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The propagation of spherical shock waves in a dusty gas with radiation
heat-flux and exponentially varying density is investigated in the paper.
The equilibrium flow conditions are assumed to be maintained, and the
radiation is considered to be of a diffusion type for an optically thick grey
gas model. The shock wave moves with variable velocity and the total
energy of the wave is non-constant. Non-similar solutions are obtained,
and the effects of variation of the radiation parameter and time are
investigated. The effects of an increase in (i) the mass concentration of
solid particles in the mixture and (ii) of the ratio of the density of solid
particles to the initial density of gas on the flow variables in the region
behind the shock are also investigated.
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1. Introduction

Grover and Hardy (1966), Hayes (1968), Ray and Bhowmick (1974), Laum-
bach and Probstein (1969), Verma and Vishwakarma (1980) and many others
have discussed the propagation of shock waves in a medium where density
varies exponentially. These authors have not taken radiation effects into ac-
count. Laumbach and Probstein (1970a,b), Bhowmick (1981) and Singh and
Srivastava (1982) obtained similarity or non-similarity solutions for the shock
propagation in an exponential medium with radiation heat transfer effects. Pai
et al. (1980) obtained similarity solutions for a strong shock wave propagation
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in a dusty gas with constant density. Vishwakarma and Nath (2006) found
similarity solutions for an unsteady flow behind a strong exponential shock
driven out by a piston in a dusty gas in both cases, when the flow between the
shock and the piston was isothermal or adiabatic. Vishwakarma (2000) stu-
died the propagation of shock waves in a dusty gas with exponentially varying
density, using a non-similarity method.

In the present work, we generalize the solution given by Vishwakarma
(2000) for a strong explosion in a dusty gas (mixture of a perfect gas and small
solid particles) taking radiation flux into account. It is assumed that the dusty
gas is grey and opaque, and the shock is isothermal. The assumption that the
shock is isothermal is a result of the mathematical approximation in which the
radiation flux is taken to be proportional to the temperature gradient, which
excludes the possibility of a temperature jump (see, e.g. Zel’dovich and Raizer
(1967), Bhowmick (1981), Singh and Srivastava (1982)). Radiation pressure
and radiation energy are considered to be very small in comparision to material
pressure and energy, respectively, and therefore only the radiation flux is taken
into account. In order to get some essential features of shock propagation,
small solid particles are considered as a pseudo-fluid, and it is assumed that
the equilibrium flow condition is maintained in the flow field, and that the
viscous stress and heat conduction of the mixture are negligible (Suzuki et
al. (1976), Pai et al. (1980)). Although density of the mixture is assumed to
be increasing exponentially, the volume occupied by the solid particles may
be very small under ordinary conditions owing to large density of the particle
material. Hence, for simplicity, the initial volume fraction of solid particles Z1
is assumed to be a small constant (Vishwakarma (2000)).

The effects of variation of the radiation parameter at different times on
the flow variables behind the shock are obtained. The effects of an increase in
(i) the mass concentration of solid particles in the mixture and (ii) the ratio of
the density of solid particles to the initial density of gas on the flow variables
behind the shock are also investigated.

2. Fundamental equations and boundary conditions

The fundamental equations for one dimensional, spherically symmetric and
unsteady flow of a mixture of gas and small solid particles taking radiation flux
into account, can be written as (c.f. Vishwakarma, 2000; Singh and Srivastava,
1982)
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where ρ is density of the mixture, u – flow velocity in the radial direction, p –
pressure of the mixture, Um – internal energy per unit mass of the mixture,
F – radiation heat flux, r – distance, and t – time.

Assuming local thermodynamic equilibrium, and taking Rosseland’s diffu-
sion approximation, we have

F = −cµ
3

∂

∂r
(aT 4) (2.2)

where ac/4 is the Stefan-Boltzmann constant; c – velocity of light; and µ –
mean free path of radiation, which is a function of density ρ and absolute
temperature T .

Following Wang (1966), we have

µ = µ0ρ
α∗T β

∗

(2.3)

where α∗ and β∗ are constants.

The equation of state of a mixture of gas and small solid particles can be
written as (Pai, 1977)

p =
(1−Kp)
1− Z ρR

∗T (2.4)

where R∗ is the gas constant, Z – volume fraction of solid particles in the
mixture and Kp – mass concentration of solid particles.

The relation between Kp and Z is given by

Kp =
Zρsp
ρ

(2.5)

where ρsp is the species density of solid particles. In the equilibrium flow,
Kp is a constant in the whole flow field.

The internal energy of the mixture may be written as follows

Um = [KpCsp + (1−Kp)Cv ]T = CvmT (2.6)
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where Csp is the specific heat of the solid particles, Cv – specific heat of the
gas at constant volume, and Cvm – specific heat of the mixture at constant
volume. The specific heat of the mixture at constant pressure process is

Cpm = KpCsp + (1−Kp)Cp (2.7)

where Cp is the specific heat of the gas at the constant pressure process.

The ratio of the specific heats of the mixture is given by (Marble, 1970;
Pai, 1977)

Γ =
Cpm
Cvm
=
γ
(

1 + δβ
′

γ

)

1 + δβ′
(2.8)

where

γ =
Cp
Cv

δ =
Kp
1−Kp

β′ =
Csp
Cv

The internal energy Um is therefore, given by

Um =
p(1− Z)
ρ(Γ − 1) (2.9)

We consider that a spherical shock wave is propagated into the medium,
at rest, with small constant counter pressure. Also, the initial density of the
medium is assumed to obey the exponential law

ρ = Keαr (2.10)

where α and K are suitable constants.

The shock is assumed to be isothermal (formation of the isothermal shock
is a result of the mathematical approximation in which the flux is taken to be
proportional to the temperature gradient. This excludes the possibility of a
temperature jump, see for example Zel’dovich and Raizer (1967), Bhowmick
(1981), Singh and Srivastava (1982)) and, hence, the conditions across it are

ρ2(V − u2) = ρ1V = ms(say)

p2 + ρ2(V − u2)2 = p1 + ρ1V 2
(2.11)
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where V = dR/dt denotes the velocity of the shock at r = R(t), indices 1
and 2 refer to the values just ahead and just behind the shock surface, and
F1 = 0 (Laumbach and Probstein, 1970). From equations (2.11), we get

u2 = (1− β)V ρ2 =
ρ1
β

p2 = (1− Z1)ρ1V 2 Z2 =
Z1
β

(2.12)

F2 = (1− β)
[ (1 + Γ )β + (1− Γ )− 2Z1

2(Γ − 1) − 1− Z1
(Γ − 1)M2e

]

ρ1V
3

where β is given by

β = Z1 +
1− Z1
ΓM2e

(2.13)

and

M2e =
V 2

a21
a21 =

Γp1
ρ1(1− Z1)

Me being the shock-Mach number referred to the speed of sound a1 in the
dusty gas.
The initial volume fraction of the solid particles Z1 is, in general, not

constant. But the volume occupied by the solid particles is very small because
density of the solid particles is much larger than that of the gas (Miura and
Glass, 1985), hence Z1 may be assumed as a small constant. The expression
for Z1 is (Pai, 1977; Naidu et al., 1985)

Z1 =
Kp

G(1−Kp) +Kp
(2.14)

where G = ρsp/ρg is the ratio of the density of solid particles to the initial
density of the gas. Values of Z1 for some typical values of Kp and G are given
in Table 1.

Table 1. Values of Z1 for some typical values of Kp and G

Kp G Z1

0.2 10 0.02439
50 0.00498
100 0.00249

0.4 10 0.06250
50 0.01316
100 0.00662
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Let the solution to equations (2.1) and (2.2) be of the form (Ray and
Bhowmick, 1974; Verma and Vishwakarma, 1976; Singh and Srivastava, 1982;
Vishwakarma, 2000)

u = t−1U(η) ρ = tΩD(η)

p = tΩ−2P (η) F = tΩ−3Q(η)
(2.15)

where

η = teλr λ 6= 0 (2.16)

and the constants Ω and λ are to be determined subsequently. We choose the
shock surface to be given by

η0 = const (2.17)

so that its velocity is given by

V = − 1
λt

(2.18)

which represents the outgoing shock surface, if λ < 0.

The solution toe equations (2.1) and (2.2) in form (2.15) are compatible
with the shock conditions if

Ω = 2 λ = −α
2

α∗ = 1 β∗ = −5
2

(2.19)

Since necessarily λ < 0, relation (2.19) shows that α > 0, meaning there-
by that the shock expands outwardly in an exponentially increasing medium
(Hayes, 1968; Vishwakarma, 2000; Yousaf, 1987).

The strength of the shock, under these conditions, remains constant, for

M2e =
V 2

a21
=

V 2

Γp1
ρ1(1−Z1)

=
4(1 − Z1)K
Γp1α2η20

= const

From equations (2.18) and (2.19), we obtain

R =
2

α
log
t

τ
(2.20)

where τ is the duration of the initial impulse.
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3. Solution to the equations

The flow variables in the flow-field behind the shock front will be obtained by
solving equations (2.1) and (2.2). From equations (2.15), (2.18) and (2.19), we
obtain
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in fundamental equations (2.1) and (2.2), we obtain
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is a non-dimensional radiation parameter and

L =
(Γ − 1)

√
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Also, the total energy of the flow field behind the shock front is given by

E =
16πKR3

βα2τ2

1
∫

0

[p′(1− Z1)(β − Z1ρ′)
Γ − 1 +

1

2
ρ′u′2
]

r′2 dr′ (3.6)

Hence, the total energy of the shock wave is non-constant and varies
with R3.
In terms of the dimensionless variables r′, p′, ρ′, u′ and F ′, the shock

conditions take the form

r′ = 1 p′ = 1 ρ′ = 1

u′ = 1− β F ′ = 1
(3.7)

Equations (3.3) alongwith the boundary conditions (3.7) give the solution
to our problem. The solution so obtained is a non-similar one, since motion
behind the shock can be determined only when a definite value for time is
prescribed.

4. Results and discussion

The distribution of the flow variables behind the shock front is obtained by
numerical integration of equations (3.3) with boundary conditions (3.7). For
the purpose of numerical integration, the values of the parameters are taken
to be (Pai et al., 1980; Miura and Glass, 1985; Vishwakarma, 2000; Singh and
Srivastava, 1982), γ = 1.4; Kp = 0, 0.2, 0.4; G = 10, 50; β

′ = 1; M2e = 20;
N = 0.6, 0.8, 10; and t/τ = 2, 4. Starting from the shock front, the numerical
integration is carried out until the singularity of the solution

p′β2(1− Z1)− (β − Z1ρ′)ρ′(1− u′)2 = 0

is reached. This marks the inner boundary of the disturbance, and at this
surface the value of r′ remains constant. The inner boundary is the position in
the flow-field behind the shock front at which the Chapman-Jouget condition
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Fig. 1. Variation of reduced density ρ′ in the region behind the shock front for
Kp = 0.2 and G = 50

Fig. 2. Variation of reduced pressure p′ in the region behind the shock front for
Kp = 0.2 and G = 50

is satisfied, i.e., the position at which the line r/R(t) = const coincides with
an isothermal characteristic.

Figures 1 and 5, 2 and 6, 3 and 7, and 4 and 8 show variation of the
reduced flow variables ρ′, p′, F ′ and u′, respectively, with reduced distance r′.
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Figures 1, 2, 5 and 6 show that, as we move inwards from the shock front,
reduced density and pressure decrease, while Figures 3, 4, 7 and 8 show that
the reduced radiation heat flux and fluid velocity increase.

Fig. 3. Variation of reduced radiation heat flux F ′ in the region behind the shock
front for Kp = 0.2 and G = 50

Fig. 4. Variation of reduced flow velocity u′ in the region behind the shock front for
Kp = 0.2 and G = 50
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Tables 2, 3 and 4 display the density ratio 1/β across the shock and the
position of the inner boundary surface r′p (say) for various values of constant
parameters.

Table 2. Density ratio ρ2/ρ1 = 1/β across the shock front for different
values of Kp and G

Kp G
ρ2
ρ1
=
1

β

0 27.99998

0.2 10 16.30122
50 23.43556
100 24.82961

0.4 10 9.96989
50 18.88506
100 21.42447

Table 3. Position of the inner boundary surface for different values of the
radiation parameter N and time t/τ with Kp = 0.2 and G = 50

t

τ
N

Position of the inner
boundary surface (r′p)

2 0.6 0.95844
0.8 0.95828
10 0.95769

4 0.6 0.97232
0.8 0.97212
10 0.97127

It is found, from Fig. 1 to Fig. 4 and Table 3 that the effects of an increase
in the value of the radiation parameter N , which depends on the mean free
path of radiation, are:

• to decrease the density ρ′, and to increase the pressure p′ at any point in
the flow-field behind the shock. The decrease of density and the increase
of pressure become significant near the inner boundary surface,

• to increase the radiation heat flux F ′ and the velocity u′ near the inner
boundary surface, and

• to increase, slightly, the distance of the inner boundary surface from the
shock surface.
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The effects of an increase in the time (t/τ) are (see Figs 1-4):

• to decrease the density ρ′ and the pressure p′,
• to increase the radiation heat flux F ′ and the velocity u′, and
• to decrease the distance of the inner surface from the shock front (see
Table 3).

Figures 5 to 8 show that for given values of N and G, the effects of an
increase in the mass concentration of the solid particles Kp at a given instant
are

• to increase the density ρ′, the pressure p′, the radiation heat flux F ′
and to decrease the flow velocity u′,

• to decrease the slopes of the density, pressure, flow velocity profiles and
to increase the slope of the radiation heat flux profile in the region behind
the shock front, and

• to increase the distance between the inner contact surface and the shock
front (see Table 4). This means that an increase in the mass concentra-
tion of the solid particles has an effect to decrease the shock strength.

Table 4. Position of the inner boundary surface for different values of Kp
and G with N = 10 and t/τ = 2

Kp G
Position of the inner
boundary surface (r′p)

0 0.96241

0.2 10 0.94595
50 0.95769
100 0.95923

0.4 10 0.92257
50 0.95101
100 0.95494

Also Figs 5 to 8 show that for given values of N and Kp, the effects of an
increase in the ratio of the density of the solid particles to the initial density
of the gas G at a given instant are

• to decrease the density ρ′, the pressure p′, the radiation heat flux F ′
and to increase the flow velocity u′,

• to increase the slopes of the density, pressure, flow velocity profiles and to
decrease the slope of the radiation heat flux profile in the region behind
the shock front, and
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• to decrease the distance between the inner contact surface and the shock
front (see Table 4). This means that an increase in the ratio of the density
of the solid particles to the initial density of gas has an effect to increase
the shock strength.

Fig. 5. Variation of reduced density ρ′ in the region behind the shock front for
N = 10 and t/τ = 2

Fig. 6. Variation of reduced pressure p′ in the region behind the shock front for
N = 10 and t/τ = 2
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Fig. 7. Variation of reduced radiation heat flux F ′ in the region behind the shock
front for N = 10 and t/τ = 2

Fig. 8. Variation of reduced flow velocity u′ in the region behind the shock front for
N = 10 and t/τ = 2

The effects of an increase in Kp or G on the shock strength may be expla-
ined with the help of the compressibility of the medium as follows.

The adiabatic compressibility of the mixture of the gas and small solid
particles may be calculated as (c.f. Moelwyn-Hughes, 1961)
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C =
1

ρ

(∂ρ

∂p

)

S
=
1− Z
Γp

where (∂ρ/∂p)S denotes the derivative of ρ with respect to p at a constant
entropy. The non-dimensional compressibility C ′ = C/C2 can be expressed as

C ′ =

(

1− Z1
β
ρ′
)

p′
(

1− Z1
β

)

Fig. 9. Variation of non-dimensional compressibility C′ in the region behind the
shock front for N = 10 and t/τ = 2

It is plotted against r′ in Fig. 9. This figure shows that the compressibility
decreases as the value of Kp increases, whereas it increases as the value of G
increases. The decrease in the compressibility causes weaker compression of
the gas behind the shock and, hence, a decrease in the shock strength. The
increase in the compressibility causes stronger compression of the gas behind
the shock and, hence, an increase in the shock strength.
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Propagacja sferycznych fal uderzeniowych w zanieczyszczonym gazie

z uwzględnieniem radiacyjnej wymiany ciepła

Streszczenie

W pracy zajęto się problemem propagacji sferycznych fal uderzeniowych o wy-
kładniczym rozkładzie gęstości w zanieczyszczonym gazie z uwzględnieniem radia-
cyjnej wymiany ciepła. Założono równowagowe warunki przepływu czynnika, a samą
radiację przyjęto typu dyfuzyjnego w modelu optycznie nieprzezroczystego gazu. Fala
uderzeniowa przemieszcza się ze zmienną prędkością, a całkowita energia fali również
się zmienia. W analizie otrzymano rozwiązania niepodobne przy rozważaniu wpływ
czasu i zmienności strumienia radiacji. Zbadano ponadto efekt wzrostu koncentracji
masy cząstek stałych zanieczyszczenia oraz stosunku gęstości tych cząstek do począt-
kowej gęstości gazu na parametry przepływu w obszarze bezpośrednio za czołem fali.
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