view, the solution of the system of equations with
the 3-band matrix is efficient and fast. The numerical scheme allows one to use the thermophy-
sical parameters of the material (i.e. thermal conductivity and volumetric specific heat) as the
temperature-dependent (in this paper these parameters are assumed to be constant values). The
results (see: the temperatures presented in Table 1) obtained by application of the two types
of numerical schemes are very similar, especially the results obtained for the same set of the
parameters of meshes: {∆z,∆r,∆t} are practically identical.
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