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Heat conduction in a thick layer made of non-periodically distributed
micro-laminas of two rigid conductors is considered. Macroscopic pro-
perties of the layer are continuously graded across its thickness (FGL
layer). The aim of the paper is to propose an averaged model of non-
stationary heat conduction in the thick layer with functionally graded
macroscopic properties. Model equations are derived in the framework of
the modified tolerance averaging technique, cf.Wozniak and Wierzbicki
(2000). Moreover, the model is applied to show the microstructural effect
on heat conduction in the FGL layer.
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1. Introduction

The main object of considerations is a thick layer made of two rigid conductors,
non-periodically distributed in the form of micro-laminas along the thickness
of the layer. It is assumed that this laminated composite has macroscopic
properties continuously varying across its thickness. Materials of this kind
are called Functionally Graded Materials (FGM), cf. Suresh and Mortensen
(1998).

The geometry of microstructure of those composites cannot be described
exactly. Thus, thermomechanical behaviour of such composites can be analy-
sed only within micromechanical models with idealised geometries. To describe
FGM-type media, methods proposed to investigate macroscopically homoge-
neous composites, e.g. periodic composites (laminates), can be applied. De-
spite of the fact that FGM-type media are not macroscopically homogeneous,
those methods are modified and adapted to analyse their overall behaviour.
Some methods were discussed by Reiter et al. (1997) and in a monograph by
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Suresh and Mortensen (1998). Between these methods, we have to mention
methods based on the asymptotic homogenization proposed and developed for
periodic composites and structures, cf. Bakhvalov and Panasenko (1984), Ji-
kov et al. (1994), and applied to heat conduction problems e.g. by Galka et al.
(1994). Heat transfer problems were also analysed in the framework of models
with microlocal parameters, cf. Matysiak (1991). However, models based on
the asymptotic homogenization as well as microlocal models neglect usually
the effect of microstructure size (called the length-scale effect or the effect of
period lengths) on the overall behaviour of laminates with microperiodic struc-
ture. Homogenization procedures were applied to investigate problems of heat
conduction and/or thermal stresses in functionally graded materials in many
papers, see e.g. Itoh et al. (1996), where also the aforementioned effect was
neglected.

In order to circumvent the above drawback, one can apply the tolerance
averaging technique, proposed and discussed for periodic composites in a book
by Wozniak and Wierzbicki (2000). This method was used to analyse special
problems of different periodic structures in a series of papers, e.g. for thin
plates in Jedrysiak (2001), for wavy plates in Michalak (2001), for laminates
in Szymczyk and Wozniak (2006). Heat conduction problems of periodic com-
posites were investigated in the framework of this technique in some papers
by e.g. Wozniak et al. (1996), Ignaczak and Baczynski (1997), WoZniak and
Wierzbicki (2000), Wozniak M. et al. (2001), Lacinski (2005). This approach
leads from equations with functional, periodic, highly-oscillating and, in ge-
neral, non-continuous coefficients to a system of differential equations with
constant coefficients, describing the effect of microstructure size on the overall
behaviour of a periodic composite.

In the last time, the tolerance averaging technique was modified and adop-
ted to investigate mechanical problems of FGM-type structures, e.g. for FGL
plates by Jedrysiak et al. (2005), shells by Wozniak et al. (2005), for laminates
with microdefects by Rychlewska et al. (2006).

The aim of this paper is twofold. Firstly, to propose a certain averaged
microstructural model of heat conduction in a non-periodically laminated lay-
er, which has macroscopic properties functionally varying along its thickness.
Secondly, to apply the new model to show some microstructural effects in heat
conduction of that layer.

2. Preliminaries

Subscripts 4,7,... run over 1,2,3 and are related to the coordinate system
Oxixoxs; subscripts «,(3,... run over 2,3 and are related to the system
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Oxoxs; summation convention holds. Denote by x = (x9,z3), * = x; and
introduce t as the time coordinate. It is assumed that the non-periodically la-
minated layer under consideration occupies the region (0, L1)x (0, La) x (0, L3)
in the physical space. Denote by H = Lq the thickness of the layer along the
z-axis. The layer is made of two materials distributed in m laminas having the
same thickness [; hence H = ml. It is assumed that the number m of laminas
is large (m~! < 1). Thus, the condition | < H is satisfied and the thickness [
will be called the microstructure parameter. The nth lamina is defined as the
region I, x II, n=1,...,m, where I,, = ((n — 1)l,nl), I = (0, Ly) x (0, L3).
Moreover, every lamina consists of two homogeneous sub-laminas with thick-
nesses [, II'. Properties of the sub-laminas are described by specific heats ¢,
¢’ and heat conduction tensors kl’-j, k;;, i,7 = 1,2, 3. Material volume fractions
in the nth lamina are denoted by v}, =1/, /1, v/! =1 /l. Assuming the sequence
{v/}, n=1,...,m, to be monotone and for every n=1,...,m — 1 to satisfy
condition [v),,; — v, | < 1, the thick layer can be treated as made of a FGM
and will be called the functionally graded laminated layer (the FGL layer).
Similar conditions are satisfied by the sequence {v//} because of v}, + v} = 1.
Under the above requirements, the sequences {v),}, {v//}, n = 1,...,m, can
be approximated by continuous functions ¢/(+), v”/(-), which describe the gra-
dation of material properties across the layer thickness. The choice of these
functions is very important in design and optimization problems for FGL com-
posites. The functions /(-), v”(-) will be called the fraction ratios of materials.
Hence, the non-homogeneity ratio v can be introduced as a function defined
by the formula v(:) = /v/(-)v”(-). The aforementioned functions of fraction
ratios are assumed to be slowly varying (this concept is defined in the book by
Wozniak and Wierzbicki (2000) and will be recalled in the subsequent section).

A fragment of the macrostructure of the FGL layer (as the layer made of
a functionally graded material) is shown in Fig. 1; however, a fragment of the
FGL layer on the micro level is presented in Fig. 2.

Assuming small oscillations of an unknown temperature field 6 and intro-
ducing the thermal load ¢ (the intensity of heat sources), the heat conduction
in the FGL layer can be considered in the framework of the Fourier model,
described by the governing equation

—(kij04) i+ c =q (2.1)

It has to be emphasized that the above equation has coefficients k;; = k;;(x),
¢ = ¢(z), being highly-oscillating, non-continuous functions in z. In order to
replace differential equation (2.1) by a system of differential equations with
continuous, slowly varying functional coefficients, the tolerance averaging me-
thod will be adopted. This method was proposed for periodic structures by
Wozniak and Wierzbicki (2000).
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Fig. 1. A fragment of the macrostructure of the non-periodically laminated layer
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Fig. 2. A fragment of the microstructure of the non-periodically laminated layer

3. Tolerance averaging technique

3.1. Foundations

Denote by f an arbitrary integrable function defined in [0, H], which can
also depend on @ and t as parameters. The averaging operator will be defined
by

T+i

@ =" [ j@de  ze[n -] (31)

N~

where [ is the constant thickness of every lamina.

Let ¥ be a differentiable function, ¥ € C1([0, H]), which can depend on
x and t as parameters. The function ¥ will be called a slowly varying func-
tion (for a certain tolerance ¢ < 1 and with respect to the microstructure
parameter [) and denoted ¥ € SV, if functions [0¥ (where O(-) is differen-
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tiation operation with respect to x) and O(e¥) are of the same order, i.e.
o¥ € O(e¥), 0 < ¢ < 1. We also introduce the concept of the fluctuation
shape function g(x), x € [0, H], defined by the following formula

—l\/gyyll((?) {2% + I//(T)} for z € (—é, —% + lV”(T))

g(x) = _
z\/ﬁj,((?) [2? —v'@|  for we(b-1/@), 1)
where T is the centre of the interval (—[/2,1/2). This function is assumed
to be continuous, linear across every sub-lamina thickness and of an order
O(1). Moreover, it has values Iv/3v(T) at the interfaces between laminas, and
it takes values —Iv/3v(Z) at the interfaces between the adjacent sub-laminas
within the lamina. Because the non-homogeneity ratio v(-) is a slowly varying
function, it can be shown that the mean value of the function g(-) in every
lamina is equal to zero. An example of the fluctuation shape function is shown
in Fig. 3.

v x

Fig. 3. An example of the fluctuation shape function g(z) (1 — the 1st conductor,
2 — the 2nd conductor)

A detailed discussion of the above concepts is shown in Wozniak and Wierz-
bicki (2000).

3.2. Modelling assumptions

In the framework of the tolerance averaging technique, additional assump-
tions are formulated, cf. Wozniak and Wierzbicki (2000).

The first modelling assumption is the thermal assumption, which states
that the temperature field § = 0(x,x,t), x € [0, H], = € II, is restricted by
the following formula

O(xz,x,t) = Oz, x,t) + g(z)d(x, x,t) (3.2)
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where O(-,x,t) € SV is called the averaged temperature, 9(-,x,t) € SV is
called the fluctuation variable of temperature. The functions O(-), J(-) are
basic unknowns describing temperature in the FGL layer.

The second assumption, called the tolerance approrimation, states that
for an arbitrary slowly varying function ¥, ¥ € SV, the approximation
U 4+ O(e¥) = ¥ will be employed, which neglects terms of the order O(e)
as small when compared to 1.

3.3. The outline of the modelling procedure

The modelling procedure for FGM-type composites is similar to the procedure
of the tolerance averaging, cf. Wozniak and Wierzbicki (2000), and can be
divided into three steps:

1) to average equation (2.1), use formula (3.1),

2) to formulate a variational condition (cf. the aforementioned book), mul-
tiply equation (2.1) by the test function which has characteristic features
as the fluctuation shape function, and then to average the resulting equ-
ation use formula (3.1),

3) substitute formula (3.2) into the aforementioned averaged equations, and
after some calculations, differential equations for the averaged tempera-
ture © and the fluctuation variable 1 are obtained.

4. Governing equations of the microstructural model

Applying the aforementioned modelling procedure and denoting

Kij = (kij) Kij = (kijg;) Kij = (kijg.9,)

Kij = 17" (kijg) Kij = 1%(kij99) ¢ = (4.1)
C = 1"Y{cg) C =1"%(cgg) Q=(q)

Q=1"qy)

we arrive at the following equations of the microstructural model of the he-
at conduction in the thick FGL layer (the thick layer with an internal non-
periodically laminated structure)

Koj(2)6 jo + [K1j ()0 3]1 — C(2)O + [Ki1 (2)9] 1 + Kot ()90 +

+l{[f{\la(x)19,a],1 + k\ai(x)ﬂ,ai - é(m)ﬂ} =-Q (4.2)

K1j(2)0; + 1[C(2)60 — Kaj(2)O jo] +
+K11(2)0 + P[C(2)0 — Kap(2)9 8] = —1Q

with terms dependent on the microstructure parameter .



ON THE MODELLING OF HEAT CONDUCTION... 245

It has to be emphasized that model equations (4.2) have three characteri-
stic features:

1) coeflicients of these equations are slowly varying functions in x, because
the functions v/(-), v"(-), v(-) are slowly varying,

2) since equations (4.2) depend on the microstructure parameter [, the
proposed model describes certain microstructural phenomena,

3) boundary conditions for the fluctuation variable ¥ have to be formulated
only on that part of the boundary, which intersects lamina interfaces,
because the equation for 1 is independent of the derivative of ¥ with
respect to x.

Summarizing, the microstructural heat conduction model is determined by:
e equations (4.2) for the unknowns O(-,x,t), ¥(-, x, 1),

e conditions of applicability of the model, i.e. equations (4.2) have physical
sense for the unknowns O(-, x,t), ¥(-, ¢, t) being slowly varying functions
in x for every « and ¢ which can be treated as parameters,

e the temperature field of the non-periodically laminated layer can be ap-
proximated by means of formula (3.2).

At the end of this section, let us observe that the formal passage [ — 0 in
equations (4.2) makes it possible to eliminate the fluctuation variable ¢ from
(4.2), which is given by the formula

Kq.
9= —v“—(x)@,j (4.3)
Kll(fE)

After substituting (4.3) into equation (4.2)1, a simplified equation repre-
senting a certain asymptotic model, called the macrostructural heat conduction
model of the FGL layer, is derived

Kaj(x)g,ja + [Klj (:C)@J]J — C(m)@ — [%W@J} . +
H T 44
Ka(@)Kij(z),,
I?H(x) 8,]04 Q

where the effect of the microstructure parameter [ is not taken into account.

It can be observed that for constant values of the parameters v/, v”,
V' + V" =1, equations (4.2) or (4.4) represent certain heat conduction mo-
dels of a periodically laminated layer. It is necessary to emphasize that the
governing equations of the proposed microstructural model can be employed
to periodically laminated layers.
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5. Applications

5.1. Heat conduction in a thick FGL layer

Let us consider a thick FGL layer subjected to a thermal gradient in the
direction parallel to laminas. Hence, a plane problem of heat conduction in this
layer bounded by the planes x = 0, x = H and x5 = 0, x5 = L is investigated.

Sub-laminas of the layer are made of two different isotropic materials.
Properties of the sub-laminas are described by specific heats ¢, ¢ and heat
conduction tensors with elements kj; = kb = ks = k', k{; = kb = kfis = k",
where k’, k" are heat conduction coefficients. Assume that heat sources are
%\e/I‘O,/Q == @ = 0 and denote K1 = Kll’ KQ = K22, f{ = f{n, F = F22,
K = Kj; and z = z9. All unknowns in equations (4.2) are functions of z, z, t,
ie. © =06(x,z,t), ¥ =9z, z,t).

Hence, the microstructural model equations take the form of two differential
equations

[Kl (1‘)@,1]71 + KQ(.’IJ)@QQ - C(.%')@ = —[K(.%')lg] 1

)

(5.1)
K(2)0 4 P[C(z)) — K(x)0 95) = —K ()O3
In the framework of the macrostructural model we obtain from (4.4)
(K (2)]? 5 _
{(Ki(2) - %) )@,1}71 + Ky(2)O.45 — C(2)0 =0 (5.2)

which describes only the macrotemperature 6.
Let us introduce a new unknown ¥ instead of ¥ given by the formula
w=94 5@, (5.3)
K(z)
It can be observed that in the framework of the macrostructural model the
function ¥ is equal to zero. It can be called the microstructural variable.
Because the macrotemperature O(-, z,t) and the fluctuation variable (-, z,t)
are slowly varying functions in x for every z and t, the new unknown — the
microstructural variable ¥(-, z,t) is also slowly varying in z.
Substituting (5.3) into (5.1), we obtain modified equations

C(2)6 — Ky(2)O 55 — {(Kl(x) - %)@J}?1 = [K(2)7]

K(2)W + P[C(x)¥ — K(2)W 9] = 1*[C(2)0 1 — K ()6, 129] =
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The right hand side of (5.4)2 can be rewritten as

PC(z)0, — F(:C)@ng]gg; =
=12 [V(Cl?)]z[C(CC)@J - K2($)@7122] ggi;

Using equation (5.4); and taking into account that all coefficients are slowly
varying functions in x, we can write the above equation in the form

P[C(2)0,1 — K (2)0,122] g E; _
~ PP (k) - o, 4 K] )

Hence, the right hand side of (5.4)9 is small comparing to the left hand side of
this equation, bearing in mind that the macrotemperature O(-,z,t) and the
microstructural variable ¥(-, z,t) are slowly varying functions in x. The right
hand side of (5.4)2 can be neglected in the first approximation of this model,
and equations (5.4) can be written in the form

{(Kl(:c) - %)971}71 + Ky (2)0 95 — C(2)0 = —[K (2)¥] 4

K(z)¥ + P[C(z)¥ — K(z)Wa) = 0

(5.5)

Hence, for the microstructural variable, we obtain independent equation
(5.5)2. Similar formulas for vibrations were derived: for FGL plates by Jedry-
siak et al. (2005), for FGL shells by Wozniak et al. (2005). Equations (5.5)
can be treated as the first approximation of equations (5.1). They describe a
certain approximated microstructural model. At the same time, formula for the
temperature (3.2) takes the following form

0 =6 - g(a)K(2)[K(2)] 6,1 + g(a)¥

Below, our considerations are restricted to the problem of changeability
of the microstructural variable ¥, described by equation (5.5)2. Hence, the
effect of the microstructure size on the microtemperature in the FGL layer is
analysed.



248 J. JEDRYSIAK, A. RADZIKOWSKA

5.2. The effect of microstructure size on the microstructural variable ¥

The effect of microstructure size on the microtemperature, described by
equation (5.5)9, is investigated. Let us assume that the solution to this equ-
ation has to satisfy the following initial-boundary conditions:

— the initial condition
U(x,2,0) = f(z,2) (5.6)

— the boundary conditions (only for the boundaries z =0, z = L)
U(x,0,t) = f(x,0) exp(—wt) = fo(x) exp(—wt) U(x,L,t)=0 (5.7)

It can be observed that the boundary conditions for the function ¥ can be
formulated only for the z-axis. Hence, the solution to equation (5.5)2 has the
form

U(x,z,t) = f(x,z) exp(—wt) (5.8)
Denoting
V2= ?(UC) 0t = Iu(_(x)
C(x) 12C(x)
and substituting solution (5.8) into equation (5.5)2, we obtain a differential

equation for the function f

foo—f—w)x?=0 (5.9)

It can be observed that the argument = can be treated as a parameter.
Following (5.7), the boundary conditions for the function f have the form

f(2,0) = folx) flz,L) =0 (5.10)

Introduce non-dimensional denotations ¢ and ¢ such that

z
= Z f(CC,Z) :fo(iﬂ)gf)(:l?,()
Hence, boundary conditions (5.10) take the form
¢(0) =1 ¢(1) =0
Denoting
a() l , K w
o(-) = == A= — 0° = = =—
=3¢ L S e "
differential equation (5.9) can be written as
pVQ
Pp—p(1—2)= =0 (5.11)

A2
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After some manipulations, we arrive at the following cases of solutions to
equation (5.11):
1. if 2 =0 and setting 2 = p?A~2 then

1 — exp[2w(¢ — 1)

= — 12
2. if 0 < 2 <1 and setting k% = (1 — 2)p?A~2 then
exp(—rn¢ exp(ke(
o(¢) = 2 rad) ) (.13
1 —exp(—2kn) 1 —exp(2kp)
3. if 2 =1 then
P(Q)=1-¢ (5.14)
4.if 2 >1and 2 = (2 -1)p*A2 #0272 (n=1,2,...) then
sin[y(1 — ¢)]
= 1
o¢) = (5.15)
5. if 2> 1and 2 =n?7r? (n=1,2,...) then
2, =n*m\p 2+ 1 (5.16)

Hence, using formulas (5.12)-(5.16), the microstructural variables ¥ of
temperature, i.e. solutions to equation (5.5)3, can be obtained:

1. if 2 =0 and setting 2 = p?A~2 then

1-— exp[2/§(% — 1)}
1 — exp(—2k)

2. if 0 <w < n? and setting k% = (1 — 2)p*A~2 then

o) | en ()

1 —exp(—2kgn) 1—exp(2kq)

U(x,z) = fo(x)[ } exp(—wt)

3. if w =n? then
z
U(x,z) = fo(x)(l - Z) exp(—wt)
4. if w>n?and 72 = (2 - 1)p?A2 #n?7? (n=1,2,...) then

(1 1)

5 exp(—wt)
siny

U(x,z) = folx)



250 J. JEDRYSIAK, A. RADZIKOWSKA

5. if w >n? and 2 =n?7r? (n=1,2,...) then
wn = N2 2L 40

It can be observed that the microstructural variable ¥ related to the mi-
crostructural effect depends on the frequency w. The microstructural variable
decays exponentially for cases 1-2 and linearly for case 3. Certain values of
the frequency cause a non-decayed form of the microstructural variable ¥ (ca-
se 4). Moreover, the solution to equation (5.5)2 does not exist (the case 5) for
certain frequencies.

It has to be emphasized that the microstructural variable has to be a slowly
varying function in x. Hence, some solutions do not satisfy the aforementioned
modelling condition, because they can have points of singularity, e.g. case 4.

The above microstructural effects cannot be analysed in the framework of
the macrostructural heat conduction model, described by equation (4.4) or
(5.2).

Some calculational results illustrating the above formulas are shown in the
subsequent section.

6. Calculational results

Let us assume two different cases of the material distribution across the layer
thickness:

1. the first case of the fraction ratios of materials — linear functions

V(z) = = Vi) =1-1 () (6.1)

2. the second case of the fraction ratios of materials — exponential functions

1—exp %x
V(z) = ?5(2)) Vi) =1-1() (6.2)
These functions and proper non-homogeneity ratios v = v/v'v are shown in
Fig. 4.

Some calculational results are shown in Figs. 5-8. In Figs. 5a,b, plots of
solutions to equation (5.11), i.e. non-dimensional parts ¢ of microstructural
variables ¥ versus the non-dimensional coordinate ¢ € [0, 1] are presented.
These curves are found for the following parameters: [/L = 0.1, k" /K = 0.5,
x/H = 0.5. Decaying solutions (2 <1: 2=0, 2=0.9, 2= 1) are shown in
Fig. 5a, and oscillating solutions (£2 > 1: 2 = 1.1) in Fig. 5b.
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Fig. 4. The fraction ratios of materials v/, v/ and the non-homogeneity ratio v
versus the non-dimensionless coordinate § = xz/H; (1) — for formulas (6.1), (2) — for
formulas (6.2)
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Fig. 5. Diagrams of non-dimensional parts ¢ of microstructural variables ¥ versus

the non-dimensional coordinate (; (a) decaying solutions ({2 < 1: 2 =0, 0.9, 1),

(b) oscillating solutions (§2 > 1: £2 =1.1) (for parameters: {/L = 0.1, k" /k" = 0.5,
x/H =0.5)

Plots of non-dimensional functions ¢ versus the ratio z/H € [0,1] (the
non-dimensional parameter &) are presented in Figs. 6a,b. These diagrams are
determined for the following parameters: {/L = 0.1, k" /k' = 0.5, ( = z/L =
0.05. Plots for the exponentially decaying solutions (£2 < 1: 2 =0, 2 = 0.9)
are shown in Fig.6a, and for the oscillating solutions (2 > 1: 2 = 1.1) in
Fig. 6b.

It can be observed that the oscillating solutions (for 2 > 1: 2 = 1.1) are
not slowly varying functions. Hence, they cannot be treated as solutions in
the framework of the microstructural model, because they do not satisfy the
modelling conditions of the tolerance averaging. Below, only decaying solutions
will be considered.

In Fig.7, we have diagrams of non-dimensional parts ¢ versus the ra-
tio k”/k' € [0,1]. These curves are calculated for the following parameters:
/L =0.1, z/H = 0.5, ( = z/L = 0.05. The presented plots are given only
for the exponentially decaying solutions (2 < 1: 2 =0, 2 =0.9).



252 J. JEDRYSIAK, A. RADZIKOWSKA

(a) 1 - for fraction ratios (6.1) (b)
0.4 2 - for fraction ratios (6.2)[] & 8
b g 6F i 1
- ™ ooy
03F 1:2=09 // \»\\ % ahl | = ,
- A | H H i ;
/ - Y 2 i ] i it U
7 . _ Yo I S \ HINS . o
02F /o ANBT09 Y 0 N\\ AN L
, Vi | 9 R
/ \ 2 ! w ‘A \ 1
v \i al i i [ i
0.1- f/ /./" 1-2=0 2.02=0 '\“ 4 1 - for fraction ratios (6.1) : | i
/L S = 'g r 2 - for fraction ratios (6.2) |}
002 04 06 08 10 0 02 04 06 08 10
x/H x/H

Fig. 6. Diagrams of non-dimensional parts ¢ of microstructural variables ¥ versus
the ratio z/H; (a) for exponentially decaying solutions (2 < 1: 2 =0, 2 =0.9),
(b) for oscillating solutions (£2 > 1: 2 = 1.1) (for parameters: {/L = 0.1,
E"/k' =0.5, z/L = 0.05)
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Fig. 7. Diagrams of non-dimensional parts ¢ of microstructural variables ¥ versus
the ratio k" /K’ for exponentially decaying solutions, i.e. 2 <1: 2 =0, 2 =10.9 (for
parameters: [/L =0.1, x/H = 0.5, z/L = 0.05)

Curves of non-dimensional functions ¢, being the exponentially decaying
solutions (2 < 1: 2 =0, 2 = 0.9), versus the ratio /L € [0,1] are shown
in Fig.8. These plots correspond to the following parameters: z/H = 0.5,
¢(=2z/L=0.05 £"/k' =0.5.

Analysing the obtained results, some remarks can be formulated:

1. the shape of fluctuation variables depends on the non-dimensional para-

meter {2, describing fluctuation frequencies, see Fig. 5, i.e.:

(a) for 0 < £2 < 1 the fluctuations decay exponentially,
(b) for £2 =1 they decay linearly,
(c) for £2 > 1 they oscillate;
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Fig. 8. Diagrams of non-dimensional parts ¢ of microstructural variables ¥ versus
the ratio [/L for exponentially decaying solutions, i.e. 2 < 1: 2=0, 2 =10.9 (for
parameters: k”/k' = 0.5, x = 0.5, z/L = 0.05)

2. it can be observed for parameters which are not taken account in Fig. 5,
that:

(a) for small values of the parameter (2 from the interval [0,1), the
microstructural variables strongly decay (Fig. 5a and Fig. 6a),

(b) for small values of the ratios I/L, k" /k’ and for 0 < £ < 1, the
microstructural variables strongly decay,

(c) for fraction ratios (6.2), the solutions more decay than for fraction
ratios (6.1), see Fig. ba,

(d) with increasing values of the parameter (2 (for 2 > 1), the micro-
structural variables strongly oscillate;

3. from the results shown in Fig. 6, it can be observed that:

(a) the maximum values of the decaying microstructural variables for
the exponential functions of the fraction ratios of materials (6.2)
are obtained for greater values of the ratio x/H than for the linear
functions of fraction ratios (6.1),

(b) for fixed values of the ratios: /L, k" /k’, z/L, the microstructural
variables do not exist for certain values of the ratio x/H, determi-
ned by formula (5.16), (see points of singularity in Fig. 6b),

(c) for parameters 2 > 1 (e.g. 2 = 1.1), we obtain the oscillating
solutions which have points of singularity (Fig.6b); hence, these
solutions are not slowly varying functions in z and they do not
hold the modelling conditions;

4. analysing the results presented in Fig.7, we can observe that decaying
microstructural variables for the exponential functions of the fraction
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ratios of materials (6.2) increase with the increasing of the ratio k”/k/,
in contrast to the variables for linear fraction ratios (6.1), which are
constant;

. from the results shown in Fig. 8, it follows that decaying microstructural

variables for linear (6.1) and exponential (6.2) functions of the fraction
ratios of materials increase with the increasing ratio /L.

7. Final remarks

Applying the modified tolerance averaging method proposed for periodic com-
posites by Wozniak and Wierzbicki (2000) to the equation of heat conduction
in thick non-periodically laminated layers (FGL layers), governing equations
of the non-asymptotic model of such layers have been derived.

Summarizing our considerations, the following general remarks regarding

some results concerning the heat conduction in FGL layers can be formulated.

e Derived non-asymptotic heat conduction model of FGL layers takes into

account the effect of microstructure size (the lamina thickness) in con-
trast to the asymptotic model which describes only the overall behaviour
of the layers. Hence, the proposed model is called the microstructural
model and the asymptotic one — the macrostructural.

Both models are governed by equations with functional, continuous co-
efficients, being slowly varying functions of the argument describing the
layer along the direction perpendicular to laminas.

The microstructural model makes it possible to formulate initial and
boundary conditions not only for the averaged temperature but also for
fluctuations of the temperature.

Analysing the application of the proposed model, some remarks can be for-
mulated.

e On exemplary applications of the microstructural model, the effect of mi-

crostructure size on the problem of heat conduction in a thick FGL layer
has been analysed. It has been shown that changes of the microstructural
variable (hence, the fluctuation of the temperature) can be investigated
independently of the changes of macrotemperature (the averaged tem-
perature). Hence, this effect is called the intrinsic microstructural effect.
However, changes of the averaged temperature cannot be analysed inde-
pendently of the changes of temperature fluctuation, but this problem
will be analysed in forthcoming papers.
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microstructural variables are different for different values of fluc-

tuation frequencies, i.e. there exists a special value of the fluctuation
frequency, such that:

the microstructural variables decay exponentially for frequencies
smaller than this value,

the variables decay linearly for the frequency equal to the special
value,

the variables oscillate for frequencies greater than this value (5.15)
and they have points of singularity,

the variables do not exist for the frequencies determined from for-
mula (5.16).

e It can be observed that the microstructural variables are not slowly va-
rying functions for frequencies greater than this special value of the fluc-
tuation frequency, and these variables are not solutions in the framework
of the model assumptions.

e The changeability of the microstructural variables depends on:

different functions of the fraction ratios of materials, e.g. exponen-
tial or linear functions,

differences between the heat conduction coefficients &', k”.

Other problems of heat conduction in FGL layers in the framework of
the microstructural model will be considered in forthcoming papers, e.g. the
effect of changes of the fluctuation of temperature on changes of the averaged
temperature.
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O modelowaniu przewodnictwa ciepta w nieperiodycznie laminowanej
warstwie

Streszczenie

W pracy rozpatrywane jest przewodnictwo ciepta w grubej warstwie zbudowane;j
z nieperiodycznie rozmieszczonych mikrolamin, wykonanych z dwoch przewodnikéw.
Wtlasnosci makroskopowe warstwy zmieniaja sie w sposéb ciagly wzdhuz jej grubo-
$ci (tzw. warstwa typu FGL — ang. functionally graded laminate), por. rys.1. Ce-
lem pracy jest przedstawienie usrednionego modelu niestacjonarnego przewodnictwa
ciepta w grubej warstwie o funkcyjnie zmieniajacych si¢ wlasnosciach makroskopo-
wych. Réwnania modelu otrzymano w ramach zmodyfikowanej techniki tolerancyj-
nego usredniania, por. Wozniak i Wierzbicki (2000). Ponadto, zaproponowany model
bedzie wykorzystany w przykladzie dla warstwy typu FGL, ktory pozwoli pokazac
wplyw mikrostruktury.
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