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The ladder track is a new type of an elastically supported vibration-reduction track system
that has been applied to several urban railways. This paper is devoted to the investigation of
dynamic behavior of a ladder track under an oscillating moving load. The track is represented
by an infinite Timoshenko beam supported by a random elastic foundation. In this regard,
equations of motion for the ladder track are developed in a moving frame of reference. In
continuation, by employing perturbation theory and contour integration, the response of
the ladder track is obtained analytically and its results are verified using the stochastic
finite element method. Finally, using the verified model, a series of sensitivity analyses are
accomplished on effecting parameters including velocity and load frequency.
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1. Introduction

In the 1940s to 1960s, weakness caused by resistance to lateral movement of cross-ties prompted
studies on longitudinal sleepers laid in parallel pairs under the rails. The aim was to produce a
railway track requiring a minimum of maintenance. Ladder sleepers were subsequently developed
having parallel longitudinal concrete beams held together by transverse steel pipes (Wakui et al.,
1997). Ladder sleepers provide continuous support to the rails assuring train safety, decreasing
maintenance and promising an increase in railway efficiency.

In recent years, a floating ladder track (Fig. 1a) has been developed to decrease vibration in
a structure and withstand noise. Younesian et al. (2006) studied the dynamic performance of a
ballasted ladder track. The rail and ladder units were simulated using a Timoshenko beam and
the governing equations were solved using the Galerkin method. Figure 1b shows the ballasted
ladder track.

Fig. 1. (a) Floating ladder track; (b) ballasted ladder track
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Hosking and Millinazzo (2007) developed a mathematical method for a floating ladder track
under a moving oscillating load in which the track was simulated using an Euler-Bernoulli beam
on periodic discrete elastic supports. They were able to predict the frequency and critical speed
for design purposes. Xia et al. (2009) dynamically simulated an elevated bridge with a ladder
track under a moving train and measured its dynamic response. Xia et al. (2010) carried out a
field experiment at the trial section of an elevated bridge on Beijing Metro line where the ladder
track was installed and investigatd the vibration reduction characteristics of the track.

Yan et al. (2014) developed dynamic models of the vehicle and the ladder track to analyze
the track vibration behavior. They optimized the mechanical properties of the ladder track to
reduce or eliminate the track vibrations at the corrugation frequency and ultimately to reduce
the chance of rail corrugation. Ma et al. (2016) investigated the effect of ballasted ladder tracks
and the vibration reduction effect. The results show that the ballasted ladder track can effectively
decrease the peak value in the time domain and has the potential effect to control environmental
vibration in low frequencies.

Analysis of beams subjected to moving loads is of substantial practical importance. Many
researchers have studied the vibration of beams subjected to various types of moving loads.
Since parameters such as loading, rail defection and nature of the substructure are stochastic,
the dynamic response of the track is assumed to be stochastic. Table 1 lists the major studies in
this area. Thus far, no study has been carried out on ladder tracks using a stochastic approach.

Table 1. Major research on stochastic approach in railway engineering

‘ Author(s) ‘ Subject ‘ Loading | Year |

Fryba et al. Fuler-Bernoulli beam resting on Harmonic 1993
a Winkler random foundation moving load

Anderson and Nielsen | Beam on a random modified Kelvin Moving vehicle | 2003
foundation

Kargarnovin et al. Infinite Timoshenko beams supported | Harmonic 2005
by nonlinear foundations moving loads

Younesian et al. Timoshenko beam on a random Harmonic 2005
foundation under moving load

Younesian Infinite Timoshenko beam supported Harmonic 2009

and Kargarnovin by a random Pasternak foundation moving loads

Mohammadzadeh Risk of derailment using a numerical Railway vehicle | 2010

and Ghahremani method

Mohammadzadeh et al. | Probability of derailment where Railway vehicle | 2011
irregularity of the track is random

Mohammadzadeh et al. | Double Euler-Bernoulli beam resting Harmonic 2013
on a random foundation moving loads

Mehrali et al. Double Euler-Bernoulli beam resting Railway vehicle | 2014
on a random foundation

Mohammadzadeh et al. | Reliability analysis of the rail fastening | Moving train 2014
where load and velocity are random

Pouryousef Reliability evaluation of design codes | Live load 2014

and Mohammadzadeh | applied for railway bridges (LMT71)

Engineering experience has revealed that uncertainties occur in the assessment of loading as
well as in the material and geometric properties of engineering systems. The logical behavior
of these uncertainties in probability theory and statistics cannot be obtained accurately using
the deterministic method. This approach is based on extremes (minimum, maximum) and mean
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values of system parameters (Stefanou, 2009). More detail on the random behavior of a structure
can be found in Lutes and Sarkani (2004).

The Taylor series expansion of the stochastic finite element matrix of a physical system is
known in the literature as the perturbation method. This method is used to solve probabilistic
problems (Kleiber and Hein, 1992; Liu et al., 1986). Another method is the Karhunen-Loeve
expansion technique (Ghanem and Spanos, 1991a,b). The main initiative of the perturbation
method is to formulate an analytical expansion of an input parameter around its mean value
using a series representation (Jeulin and Ostoja-Starzewski, 2001; Nayfeh and Mook 1979).

A novel analytical method is presented for the analysis of the governing equations of motion
for an infinite Timoshenko ladder track on a viscoelastic foundation with random stiffness under
a harmonic moving load. For the stationary analysis of the response of the beam to variations in
stiffness in the support, it is useful to describe it in a local moving coordinate system subjected
to a harmonic moving load. Furthermore, by applying the perturbation method and complex
Fourier transformation, the mean and variance of the response of the beam can be calculated
analytically in an integral form. Sensitivity analysis is run using the residue theorem and key
parameters are introduced.

2. Theory

Assume a harmonic load moves uniformly along a ladder track at velocity v. The ladder track
is modeled using two parallel Timoshenko beams. The connection of the two beams is described
using a series of springs and dashpots. In addition, the lower beam rests on a viscoelastic
foundation. The vertical stiffness of the support is described by a stochastic variable along
the beam with a mean of k and a stochastic component of ks(x) (Mohammadzadeh et al., 2013).
Here, r(x) is a random stationary ergodic function with zero mean value and ¢ is a small constant
parameter

kp(z) =k + ¢r(x) =k + k() (2.1)

2.1. Equation of motion

The equations of motion for the rail and ladder units are

0wy oy 0P dw; 9
1Qt5( o ’Ut) (22)
& Owyy 9%y
NGz —hAGi(v = 50) = ph G
and
0? 0 8
PzAzwuf + k‘QAQGQ( L2 ) + kpwz — kp(w1 — w2)
<% ) e aauf ! (2.3)
el I (2 - a—x) = paly

where wy (z,t) is the upper beam deflection, we(x,t) is the lower deflection, d(x) is the Dirac
delta function, and v and {2 are the speed and frequency of the load, respectively. A, E, G, I,
k and p are the cross-sectional areas of the beams, modulus of elasticity, shear modulus, second
moment of area, sectional shear coefficient, and beam material density, respectively. Figure 2 is
a flowchart of the solution of the governing equation for the ladder track.
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Fig. 2. Solving the governing differential equation

2.2. First-order perturbation approach

The perturbation method is proposed to compute the response of the beams to a harmonic
moving load. The responses of the ladder track (rail and ladder unit) are decomposed to zero
and first-order terms

w(z,t) = w(z,t) + pwi(z,t)
¢($,t) = 1%)(56’75) + mei(x’t)

where 7 = 1 for the rail and 7 = 2 for the ladder unit.

=1,2 (2.4)

2.3. Solution

Equations (2.2) and (2.3) are solved using Egs. (2.4) and equating terms with the same powers
of ¢. The Galilean coordinate transformation is

s=x—uvt (2.5)
The boundary conditions of deflection, velocity, and acceleration of the beams are assumed

to be zero in positive and negative infinity. Using the state variable transformation and applying
the complex Fourier transform results in

P(B7q* — Bsq + B9) Dy D4P + Dyw?
wh(q) = wl(q) = 0
wQ(q) — P(ﬂ7q2 - ﬂ8q + ﬂg)(_Dﬂi’)) U}2(q) — _D3P - Dﬁlw(Q)
’ H(q) ! H(q)
Dy, Dy, D3 and Dy are described in Appendix 1. H(q) is the determinant of the matrix
_|D1 Ds
[ 2] -
and wé, w%, w%, and w% are equal to
1 —B3PqDy 1 —B33q(PDy + Darw3)
vold) H(q) 1(a) (Brq* — Bsq + Bo)H (q) (2.8)
V3 g) = BraPq(Brq® — Bsq + o) D3 W (q) = $12q(D3P + Dirwi)

(B159% — Breq + Bir)H (q) (B159% — Breq + Bir)H (q)

General definitions for all coefficients are listed in Table 2. The response of the beams can be cal-
culated by applying the inverse Fourier transform and using contour integrals (Mohammadzadeh
et al., 2014). The mean values for the beam deflection and bending moment and the covariance of
a random function can be calculated as described by Mohammadzadeh et al. (2013) and Solnes
(1997).
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Table 2. Definitions of coefficients

‘ Parameter ‘ Definition ‘ Parameter ‘ Definition
B k1 A1G1 — p1Aiv? B1o koAsGo — paAgv?
&) 2p1 A1 v B11 2p2 Az (v
3 ik1A1Gy P12 ik Ao Go
B icyv B13 icgv
05 —plAl_Qz—i—kp—ich B14 —pa Ao (22 —I—E—i—kp—i—icpﬂ—i—icBQ
Bs kp +ic, 2 B1s p2Iov® — EI,
Br p11v? — EL, P16 2p2 15820
Bs 2p111$2v Bz p2l282% — ko A3Go
Bo p11192% — k1 A1Gy Bis ky +icyf2

3. Model validation of ladder track

The stochastic simulation of the ladder track foundation has been validated as described below.

3.1. Validation using the stochastic finite element method

The response of a beam resting on a stochastic foundation is obtained using the stochastic
finite element method (SFEM) as suggested by Fryba et al. (1993). Consider the second beam
as a rigid component and evaluate the behavior of the upper beam assuming stochastic behavior
for the foundation. Then, the random behavior of the system is calculated and validated using
the results of Fryba et al. (1993). Figure 3 shows that the results calculated in current study are
in good agreement with those reported by Fryba et al. (1993).
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Fig. 3. Comparison between the current modeling and results by Fryba et al. (1993)

3.2. Validation by a deterministic model

Next, the deterministic behavior of the ladder track is verified using the results of Younesian
et al. (2006). They investigated the dynamic behavior of a ladder track of finite length. The
ladder track is simulated using a Timoshenko beam and the track is subjected to a moving load.
The results of verification are illustrated in Table 3. The results of the current study are in good
agreement with those reported by Younesian et al. (2006).
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Table 3. Comparison of the current study and results by Younesian et al. (2006)

| S [m] | Current study | Younesian et al. |

-8 —4.13E-09 7.86E-05
—6 5.87E-08 —1.7E-05
—4 —3.11E-07 —0.00017
-2 —1.7E-05 —0.00031
0 —0.00083 —0.00037
2 —3E-05 —0.00032
4 1.06E-06 —0.00015
6 —3.24E-08 7.61E-05
8 7.16E-10 0.00018

4. Response of the ladder track

The response of the simulated ladder track is next investigated under a harmonic moving load.
The railway substructure should be constructed and confirmed using adequate ground stiffness
and standards (Younesian et al., 2005). It is not possible to provide a track bed with absolutely
uniform specifications, and there are many factors that influence the subgrade (Phoon, 2008;
Griffiths and Fenton, 2007; Fenton and Griffiths, 2008; Baecher and Chrsitian, 2003). The finite
distance correlation can be assumed using bed stiffness as a random field. A parametric study
was done on the key parameters of solution derived using the track bed stiffness from the field
data by Berggren (2009). The physical and geometrical properties of the track are listed in
Table 4.

Table 4. Parameters used in the model

Rail Ladder
Parameters Value Parameters Value
Young’s modulus £y 210 GPa Young’s modulus E» 28.2 GPa
Shear modulus G, 77 GPa Shear modulus Go 11.75 GPa
Mass density p; 7850 kg/m3 Mass density po 3954.7 kg/m3
Cross-sectional area A; | 7.69 - 1073 m? | Cross sectional area As 31-1073m?
Secor'ld m.oment 20.55-10~6 m Secoind m.oment 98.3-10~6
of inertia Iy of inertia I
Shear coefficient k; 0.4 Shear coefficient ko 0.43
Rail pad Foundation
Parameters Value Parameters Value
Stiffness k), 40 - 10 Nm~—2 | Mean value of stiffness kg 50 - 106 Nm—2
Viscous damping ¢, |6.3- 103 Nm~—2| Variance of stiffness U]%B 4.4186 - 103 N2m—*
Viscous damping cp 41.8 - 103 Nsm—?

4.1. Load frequency influence

The velocity of the moving load is assumed to be 100 km /h. Figure 4 shows that, by increasing
the load frequency, the mean value and standard deviation of the response of the upper beam
(rail) initially decreases and then increases. In addition, the distribution widens as the oscillations
increase along the rail.
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Fig. 4. Effect of load frequency on track deflection (mean value)

An increase in the load frequency decreases the response of the lower beam (ladder unit),

indicating that both the mean value and standard deviation of the ladder unit show decreasing
trends. Figure 5 shows the wider distribution with the increase in fluctuations along the beam.
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Fig. 5. Effect of load frequency on track deflection (standard deviation)

Figures 6 and 7 show the mean value and standard deviation of the rail and ladder bending
moments, respectively. As the load frequency increases, the response of the rail first decreases
and then increases. The velocity of the moving load is assumed to be 100 km /h.
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Fig. 6. Effect of load frequency on track bending moment (mean value)

The mean value and standard deviation of the ladder unit decreased as the load frequency
increased. As shown, the fluctuation of the ladder first increased and then decreased.
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Fig. 7. Effect of load frequency on track bending moment (standard deviation)

Load velocity influence

The variation in load velocity versus the behavior of the double beam is shown in Figs. 8
and 9 for the response of the ladder track. The figures include the deflection and bending moment
of both beams. As shown, the maximum response of the rail versus loading frequency have been
attained and employed as design criteria. An increase in the velocity of the moving load decreased
the value of this frequency.

Fig. 8. Effect of velocity on the ladder track (mean value)
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Fig. 9. Effect of velocity on the ladder track (standard deviation)
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4.3. Effect of the coefficient of variation of bed stiffness

The coefficient of variation (Cy) of the stiffness of the bed is varied to assess its effect on the
track bed (Figs. 10 and 11).It can be observed that increasing the Cy increases the standard
deviation of the rail and ladder.
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Fig. 10. Effect of Cy on the ladder track (mean value)
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Fig. 11. Effect of Cy on the ladder track (standard deviation)

5. Conclusion

The dynamic behavior of the ladder track has been investigated in the present study. The ladder
track has been simulated using an analytical model with a double Timoshenko beam. The upper
beam simulated the rail and the lower beam simulated the ladder unit. A series of springs and
dashpots represent the rail pad and foundation. The foundation stiffness of the system has been
assumed to exhibit stochastic behavior as simulated by field tests. The first-order perturbation
method has been applied and the responses, including the deflection and bending moment, are
shown in form of the mean value and standard deviation. It has been found that increasing the
load frequency decreased and then increased the response of the track. The peak frequency is
the point at which all responses are at maximum value. It was found that the peak frequency
increases as the velocity of the load velocity increases.

Appendix 1

The parameters in Equations (2.6) and (2.8) are described below

Dy = B1B7q* + (=185 + BaBr — BafBr)a” + (8189 — B28s — B33 + BaBs + B557)q°
+ (289 — B1By — B503)q + P59
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10.

11.

12.

13.

14.

15.

16.

17.

Dy = B4rq° — (Bafs + BsBr)a” + (Bes + Balo)a — P

Ds = BuB15q° — (BaPrs + Bi5618)a° + (Babrr + Bi6Pis)q — PrrPis

Dy = BioBisq" + (—Bi0bis + B11B1s — Babis — B13bis)a” + (BioBir — Bi1Bis — B
+ BB + PrsBis + B1aBis)a’ + (Bu1Bir — Babir — BisPir — BraBie)q + Prabur
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