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A contact problem for an elastic half-plane and an embedded rigid punch
is studied. The employed mathematical model describes the behavior
of a soil with embedded foundation. The analytical solution governing
the stress field behaviour is derived. Singular perturbation and complex
analysis techniques are used.
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1. Introduction

The problem under consideration is important for engineers, especially from
the point of view of earthquake engineering (Zeng and Cakmak, 1984; Tyapin,
1990). Usually, engineers and designers face with the dilemma whether to use
numerical or analytical methods. The use of standard procedures of the finite
or boundary element method (Zeng and Cakmak, 1984; Tyapin, 1990) results
in the need for further processing of numerical files used to extract the required
information. Analysis of available analytical approaches, for example, the me-
thod of reduction to a system of integral equations (Glushkov and Glushkova,
1990; Vorovich et al., 1974) has indicated, however, that none of them makes it
possible to solve the problem in an exact or, at least, in a simple approximate
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way. As a rule, one must use complicated numerical procedures and, in addi-
tion, deal with ill-posed problems. These reasons stimulated our choice of the
perturbation procedure earlier proposed in Manevitch et al. (1970), Manevitch
et al. (1979), Manevitch and Pavlenko (1991), Shamrovskii (1997).
The remaining part of the paper is organized as follows. In Section 2 we

present the governing relations. A significant simplification of the input boun-
dary value problem through a singular perturbation technique is proposed in
Section 3. In Section 4, by using a complex variable technique, we compute
an analytical solution to the problem. Finally, we discuss and comment on the
results obtained (Section 5).

2. Statement of the problem

We study an elastic half-plane with an embedded punch (see Fig. 1). According
to the linear theory of elasticity, the equilibrium equations gain the following
form (Muskhelishvili, 1953)

eUxx +GUyy + (eµ+G)Vxy = 0
(2.1)

GVxx + eVyy + (eµ+G)Uxy = 0

where: e = E/(1 − µ2), E is Young’s modulus, G is the shear modulus, µ is
Poisson’s coefficient.

Fig. 1. Half-plane with embedded punch

In Cartesian coordinates, the components of the stress tensor have the
following form (Muskhelishvili, 1953)

σy = e(Vy + µUx) σx = e(Ux + µVy) τxy = G(Vx + Uy) (2.2)

where: σx, σy is the stress in the x, y direction, respectively and τxy is the
shear stress.
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Now let us consider an interaction between the punch and the elastic half-
plane, assuming that the punch is rigidly coupled with the half-plane. Owing
to the axial symmetry with respect to the line x = a, we can restrict our
considerations to the zone x ¬ a. The conditions of symmetry give

U = 0
τxy = 0

}

at x = a ∧ y > 0 (2.3)

The boundaries of the half-plane (y = −b, x < 0 and x > 2a) are free from
loading, hence

σy = τxy = 0 at

{

x < 0 ∧ y = −b
x > 2a ∧ y = −b (2.4)

The conditions of the punch and the halfplane contact follow

U = 0
V = d

}

at

{

x = 0 ∧ − b < y ¬ 0
0 < x < a ∧ y = 0 (2.5)

where d is the displacement of the punch.
Equation (2.1) and conditions (2.2)-(2.4) give us a biharmonic mixed bo-

undary value problem. Since the exact solution to this problem is unknown,
we are going to present how the asymptotic technique can be used.

3. Reduction to the Laplace equations

Muskhelishvili (1953) successfully solved the plane elasticity problem for an
isotropic body through the application of complex analysis. Meanwhile, the
transition to the anisotropic case generally involves much higher complexity
(Lekhnitskii, 1968; Ting, 1996). For a slight deviation from the isotropic case,
it is possible to introduce a small parameter γ = (Ba−Bi)/Bi ≪ 1, where Ba
and Bi are corresponding properties of the anisotropic and isotropic media,
respectively. Then an asymptotic solution (with respect to γ) can be develo-
ped (Lekhnitskii, 1968). On the contrary, for a strong anisotropy, one can take
into account the smallness of the parameter 1/γ. It is obvious that loading in
the 0X (0Y ) direction causes mainly displacement U (V ). These reasonable
approximations have been used for a long time in the aircraft (Kuhn, 1956)
and rocket (Balabukh et al., 1969) engineering. Furthermore, they were suc-
cessfully applied to the theory of composite and nonhomogeneous materials
(Everstine and Pipkin, 1971, 1973; Spencer, 1974; Christensen, 1979; Kosmo-
damianskii, 1975, 1976). Most of the authors referred above used only the zero
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order approximation of the procedure. However, further development of this
partially empirical engineering approach was restricted by the evident draw-
backs: boundary conditions were not satisfied, the choice of an appropriate
approximation was not unique and clear, there was a lack of error estimations,
etc.
Beginning from the paper by Manevitch et al. (1970), a special asympto-

tic technique using expansions with respect to γ was developed. A singular
character of the asymptotic solution was detected, and the input biharmo-
nic equation was reduced to two Laplace equations. It gave possibility to use
the theory of potential. In Manevitch et al. (1979), Manevitch and Pavlenko
(1991), Shamrovskii (1997), higher order approximations were derived, and it
was also shown that even in the isotropic case (when the small parameter has
the maximum value) the error of the first approximation is rather low. Mathe-
matical foundations of the described asymptotic technique were also studied
by Bogan (1983, 1987).
Now let us briefly describe the asymptotic procedure used (for technical

details we refer the readers to references: Awrejcewicz et al. (1998), Bauer et al.
(1994), Shamrovskii (1979)). We introduce dimensionless parameters ε = G/e,
µ = ε−1µ. Then input equations (2.1) can be rewritten as follows

Uxx + εUyy + ε(µ+ 1)Vxy = 0
(3.1)

εVxx + Vyy + ε(µ+ 1)Uxy = 0

As soon as ε < 1, µ ≈ 1, we can use the parameter ε for asymptotic splitting
of system (3.1). We pose expansions for the functions V , U of the forms

U = u0 + εu1 + ε
2u2 + . . .

(3.2)

V = v0 + εv1 + ε
2v2 + . . .

The derivatives of the displacements are estimated as follows

∂(U ;V )

∂x
≈ εα1(U ;V ) ∂(U ;V )

∂y
≈ εα2(U ;V ) (3.3)

The order of the function U with respect to the function V can be estimated
in the following manner

U ≈ εα3V (3.4)

Substituting formulas (3.2) and (3.3),(3.4) into equations (3.1), and compa-
ring the coefficients, one may conclude that asymptotics strongly depend on
the parameters αk. Therefore, all possible values of αk are sought, when the
asymptotics (ε → 0) have both mathematical (well-posedness) and physical
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meanings. It is remarkable that by this simple (but laborious) procedure we
obtain only two systems which are analyzed below:
— α1 = 0.5, α2 = 0, α3 = 1.5

u
(1)
0xx + εu

(1)
0yy = 0 v

(1)
0y = −ε(µ+ 1)u

(1)
0x (3.5)

— α1 = −0.5, α2 = 0, α3 = 1.5

εv
(2)
0xx + v

(2)
0yy = 0 u

(2)
0x = −ε(µ+ 1)v

(2)
0y (3.6)

Analysis of stress relations (2.2) leads to the following results. For the first
and second type of stress-strain state (3.5) and (3.6), the main stresses read

σ
(1)
0x = eu

(1)
0x τ

(1)
0xy = Gu

(1)
0y (3.7)

σ
(2)
0y = ev

(2)
0y τ

(2)
0xy = Gv

(2)
0x

Simplified equations (3.5), (3.7)1,2 and (3.6), (3.7)3,4 describe all possible
stress-strain states. Links between these states can be established after split-
ting the input boundary conditions, see Awrejcewicz et al. (1998), Bauer et
al. (1994), Shamrovskii (1979). Equations (3.5)1 and (3.6)1 can be reduced to
Laplace equations due to a simple affine transformation of the independent
variables (see below). So, we can use the highly developed theory of complex
variables.

4. Analytical solution

We restrict our investigation only to the function v
(2)
0 , since the punch pressure

can be expressed by it. For equations (3.6)1 and (3.7)2, the affine transforma-

tion x1 = x
√
ε is used. Let us denote v

(2)
0 ≡ v, σ

(2)
0y ≡ σy, τ

(2)
oxy ≡ τxy. Then

one obtains the following Laplace equation

vx1x1 + vyy = 0 (4.1)

and the expressions for the stresses

σy = evy τxy =
√
Gevx (4.2)

Boundary conditions for equation (4.1) can be written as follows

vy = 0 at x1 < 0 ∧ y = −b
vx = 0 at x = a1 ∧ 0 < y <∞

v = d at

{

x1 = 0 ∧ − b < y < 0
0 < x1 < a1 ∧ y = 0

(4.3)

where a1 = a
√
ε.
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We replace boundary conditions (4.3)3 by the expressions

vy = 0 at x1 = 0 ∧ − b < y < 0
vx = 0 at 0 < x1 < a1 ∧ y = 0

(4.4)

Let us introduce a complex variable z = x1 + iy and an analytical function
Φ(z) = vx − ivy. One can write the following expressions for the boundary
values of the complex variable function Φ

ImΦ(z) = 0 at (x1 < 0, y = −b) ∪ (x1 = 0,−b < y < 0)

ReΦ(z) = 0 at (0 < x1 < a1, y = 0) ∪ (x1 = a1, 0 < y <∞)

Φ(z)→ 0 when |z| → ∞

(4.5)

Now we map our governing area (see Fig. 1) onto the upper half-plane by the
Schwarz-Christoffel transformation (Walker, 1964)

z = iC

ξ
∫

0

√

ϕ

(ϕ− 1)(ϕ +B) dϕ (4.6)

where B, C are constants.
The correspondence of the points can be written as follows:

z ξ

−∞− ib −∞− i0
−0− ib −B + i0
0 + i0 0 + i0

a1 + i0 1 + i0

a1 + i∞ ∞+ i0

The boundary values for Φ(z(ξ)) read

ImΦ(z(ξ)) = 0 at −∞ < ξ < 0

ReΦ(z(ξ)) = 0 at 0 < ξ <∞)

Φ(z(ξ))→ 0 when |ξ| → 0

(4.7)

The solution to boundary value problem (4.7) has the form

Φ(z(ξ)) =
Ai√
ξ

(4.8)

where A is a constant.
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For the shear stress σxy, one obtains

τxy =
√
Gevx1 = −

√
GeReΦ(z) =

√
GeA√−ξ (4.9)

at x1 = 0, −b < y < 0, where

y = −2C
k′
[E(δ, k) − k′2F (δ, k)] + 2C

√

ξ(1− ξ)′
ξ +B

−β < ξ < 0 δ = arcsin

√

B − ξ
1 + ξ

(4.10)

k =

√

B

1 +B
k′ =

√

1− k2 = 1√
1 +B

The stress σy has the form

σy = evy = −e ImΦ(z) = −
eA√
ξ

at 0 < x1 < a1

x1 =
2C

k
[E(δ′, k′)− k2F (δ′, k′)]− 2C

√

ξ(1− ξ)
ξ +B

0 < ξ < 1

(4.11)
where

δ′ = arcsin

√

ξ(1 +B)

ξ +B

and F (·, ·), E(·, ·) are elliptic integrals of the first and second kind, respectively.
Schwarz-Christoffel integral (4.6) is calculated through formulas (3.141.9)-

(3.141.11) taken from the handbook by Gradshteyn and Ryzhik (1965).
For the determination of the unknown constants A, B, C, one can use the

following conditions:
— the equilibrium condition

1

2
P =

0
∫

−b

τxy dy −
a
∫

0

σy dx = G
[

0
∫

−b

ReΦ(z) dy +

a1
∫

0

ImΦ(z) dx1
]

=

(4.12)

= GAC

1
∫

B

dξ
√

(1− ξ)(ξ +B)
= πAGC

— conditions of the x1 and y correspondence

a1 = x1
∣

∣

ξ=1
=
2C

k′

[

E
(π

2
, k′
)

− k2F
(π

2
, k′
)]

(4.13)

−b = y
∣

∣

ξ=−B
=
−2C
k

[

E
(π

2
, k
)

− k′2F
(π

2
, k
)]
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and, therefore, one gets

A =
1
2P

πGC
C =

bk′

2
[

E
(

π
2 , k
)

− k′2F
(

π
2 , k
)] (4.14)

Equations (4.13) yield a transcendental equation for the constant B

b

a1
=
E
(

π
2 , k
)

− k′2F
(

π
2 , k
)

E
(

π
2 , k
′

)

− k2F
(

π
2 , k
) (4.15)

Since (4.15) can be solved numerically by application of a routine procedure,
formulas (4.9)-(4.11) and (4.14) yield an analytical solution.

5. Conclusion

In this paper, a novel approximate solution to the contact problem for the
elastic half-plane with an embedded punch is proposed. Although our approach
is based on the approximate method, it seems that the obtained accuracy is
acceptable in the engineering practice. This question is going to be investigated
numerically in our future research.
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Analiza asymptotyczna zagadnienia kontaktowego stempla

i półprzestrzeni sprężystej

Streszczenie

W pracy rozważono zagadnienie kontaktowe związane z oddziaływaniem sztyw-
nego stempla i półprzestrzeni sprężystej. Analizowany problem może np. modelować
fundamenty budowli usytuowane w podatnym gruncie. Sformułowano w postaci anali-
tycznej pole naprężeń przy użyciu metody perturbacji osobliwych i techniki zmiennych
zespolonych.
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