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The Eulerian-Lagrangian approach has been applied to two-phase turbu-
lent flows with dispersed heavy particles. First, numerical computations
of the continuous phase (fluid) have been performed using the Direct
Numerical Simulations (DNS) and Large-Eddy Simulations (LES) for
the case of a fully-developed channel flow. Parallelisation efficiency of
flow and particle solvers has been estimated. Residual turbulent kinetic
energy has been found from filtered DNS (also called a priori LES); a
model for this quantity has been assessed. Then, heavy particles have be-
en tracked in the LES velocity field. Statistics of particle motion (mean
velocity, intensity of velocity fluctuations) and the profile of cross-stream
number density as well as preliminary results for particle wall deposition
have been obtained.
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1. Introduction

Two-phase polydispersed flows (with solid particles, droplets or bubbles) com-
monly occur in various industrial applications, including power engineering
(coal/spray combustion, wet steam flow), chemical and process engineering
(catalytic reactions in two-phase flow, particle separators, etc.). These flows
are often physically complex because of flow turbulence, particle polydispersi-
ty, phase changes and/or chemical reactions (cf. Moin and Apte, 2006). Con-
sequently, an improved modelling of polydispersed two-phase flows is largely
perceived as an open issue. Although major progress has been achieved sin-
ce the advent of Computational Fluid Dynamics (CFD), there is still a need
for model developments, both fundamental and for practical applications. Ge-
nerally speaking, three main issues in CFD can be identified as: numerics
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(including appropriate discretisation of governing equations, effective solution
algorithms, parallelisation of numerical computations), geometrical complexi-
ty (including grid generation, i.e. suitable discretisation of the flow domain,
often differing for external and internal flows), and physical complexity of the
flow phenomena.

Out of the three, the numerical and geometrical issues have largely been
overcome to date; however, sound modelling of physical complexity remains to
be a pacing item in the progress of CFD. Quite often, the turbulence modelling
is perceived as the central issue, since a physically-sound description of the
underlying flow field is a sine qua non condition for a correct and reliable
computation of two-phase dispersed flows, including heat and mass transfer.
As far as the turbulence modelling is concerned, various levels of descrip-

tion have been developed, starting from the statistical resolution of the flow
(RANS, PDF), through computation of larger flow structures (LES), up to
the full resolution of three-dimensional, unsteady flow field (DNS). For seve-
ral reasons, nowadays, the LES stands out as a promising approach to deal
with turbulent polydisperse flows. One of the reasons is that particle motion
is often dominated by energetic, large-scale flow structures that are (or should
be) adequately resolved in this approach and the effect of Sub-Grid Scales
(SGS) remains limited (cf. Armenio et al., 1999). Yet, the LES still needs fur-
ther developments, specially for wall-bounded turbulence, to work out a viable
compromise between its computational cost and accuracy. Improved models
need to be put forward for fluid-particle interactions, including the subgrid-
scale particle dispersion (cf. Pozorski et al., 2004; Kuerten and Vreman, 2005;
Shotorban and Mashayek, 2006), the effects of preferential particle concentra-
tion (Squires and Eaton, 1991), possibly also the effect of particles on the fluid
SGS models, etc. Another reason for the increasing popularity of LES is the
rapid growth of available computational power that allows for simulations of
more and more complex flow cases.

Although the LES is governed by deterministic equations, it still conserves
a flavour of the statistical approach, since the resulting flow realisations can be
compared to experimental or DNS results via the ensemble- or phase-averaged
statistics, rather than via single realisations. Yet, contrary to the statistical
turbulence modelling, LES allows one to exactly resolve a spectrum of length
scales in the flow (down to the mesh size) and their interactions. This picture
gets more complex for two-phase dispersed flows, since the presence of particles
creates new scales of time and length due to inertia, gravity effects, collisions,
interaction with walls, evaporation, chemistry, etc.

The two above facts, i.e. the practical importance of dispersed turbulent
flows on the one hand and modelling difficulties involved in their sound de-
scription on the other hand, provide the main motivation for the present work.
We report here the LES computation with Lagrangian discrete particle trac-
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king of turbulent, particle-laden channel flow. The paper constitutes the first
step towards a more comprehensive study of such flows.

2. LES of turbulent flow

2.1. Governing equations and their closure

The assumed starting point are the Navier-Stokes (N-S) equations for the
incompressible flow; after spatial smoothing (with a given filter function G of
a length-scale ∆), they become the filtered equations for the resolved scales,
or large eddies (cf. Pope, 2000)

∂U i
∂t
+ U j

∂U i
∂xj
= −
1

ρ

∂p

∂xi
+ ν∇2U i −

∂τij
∂xj

(2.1)

According to the idea of LES, flow variables are decomposed into resolved
(large-scale) and residual (subgrid-scale) parts: U = U + u′, p = p + p′,
etc., where the symbol (·) stands for spatial filtering (smoothing), being a
convolution: U = G ∗ U . In the filtered field, the flow scales smaller than a
certain cut-off length (related to ∆) are eliminated. In Eq. (2.1), τij is the
residual (subgrid-scale) stress tensor, τij = UiUj−U iU j ; the divergence of τij
represents the effect of small-scale velocity on the resolved flow.
As seen from Eq. (2.1), the large-eddy fluid dynamics is closed once a su-

itable model for the residual stress tensor is provided. We note that additional
models, e.g. for the residual kinetic energy, kr = u

′

iu
′

i/2, may also be needed
for some purposes. For the present computation, the dynamic SGS model of
Germano and Lilly (cf. Pope, 2000) has been applied. The deviatoric part of
the residual stress tensor, τdij = τij − (2/3)krδij , is modelled as

τdij = −2νrSij (2.2)

where Sij is the resolved strain rate (the symmetric part of the velocity gra-
dient tensor). The residual, or sub-grid scale, viscosity νr is determined as

νr = CG∆
2
|S| where |S| =

√
2SijSij. The dynamic procedure is applied for

the Germano model coefficient CG, assuming a certain scale-similarity around
the cut-off length

CG =
1

2

〈LijMij〉av
〈MklMkl〉av

(2.3)

where Lij and Mij are defined as

Lij = Û iU j − Û iÛ j Mij = ∆
2
|̂S|Sij − ∆̂

2

|Ŝ|Ŝij (2.4)
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In Eq. (2.3), 〈·〉av stands for a subsequent averaging (e.g., over flow homoge-
neity directions, whenever possible) to yield a smoother CG field. Moreover,

(·), (̂·) in Eq. (2.4) stand for spatial filtering with two different filter sizes:
∆ and ∆̂, respectively. We note that for the computation of CG, the opera-

tional formula for the effective filter length ∆̂ is needed. It is readily found

for a spectral filter: ∆̂ = ∆̂, and for a Gaussian filter: ∆̂ =

√
∆̂2 +∆

2
(cf.

Pope, 2000). Yet, a lingering question remains about the working meaning of
the effective length for the top-hat filter (often used for implicit filtering, also
here). The point is that the double filtering in this case is not equivalent to a

single filtering with ∆̂ and the same, top-hat filter shape.
To end this point, let us recall two often-used concepts. If the DNS of the

N-S eqs. is run with filtering of the solution at each time step (U = G ∗ U ,
but U is not used to compute the flow dynamics), such a procedure is called
a priori LES. It is often used to validate the LES closures (also for dispersed
two-phase flows). As opposed to this, a true LES computation, where Eqs.
(2.1) are solved, is called a posteriori LES. Both a priori and a posteriori LES
computations are reported in the following.

2.2. Estimation of residual kinetic energy

The issue of the residual or subgrid scale (SGS) velocity field, its influence
on the statistics of particle motion and their preferential concentration has
received only limited attention in the literature. A model for the SGS partic-
le dispersion seems to be crucial for coarser LES where a considerable part
of the turbulent kinetic energy (say, 20% or more) is not explicitly resolved.
Such a model has to be validated first, possibly through a priori LES tests.
Wall-bounded flows are of particular importance because of the LES resolu-
tion difficulties, the agglomeration of particles in the near-wall zone and their
separation on the walls.
Although the residual turbulent kinetic energy is not needed for LES flow

computation (save for SGS stress models based on the transport equation for
kr), estimation of this quantity may be necessary to model some small-scale
phenomena. In particular, the residual kinetic energy is needed in SGS particle
dispersion models.
In the present work, we estimate the residual kinetic energy kr through

a dynamic procedure. This is certainly appealing since we have gone for the
dynamic procedure to close the SGS stress term, too. The starting point of
this approach is the assumption that (cf. Shotorban and Mashayek, 2006)

kr = CI∆
2
|S|2 (2.5)
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where the proportionality parameter CI is not really a constant but varies
in space and time like the Germano coefficient CG. Analogously to CG, the
dynamic procedure with double filtering is applied to solve for CI

CI =
1

2

〈ÛkUk − ÛkÛk〉av

〈∆
2
|̂S|2 − ∆̂

2

|Ŝ|2〉av

(2.6)

2.3. Flow and particle solvers

We consider turbulent particulate flows in the Eulerian-Lagrangian approach
where the three-dimensional, unsteady simulations of the carrier phase: DNS,
a priori LES (filtered DNS) and true LES have been performed. The LES has
been coupled with the particle tracking.

As the flow solver, we have used an open-source academic code FASTEST3D,
currently being developed by the group of Prof. Michael Schäfer (TU Darm-
stadt, Germany). It is a finite volume, second-order accuracy, block-structured,
full-multigrid solver for incompressible flows, with the SIMPLE pressure-
velocity coupling scheme, suitable for parallel computations of general CFD
applications.

As the particle solver, we have further developed our in-house PTSOLV mo-
dule for the Lagrangian particle tracking. It provides the necessary interpo-
lation of flow variables at the particle locations, solves a system of ordinary
differential equations for particle positions and velocities, and computes sta-
tistics. In the present work, the dispersed phase has been assumed dilute;
consequently, the one-way momentum coupling (fluid-to-particles) is adequate
and no inter-particle collisions are considered.

2.4. Parallelisation issues

The LES computations using FASTEST3D for fluid flow and our PTSOLV module
for particle motion have been parallelised using the MPI library. The parallel
code has been prepared and tested locally; only afterwards the computational
task has been submitted to a mainframe server for a production run.

The flow domain has been divided into a number of equal-size parallel
blocks to be run on separate processors. For the particle solver, each proces-
sor has been assigned an approximately equal number of particles, indepen-
dently of their spatial locations. This choice seems suitable for various flow
cases, including those with highly non-uniform particle distributions, such as
spatially-developing particle-laden jets, or wall-bounded flows where particles
can accumulate in the near-wall regions due to turbophoresis. The main draw-
back of the chosen approach is the need to make the whole fluid velocity field
available for each processor at each flow time step to perform the interpolation
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of flow velocity to current particle locations. This may become problematic,
or even infeasible, for cases where a huge number of computational cells are
used for fluid. An alternative choice would be to assign to each of the pro-
cessors the particles currently located in the flow subdomain served by that
processor. For flow cases where there is no major risk of load unbalancing due
to a non-uniform particle distribution in space and for bigger computational
problems, that choice would be more efficient. Yet, for this alternative option
there would be a need to exchange some particles between processors at each
time step.

Fig. 1. Total elapsed time (arbitrary units) vs. the number of processors; particle
solver (•), flow solver on a fine grid (◦), on a coarser grid ( ); dashed line: ideal

scalability (slope −1 on log-log plot)

In order to find an optimum number of processors to be used in simula-
tions, we have performed scalability tests from parallel computations. First,
we ran the flow solver alone (no particles) on 44×44×32 and 128×128×128
meshes for several time steps using a number of processors varying from 1 up
to 32. Then, we ran the particle solver only (in a frozen fluid velocity field)
using 3.2M Lagrangian fluid elements. The results of scalability tests are qu-
ite instructive; they are shown in Fig. 1. First observation is that the switch
from a single-processor configuration to a two-processor parallel computation
is only marginally effective; this is explained by internal computer architec-
ture (fast cache memory available for single-processor runs, no need for data
exchange). Then, the parallel runs become quite efficient when passing to 4
and 8 processors. However, a shift from 8 to 16 processors for fluid compu-
tation is rather useless, probably because of the increase of ”area-to-volume”
ratio of each flow sub-domain. As expected, we note a better scalability for a
finer fluid mesh (more grid points) than for a coarser one. On the other hand,
the particle solver alone shows a good scalability for up to 32 processors; only
beyond, the inter-processor data exchange (necessary to compute the fluid ve-
locity seen by particles) makes a further increase of the number of computing
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nodes problematic. In conclusion, for typical mesh sizes (643 and 1283) and a
typical number of particles (around 106) of our problem, we have decided to
stay with 8-processor runs.

3. Computation results for single-phase turbulence

The computations of the channel flow case have been performed for Reτ = 150
(the Reynolds number based on the friction velocity uτ and the channel half-
width h) on the 1283 grid for the DNS, and on two coarser grids for the
LES. The size of the flow domain in the streamwise (x), wall-normal (y) and
spanwise (z) directions was 4πh×2h×2πh. The flow was assumed periodic in
the streamwise and spanwise directions, and driven by the constant pressure
gradient. Parallel computations have been run on 8 processors.

To validate the LES and to gather necessary data for a priori tests, we
ran the DNS of the channel flow first. The mesh size (in wall units) was
∆x+ = 14.7 and ∆z+ = 7.35. In the wall-normal direction, ∆y+ varied
from 0.05 at the wall up to 6.75 at the channel centerline. The simulation time
step (in viscous units) was ∆t+ = 3.6. The necessary time until convergence
was about 150 hours (total wall clock elapsed time) or 30 FTT (flow-through
times, Lx/UCL). Then, flow statistics were gathered for another 50 hours (or
10 FTT). All obtained velocity statistics compare very well with results from
another DNS (Marchioli and Soldati, 2006, priv. comm.), performed using a
different approach (spectral resolution in the x and z directions) and solver.

Next, we ran a priori LES, i.e. we filtered the DNS field at each time step,
to have a look at results of the dynamic procedure. In particular, we obtained
an estimate of the residual turbulent energy kr, Eq. (2.5). This quantity will
be a crucial ingredient of a SGS particle dispersion model (currently tested
by the authors), but is also interesting as such. The cross-stream profile of CI
is shown in Fig. 2a. Its behaviour is qualitatively similar to that of CG (not
shown): it decreases to zero at the walls; yet, a single maximum is noticed in
the core of the flow.

Using the values of CI computed from the a priori LES of channel flow, the
residual turbulent kinetic energy is estimated from Eq. (2.5). It qualitatively
agrees with the profile of kr resulting from the filtering of DNS results; both
are plotted in Fig. 2b. The results have been obtained from a single snapshot
(iteration) of the DNS velocity field with averaging over x and z. It is readily
noticed that the residual turbulent kinetic energy kr predicted by Eq. (2.5) is
over-estimated since it attains up to 10% of the total turbulent energy k, and
the DNS filtering for this case (done on 1283 to the 643 grid) results in up to
3% of k removed.
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Fig. 2. A priori LES of channel flow; (a) profile of the CI parameter; two different
effective filter width coefficients: Gaussian (1.25 – solid lines) and spectral

(1.0 – dashed lines), (b) turbulent kinetic energy: total (k, 1283 DNS – solid line),
resolved (kf , 64

3 filtered DNS – dashed line), residual (kr ≡ ksg, two CI
coefficients – lower lines)

Following the DNS computation, we performed the LES of channel flow.
There, two coarser meshes were chosen, non-uniform in the wall-normal direc-
tion: a mesh of 643 with the cell size varying from ∆y+ = 0.22 to ∆y+ = 13.5
and a finer mesh with 86 cells in the wall-normal direction. The wall-clock ti-
me until convergence was about 48 hours, or 20 FTT; the flow statistics were
gathered for another 10 FTT (or 24 hours of the elapsed time).

The mean velocity and the turbulent shear stress are shown in Fig. 3 in the
near-wall scaling. The results for LES on 643 mesh are not accurate enough
whereas those on a finer mesh compare quite well with the DNS reference data.
As reported in other LES studies, to obtain good velocity statistics, the flow
resolution in the wall-normal direction has to be close to that of the DNS.

Fig. 3. (a) The mean velocity profile, (b) the turbulent shear stress; LES – lines;
DNS – symbols

The resolved and residual turbulent kinetic energy in the LES of the chan-
nel flow on the 643 mesh are shown in Fig. 4. As compared with Fig. 2b, both
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statistics are consistently over-estimated, probably due to insufficient LES re-
solution in the near-wall region.

Fig. 4. Profiles of turbulent kinetic energy in LES computation on the 643 mesh
(single iteration, averaging over x, z); solid line – resolved energy k+, lower dashed

lines – residual energy (estimated k+r , two different CI coefficients)

4. Heavy particles in turbulent flow

4.1. Particle equation of motion

In case of heavy particles (ρp ≫ ρf ), the governing equations are sim-
plified and (in the absence of gravity) contain only the drag force, based on
the particle velocity Up and the fluid velocity along the particle trajectory
U
∗

f = U f (xp, t)

dxp
dt
= Up

(4.1)

dU p
dt
=
3

4

ρf
ρp

CD
dp
|U∗f −Up|(U

∗

f −Up)

The drag coefficient CD is taken from a well-established correlation

CD =
24

Rep
(1 + 0.15Re0.687p ) (4.2)

where Rep = dp|U
∗

f − Up|/ν is the particle Reynolds number (based on the
particle diameter dp, the relative particle velocity, and the kinematic viscosity
of the carrier fluid ν). Let us also define the particle relaxation time

τp =
ρp
ρf

d2p
18ν

(4.3)
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In the limit of small Rep, the drag term in Eq. (4.1)2 becomes (U
∗

f −Up)/τp.
In a general case (e.g. for the particle density comparable to that of fluid),
the equation of motion should also contain other terms (like the added-mass
force, the lift force or the history term) that may be significant.
In the statistical description of turbulence only the mean fluid velocity

is available, and a reconstruction of the fluctuating field is needed. Propo-
sals for the statistical approach were put forward by Pozorski and Minier
(1999). They consist in formulating the joint PDF of fluid and particle velo-
city, f(U∗f ,U p;x, t) and then stochastic modelling of the fluid velocity ”se-
en” by particles: dU∗f = Adt + BdW . On the other hand, the simplest tre-
atment of the particulate phase in LES is to use in Eq. (4.1)2 the filtered
(large-scale) field instead of the instantaneous velocity field ”seen” by par-
ticles: U∗f → U

∗

f = U f (xp, t) with no account for the residual scales. This
approach has been used here. In practical implementation, one needs to inter-
polate the fluid velocity (known on a discrete mesh) at particle locations. In
the present work, a tri-linear interpolation has been used. This was deemed
sufficient because of the spatial integration scheme in the fluid solver. However,
a sensitivity analysis with a higher-order interpolation scheme is foreseen.
The simplest numerical integration scheme for the particle equations of

motion is the first-order explicit scheme, for small Rep written as

U
n+1
p = Unp + (U

∗n
f −U

n
p )
∆t

τp

over a time step ∆t = tn+1 − tn; yet, the scheme becomes unstable for
∆t > O(τp). The same remains true also for higher-order Runge-Kutta me-
thods based on this predictor. Hence, an acceptable time step (specially for
small particles) can become smaller than the time step used in the LES solver
for fluid. In this case, an unconditionally stable, first-order scheme may be
preferred. Assuming that U∗f is frozen over ∆t, the exact analytical solution
yields an ”exponential” scheme

U
n+1
p = U∗nf + (U

n
p −U

∗n
f ) exp

(−∆t
τp

)

Higher-order schemes of this kind were proposed by Barton (1996) and Pe-
irano et al. (2006). We have checked some statistics of particle motion and
found them independent of the time step used; however, a second-order in-
tegration scheme would allow us to increase the time step, in particular for
small particles.

4.2. Particle statistics in channel flow

A convenient measure of particle inertia in the flow is the Stokes number,
here defined as St = τ+p = τp/(νf/u

2
τ ). In a statistically-steady LES of fluid
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velocity, several particle groups (”swarms”) of varying inertia, characterised
by the Stokes numbers of St = 2, 10, 50, 250, have been tracked for time
t+ = 1400 (non-dimensionalised with viscous units) with perfect-rebound wall
boundary conditions. In computations, particle trajectories are approximated
by line segments, and implementation of this boundary condition for the first-
order integration scheme of particle equations is straightforward.
The mean velocity profiles of particles and fluid across the channel and the

intensities of streamwise velocity fluctuations are shown in Fig. 5. Note that the
mean particle velocity tends to zero at the walls for all particle classes except
the largest ones. At the channel center, the particle mean velocity tends to lag
behind that of the fluid. It also transpires from Fig. 5a that the mean velocity
of smallest particles computed here (St = 2) is quite close to that of the fluid;
however, the differences become more evident for the second-order moments,
as seen in Fig. 5b. This may be due to a net wallward motion and inertia,
specially for larger particles.

Fig. 5. Profiles of mean velocity and intensity of streamwise velocity fluctuations:
fluid and particles

The mean concentration profiles, i.e. the particle number density across the
channel at t+ = 1400 are shown in Fig. 6. The phenomenon of turbophoresis
(the tendency of heavy particles to move off the highest turbulence intensity
regions) is readily observed; the non-uniformity of particle number density
across the channel increases with particle inertia.
We have also checked that the concentration profile for smaller particles

(St = 2) has already achieved its steady state at the simulation time consi-
dered (t+ = 1400); the concentration profile for larger particles (St = 10) is
also close to stationary and shows stronger gradients, whereas for the largest
particles (St = 250) the non-uniformity of number density profile across the
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Fig. 6. Particle number density across the channel. Initial distribution (statistically
uniform) – dotted line; distribution at t+ = 1400 for particles of St = 2 – solid line,

St = 10 – dot-dashed line, and St = 250 – dashed line

channel further develops and ends up with a considerable level of particle con-
centrations close to the walls, ultimately undermining the assumption on the
dispersed phase being dilute. These trends are noticed in the following Fig. 7.
There, the time record of the non-uniformity of particle concentration σ across
the channel is shown for various particle classes. The value of σ is measured
as the r.m.s. departure of the particle number density from its initial value c0
(that of the spatially-uniform distribution) and normalised with c0. At the
simulation time considered, the number-density profile of smallest particles
is already statistically-steady, whereas for larger particles the non-uniformity
still develops.

Fig. 7. Time records of the non-uniformity of number density profiles for particle
Stokes number: 2 – solid line, 10 – dotted line, 50 – dashed line, and

250 – dot-dashed line

4.3. Particle separation on walls

In this Section, we consider particle motion in a turbulent flow with the ab-
sorbing boundary condition at the wall. The modelling of particle separation,
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or deposition, on solid walls presents a major difficulty for the statistical,
one-point approaches, because of the crucial role of the fluid fluctuating velo-
city in the process, at least for moderate-inertia particles. In their case, the
mechanisms of deposition involve complex interactions with near-wall vorti-
cal structures. Consequently, it should in principle be easier to achieve better
results for particle deposition in a well-resolved LES.
The mass flux Jw of particles separating on the channel walls, divided

by the particle bulk density ρdp (computed out of the current number of
particles ntot in the flow domain), is quantified as the particle separation
velocity (cf. Uijttewaal and Oliemans, 1996). The non-dimensional deposition
velocity is written as

V +dep =
Jw
ρdpuτ

=
ndep
ntot

h

2uτ∆t

where ndep is the number of particles that deposit on the walls in the time
interval ∆t.

Fig. 8. Separation velocity for heavy particles: LES results (2) vs. experimental
data of Liu and Agarwal (1974) at Re = 10 000 (•) and Re = 50 000 (N)

To estimate the particle deposition, the LES computation of the channel
flow at Reτ = 150 (Re ≈ 3000) with particle tracking (no SGS dispersion mo-
del) has been performed with the perfectly absorbing wall boundary condition.
Results for particle mass flux separating on the wall are presented in Fig. 8 as
the non-dimensional deposition velocity V +dep for a selection of particle Stokes
numbers and compared to the experimental data for turbulent pipe flow (Liu
and Agarwal, 1974). Although the experiment has been performed at higher
Reynolds numbers, the experimental data itself (• and N) suggests that the
particle separation is rather weakly dependent on Re. The separation velocity
is visibly underestimated in our LES, specially for particles of small inertia,
probably due to the neglected effect of subgrid-scale flow scales and/or the lift
force. An addition of the sub-grid scale particle dispersion model considerably
improves the results (work in progress).
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5. Conclusion

In the paper, we have described our DNS and LES of the turbulent channel
flow followed by the LES studies of the particle-laden case where the flow so-
lver has been coupled with discrete particle simulations of the dispersed phase.
The outcome of parallel tests has been presented. The estimation of residual
turbulent kinetic energy from the dynamic procedure has been shown toge-
ther with a priori LES results. Reasonable flow statistics have been obtained
from the LES on a finer grid. Particle velocity statistics have been compu-
ted and differences with respect to fluid ones have been shown, including the
phenomenon of turbophoresis in the near-wall region.
The next step will be the computation of particle wall deposition (sepa-

ration from flow) with the account of subgrid-scale fluid motion on particle
dynamics modelled with the use of residual kinetic energy. Moreover, it se-
ems advantageous to implement a second-order numerical scheme for particle
motion. At a longer term, the promising idea about the dispersed two-phase
turbulent flows (including reactive flows or combustion) seems to be a hybrid
approach where large-scale turbulent structures will be computed from LES (or
POD), and sub-grid processes (particle dispersion, species transport/mixing,
chemical reactions) will be modelled using the FDF (filtered density function)
formulation.
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Zastosowanie metody dużych wirów do przepływu turbulentnego

w kanale i dyspersji cząstek

Streszczenie

W pracy zastosowano podejście Eulera-Lagrange’a do wyznaczenia ruchu fazy
dyspersyjnej (cząstki, krople) w turbulentnym przepływie dwufazowym. Obliczenia
ruchu fazy ciągłej (płynu) przeprowadzono za pomocą rozwiązania pełnych równań
przepływu (DNS) oraz przy użyciu metody dużych wirów (LES) dla przypadku rozwi-
niętego przepływu w kanale płaskim. Oszacowano efektywność zrównoleglenia obliczeń
numerycznych. Określono poziom energii kinetycznej skal podsiatkowych; porównano
ją z wynikami uzyskanymi z modelu dynamicznego. Wyznaczono trajektorie cząstek
fazy dyspersyjnej w polu prędkości LES. Określono statystyki ich ruchu: prędkość
średnią, intensywność fluktuacji prędkości, profil koncentracji cząstek w poprzek ka-
nału; uzyskano wstępne wyniki dla separacji cząstek na ściankach.
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