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Application of the linear six-parameter shell theory to the analysis of orthotropic tense-
grity plate-like structures is proposed in the paper. A continuum model of a tensegrity
plate with the self-stress state included is used. The tensegrity module, which is based on
4-strut expanded octahedron modules with additional connecting cables is proposed as an
example. Different planes of support of the structures are taken into account and thus dif-
ferent reference surfaces of the plate model are considered. The self-stress state and some
geometrical parameters are introduced for parametric analysis.
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1. Introduction

The concept of tensegrity structures covers trusses consisting of isolated compressed elements
(struts) inside a continuous net of tensioned members (cables) (Motro, 2003; Skelton and Oli-
veira, 2009). The specificity of these structures lies in infinitesimal mechanisms balanced with
self-stress states. Tensegrity as a structural system offers many advantages over conventional
structural systems. Proper actuation can keep it stiff during deployment without requiring
external members, which is the main benefit of the system. The tensegrity concept has found
applications in civil engineering structures such as towers (Schlaich, 2004; Gilewski et al., 2015),
bridges (Gilewski and Kasprzak, 2011) and domes (Gómez-Jáuregui, 2010). Tensegrity based
on spatial reticulated systems are double-layer tensegrity grids (Gómez-Jáuregui et al., 2012)
with two parallel horizontal networks of members in tension forming the top and bottom layers.
The grid nodes are linked by vertical and inclined bracing members in compression and tension.
These systems can be treated as tensegrity plate-like structures. Examples are Kono’s struc-
ture (Kono et al., 1999) and Blur building (Crawfordt, 2016; Gilewski et al., 2016). Tensegrity
plate-like structures can also be built with tensegrity modules, such as a simplex or an expanded
octahedron. Even very simple tensegrity structures have complex geometry and unique features.
Their structural behaviour can be explained using a continuum model of a three-dimensional
tensegrity plate-like structure (Al Sabouni-Zawadzka et al., 2016).
In the paper, a continuum model of the plate is used. The model includes the effect of

self-stress initially applied to the tensegrity structure. In the analysis, a linear six-parameter
shell theory (Chróścielewski et al., 2004; Pietraszkiewicz, 2016) is proposed. In considerations,
the shell theory is simplified by assuming that the plates have no curvature. As a result, the
two-dimensional plate model for moderately thick plates is obtained for both membrane and
bending deformations. Additionally, different planes of support of tensegrity plate-like struc-
tures are taking into account, thus different reference planes of the plate model – the lower
surface, the middle surface and the upper surface are considered. The proposed approach allows
one to analyse the influence of self-stress states and some geometrical parameters on average
displacements, strains and internal forces in the structures.
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The model used in the paper is valid for all structures composed of tensegrity modules with
orthotropic properties.

2. Material and methods

2.1. Linear six-parameter shell theory for the orthotropic model

Developments of the theory of elastic shells have been widely discussed in papers and mono-
graphs. In the paper, the six-parameter (six-field) shell theory is used (Burzyński et al., 2016;
Chróścielewski et al., 2004, 2011, 2016; Pietraszkiewicz, 2016; Witkowski, 2011). This kinematic
model is formally equivalent to the Cosserat continuum with six independent degrees of freedom:
three translations and three rotations (with the drilling degree of freedom). It is assumed that
translations and rotations are small, i.e., the linear six-parameter shell theory can be used. As
one of the first, the linear constitutive equation for Cosserat continuum was derived by Nowac-
ki (1971). In this approach, the linear six-parameter shell theory is applied to the analysis of
tensegrity plate-like structures.
The rectangular plate of a constant thickness h in the Cartesian coordinate system (x1, x2, z)

is considered (Fig. 1). According to the Hencky-Boole kinematic hypothesis, a displacement field
in the 3D space is described as

ũ(xα, z) = u(xα) + zβ(xα) for α = 1, 2 (2.1)

where u is the translation vector and β is the rotation vector of the reference surface (2D)

u(xα) = [uα, w]
T β(xα) = [φα, ψ]

T (2.2)

The proposed approach, compared to the classical five-parameter theory, includes additionally
third independent non-vanishing rotation – the drilling degree of freedom ψ (rotation about the
normal to the surface).

Fig. 1. Geometry of a 3D plate-like body

In a plate, there is no curvature, wchich means that the curvature of tensors is equal to zero,
consequently, a model analysed in the paper is simpler than that shown by Chróścielewski et
al. (2004) and by Pietraszkiewicz (2016). Consequently, the linear six-parameter shell theory is
simplified. Below the reduced relations and equations are showed:
— the kinematic relations

γαβ = uα,β − ǫαβψ γα3 = φα + w,α καβ = φα,β κα3 = ψ,α (2.3)

where γαβ, γα3, καβ , κα3 are the strain components and ǫαβ is the Ricci symbol,
— the internal forces

Nαβ =

z2∫

z1

Sαβ dz Nα3 =

z2∫

z1

Sα3 dz

Mαβ =

z2∫

z1

Sαβz dz Mα3 =

z2∫

z1

Sα3z dz

(2.4)



Application of linear six-parameter shell theory to the analysis... 169

where Sαβ and Sα3 are the stress components,
— the equilibrium equations

Nαβ,α + fβ = 0 Nα3,α + f3 = 0

Mαβ,α +Nβ3 +mβ = 0 Mα3,α + ǫαβNαβ +m3 = 0
(2.5)

where fβ, f3, mβ, m3 are the external loads.
Internal forces (2.4) depend on the reference surface. In the paper, three different reference

surfaces of the plate model are considered: the lower ΩL, the middle ΩM and the upper ΩU . In
the mentioned approaches, the domains of the plate are defined as follows (Fig. 1)

ΩL = {xK : xα ∈ Π
−, z ∈ 〈z1, z2〉; z1 = 0, z2 = h}

ΩM = {xK : xα ∈ Π, z ∈ 〈z1, z2〉; z1 = −h/2, z2 = h/2}

ΩU = {xK : xα ∈ Π
+, z ∈ 〈z1, z2〉; z1 = −h, z2 = 0}

(2.6)

Consequently, limitation of integrations (2.4) for each surface follows from the domains defini-
tions.
A complete six-parameter linear shell theory containing the drilling rotation ψ, two work-

conjugate drilling bending measures κα3 and two drilling couples Mα3 is presented in the paper.
The constitutive equation for the linear theory of elasticity is expressed as

Sij = DijklEkl i, j, k, l = 1, 2, 3 (2.7)

where Sij is the component of the stress tensor, Ekl is the component of the strain tensor and
Dijkl is the component of the fourth-rank tensor of elasticity. In general, a tensor of elasticity
contains 36 independent components, but taking into account the symmetry of strain energy
21 distinct components can be set out. The number of independent components is further re-
duced if the material has symmetry planes. There are exactly eight different sets of symmetry
planes (Chadwick et al., 2001). One of them is orthogonal symmetry (orthotropic material).
This material requires 9 elastic constants in a two-dimensional case.
In the paper, the orthotropic tensegrity plate-like structures based on the Reissner-Mindlin

theory are discussed. For this model, the tensor of elasticity can be written as a matrix
{Dijkl} ≡ d which contains 6 nonzero independent components

B01111 = d11 B02222 = d22 2B02323 = d44

2B01313 = d55 2B01212 = d66 B01122 = d12
(2.8)

The stress tensor and the strain tensor are written as

Sij =
{
S11 S22 S23 S13 S12

}T
Ekl =

{
E11 E22 2E23 2E13 2E12

}T
(2.9)

where

E11 = γ11 + zκ11 E22 = γ22 + zκ22 E23 =
1

2
(γ23 + zκ23

E13 =
1

2
(γ13 + zκ13) E12 =

1

2
(γ12 + γ21 + zκ12 + zκ21)

(2.10)

Stress components (2.9)1 are received from constitutive equations (2.7). Next, taking into account
the lower, middle and upper reference surfaces, the internal forces (2.4) are calculated

N11 = h0d11γ11 + h0d12γ22 + h1d11κ11 + h1d12κ22

N22 = h0d12γ11 + h0d22γ22 + h1d12κ11 + h1d22κ22

N12 = h0d66(γ12 + γ21) + h1d66(κ12 + κ21)

N13 = α0h0d55γ13 + α1h1d55κ13 N23 = α0h0d44γ23 + α1h1d44κ23

(2.11)
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and

M11 = h1d11γ11 + h1d12γ22 + h2d11κ11 + h2d12κ22

M22 = h1d12γ11 + h1d22γ22 + h2d12κ11 + h2d22κ22

M12 = h1d66(γ12 + γ21) + h2d66(κ12 + κ21)

M13 = α1h1d55γ13 + α2h2d55κ13 M23 = α1h1d44γ23 + α2h2d44κ23

(2.12)

where hi (i = 0, 1, 2) are parameters depending on the reference surfaces (values are shown in
Table 1) and αi (i = 0, 1, 2) are shear correction factors.
The problem of determining the shear factor was created in the Timoshenko beam theory,

which takes into account the transverse shear deformation and the rotatory inertia (Khorshidi
and Shariati, 2017; Obara and Gilewski, 2016; Timoshenko and Gere, 1961). Within the general
six-parameter shell model used here, the shear correction factors α0 and α2 are introduced into
the constitutive equations for the respective transverse shear stress resultants and stress couples
(Chróścielewski et al., 1997). The values of two correction factors α0 = 5/6 and α2 = 7/10, with
detailed derivation of these values, were arrived by Pietraszkiewicz (1979). The more information
about the shear factors and the influence of different values of these factors on the results of
static and dynamic behaviour of shell structures can be found in Chróścielewski et al. (2000).
In the paper, additionally a correction factor α1 is introduced. This factor is significant if the
lower surface or the upper surface is used as the reference plane.
The closed form of the equilibrium equations for a plate (x1 ∈ 〈0, a〉 and x2 ∈ 〈0, b〉) and a

plate strip (x1 ∈ 〈0, a〉 and x2 ∈ (−∞,+∞)) can be obtained by inserting Eqs. (2.11) and (2.12)
into Eq. (2.5).

2.1.1. Plate

The behaviour at any point of the considered plate is defined by generalized displacements q
and the corresponding to them internal forces Q

q = q(x1, x2) = [u1, u2, ψ, φ1, φ2, w]
T

Q = Q(x1, x2) = −[f1, f2,m3,m1,m2, f3]
T

(2.13)

The first three displacements in (2.13)1 describe the membrane state and the last three – the
bending state. In general, these states are coupled. Equilibrium equations (2.5) for the plate can
be written as

Lq = Q (2.14)

where

L =




h0L1 h0L4 0 h1L1 h1L4 0
h0L4 h0L2 0 h1L4 h1L2 0
0 0 α2h2L3 α1h1L5 α1h1L6 α1h1L3

h1L1 h1L4 −α1h1L5 h2L1 − α0h0d55 h2L4 −α0h0L5
h1L4 h1L2 −α1h1L6 h2L4 h2L2 − α0h0d44 −α0h0L6
0 0 α1h1L3 α0h0L5 α0h0L6 α0h0L3




(2.15)

where

L1 = d11
∂2

∂x21
+ d66

∂2

∂x22
L2 = d66

∂2

∂x21
+ d22

∂2

∂x22
L3 = d55

∂2

∂x21
+ d44

∂2

∂x22

L4 = (d12 + d66)
∂2

∂x1∂x2
L5 = d55

∂

∂x1
L6 = d44

∂

∂x2
(2.16)
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2.1.2. Plate strip

The behaviour of the considered plate strip, with width a, is defined by generalized displa-
cements q̃ and the corresponding to them internal forces Q̃

q̃ = q̃(x1) = [u1, ψ, φ1, w]
T Q̃ = Q̃(x1) = −a

2[f1,m3,m1, f3]
T (2.17)

Equilibrium equations (2.5) for the plate strip can be written as

L̃q̃ = Q̃ (2.18)

where

L̃ =




A0L̃1 0 A1L̃1 0

0 B2L̃1 aB1L̃2 B2L̃1
A1L̃1 −aB1L̃2 −a

2B0 +A2L̃1 −aB0L̃2
0 B1L̃1 aB0L̃2 B0L̃1


 (2.19)

where

L̃1 =
d2

dξ2
L̃2 =

d

dξ
ξ =

x1
a

Ai = hid11 Bi = αihid55 for i = 0, 1, 2

(2.20)

The parameters Ai and Bi depend on the reference surfaces. The formulas of these parameters
are shown in Table 1. For the plate strip, as in the case of the plate, the membrane state and
the bending state are coupled.

Table 1. Formulas of the parameters hi, Ai and Bi for the reference surfaces

Parameters Lower surface Middle surface Upper surface

h0 h h h

h1 h2/2 0 −h2/2

h2 h3/3 h3/12 h3/3

A0 hd11 hd11 hd11
A1 h2d11/2 0 −h2d11/2

A2 h3d11/3 h3d11/12 h3d11/3

B0 α0hd55 α0hd55 α0hd55
B1 α1h

2d55/2 0 −α1h
2d55/2

B2 α2h
3d55/3 α2h

3d55/12 α2h
3d55/3

Solving the set of differential equations (2.18) it is possible to obtain explicit formulas of the
displacement and internal force. The mentioned formulas are described as follows

u1(ξ) = C5 + C6ξ +
3A1
aA0

C4ξ
2 −

a2

2A0
f1ξ
2 +

a3E1
6

f3ξ
3

ψ(ξ) = C7 + C8ξ +
a2

2
(D1f3 −D0m3)ξ

2

φ1(ξ) = −
1

a

(
C2 + 2C3ξ + 3C4ξ

2 +
6

a2B0E0
C4 +

B1
B0
C8
)
−

a

B0
(1 +B1D1)f3ξ

−
a3E0
6

f3ξ
3 + aD1m3ξ +

1

B0
m1 −

A1
A0B0

f1

w(ξ) = C1 +C2ξ + C3ξ
2 + C4ξ

3 +
a4E0
24

f3ξ
4

(2.21)
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and

N11(ξ) = −
2A1
a2

C3 +
A0
a
C6 − af1ξ −

A1
B0
(1 +B1D1)f3 +A1D1m3

N13(ξ) = −
6

a3E0
C4 − af3ξ −

A1
A0
f1 +m1

M11(ξ) = −
2A2
a2

C3 −
6

a2E0
C4ξ +

A1
a
C6 −

aA1
A0

f1ξ +
a2

2
(A1E1 −A2E0)f3ξ

2

−
A2
B0
(1 +B1D1)f3 +A2D1m3

M13(ξ) = −
6B1

a3B0E0
C4 +

1

aD0
C8 + a(B1D1 −B2D2)m3ξ −

A1B1
A0B0

f1 +
B1m1
B0

(2.22)

where

Di =
Bi

B0B2 −B
2
1

Ei =
Ai

A0A2 −A
2
1

for i = 0, 1, 2 (2.23)

The results for the plate and plate strip can be used in analysis of different types of ortho-
tropic systems, such as beams, plate strips, plates or more complicated multi-module plate-like
structures. The displacement and internal force functions of these systems depend on the com-
ponents of elastic matrix (2.8).

To illustrate the proposed approach, a continuum orthotropic model of the tensegrity plate-
-like structure is used. The internal and external plane of support of the structure is taken into
account. For tensegrity systems, the components of the elastic matrix depend on stiffness of
cables and struts and on the level of self-stress.

2.2. Orthotropic tensegrity plate-like structure

The orthotropic model of a tensegrity plate-like structure is based on the energetic equ-
ivalence between the discrete tensegrity repeatable element and the continuum model of the
orthotropic material element shown in Fig. 2 (Al Sabouni-Zawadzka and Gilewski, 2016; Ke-
biche et al., 2008). This approach can be used to a chosen structure of repeatable tensegrity
elements creating plate-like structures.

Fig. 2. Views of expanded four-strut octahedron modules with additional cables (doted line)
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A system of fully connected, repeating expanded four-strut octahedron modules with addi-
tional cables (Al Sabouni-Zawadzka et al., 2016) is used as an example. The system is orthotropic
for the following geometric parameters x/X = 0.65, y/Y = 0.3 and z/Z = 0.56. This system
consists of struts, regular cables and connecting cables, which are described by the following
coefficients

n =
(EA)cable
(EA)struct

m =
(EA)conection
(EA)struct

σ =
S

(EA)struct
(2.24)

where E is the Young modulus, A is cross section area and S is the axial force. The coefficients
n and m describe the proportions of member properties, and σ describes the level of self-stress
in tensegrity structures.

The self-stress state is the most important feature of tensegrity structures. This state makes
the structure as strong as the self-supporting structure and stabilizes the infinitesimal mecha-
nisms occurred in tensegrity structures. The impact of the self-stress state in the structure is
taken into account by using the geometric stiffness matrix.

The coefficients of elastic matrix (2.8) of the tensegrity plate-like structure are as follows:

d11 =
2EA

h2
δ11 d22 =

2EA

h2
δ22 d12 =

EA

h2
δ12

d44 =
EA

h2
δ23 d55 =

EA

h2
δ13 d66 =

EA

h2
δ12

(2.25)

where

EA = (EA)struct δ12 = 0.845615n − 0.105243σ

δ11 = 1 + 1.52325n + 0.13125m + 0.129225σ δ13 = 1.26604n − 0.153207σ
δ22 = 1 + 1.35912n + 0.35m + 0.137028σ δ23 = 1.51283n − 0.168813σ

(2.26)

3. Results and discussion

Displacements and the internal forces for tensegrity plate-like structures, as a function of pa-
rameters (2.26), and, in consequence, coefficients (2.24) are determined. The jointly supported
rectangular plate and plate strips with different kinds of boundary conditions are discussed. The
different planes of support in tensegrity plate-like structures are analysed. The results of the
analysis are described using L for the lower surface, M for the middle surface and U for the
upper surface.

The displacements and internal forces are presented in the closed form. Displacements as a
function of coefficients n and σ are presented in the form of graphs. Constants Ci (i = P,F,M)
are not taken into account in the graphs.

3.1. Jointly supported rectangular plate

The first example is the jointly supported plate with a sinusoidal load (Fig. 3)

f3(x1, x2) = −q0 sin
πx1
a
cos

πx2
b

(3.1)

Solving equation (2.14) by applying the Fourier sine and cosine series that satisfy the boun-
dary conditions, leads to determining the displacements for the lower, the middle and the upper
surface. The closed form of solutions for the maximum deflection wmax = w(0.5a, 0.5b) for a
square plate (b = a) are as follows
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Fig. 3. Rectangular plate jointly supported

wMmax = CP
(144α20a4β0 + h2π2β2 + 12α0a2h2π2β3

α0(β1β2 + β4)

)

wLmax = w
U
max = CP

(4(36α0α3a4β0 + α2h2π2β2)β1 + 12a2h2π2(4α0α2β1β3 − β5)
α3(β1β2 + β4)β1

) (3.2)

where

CP =
a2q0

EAhπ4
β0 = δ13δ23 β1 = δ13 + δ23

β2 = h
2π2[δ12(2δ22 − 3δ12) + 2δ11(δ12 + 2δ22)]

β3 = δ13(δ12 + 2δ22) + δ23(δ12 + 2δ11) β4 = 24α0a
2δ13δ23(δ11 + δ22 + 3δ12)

β5 = 3α
2
1[δ
2
13(δ12 + 2δ22) + δ

2
23(δ12 + 2δ11)− 4δ12δ13δ23]

(3.3)

For any rectangular plate, the decoupling of bending and membrane behaviour occurs only for
the middle reference surface. It means that for this surface the displacements describing the
membrane state are equal to zero: uM1 (ξ) = uM2 (ξ) = ψM (ξ) = 0. For the lower and the upper
surface, the vertical displacements are the same (3.2)2, and the membrane displacements are as
follows: uL1 (ξ) = −u

U
1 (ξ), u

L
2 (ξ) = −u

U
2 (ξ) and ψ

L(ξ) = −ψU (ξ). The rotations φα(ξ) do not
depend on the reference surface: φL1 (ξ) = φ

M
1 (ξ) = φ

U
1 (ξ) and φ

L
2 (ξ) = φ

M
2 (ξ) = φ

U
2 (ξ). For the

analysed plate, the displacements depend on three shear correction factors αi (i = 0, 1, 2) and
on the parameter

α3 = 4α0α2 − 3α
2
1 (3.4)

However, if the middle reference surface is considered only one shear factor α0 occurs.
The paper refers to the application of the linear six-parameter shell theory to the analysis of

orthotropic tensegrity plate-like structures. These systems are double-layer tensegrity grids. To
establish values of the shear correction factors for such a plate, it is necessary to build and next
to verify the proper model which should be based on the knowledge of the modelled material and
the phenomenon. The aim of future research will establish values of the three shear correction
factors within the six-parameter linear theory of elastic tensegrity plate-like structures and test
their influence on numerical results of static behavior of such structures.
Now, to illustrate the influence of the reference plane on the behaviour of tensegrity structu-

res, it is that the assumed values of the shear factors are: α0 = 5/6, α2 = 7/10 (Chróścielewski
et al., 1997, 2000; Pietraszkiewicz, 1979; Witkowski, 2011; Woźniak, 2001) and α1 = 8/10. The
last correction factor has been assumed so that parameter (3.4) is positive definite.
On the basis of Eq. (3.2), the influence of the self-stress and stiffness of cables and struts

on the displacement in tensegrity plate-like structures can be estimated in a simple way. The
parametric analysis can be carried for any moderately thick plates. As an example, results for the
thickness to length ratio h/a = 0.25, on the assumption m = n, are shown in Fig. 4. Formulas
(3.2) are valid only for n > 0.2σ.
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Fig. 4. Maximum deflection of the plate

3.2. Plate strips

The displacements and the internal forces for plate strips are determined based on Eqs. (2.21)
and (2.22). These formulas depend on boundary conditions. Plate strips with the force mass
f3(x1) = −q0 taken into account are studied. Three kinds of support, i.e., cantilever (Fig. 5a),
simply supported (Fig. 5b) and clamped-clamped (Fig. 5c) are considered. The formulas of the
maximum deflection are derived:

— the cantilever plate strip

wMmax = CM
[
6
1

δ11
+
4

α0

(h
a

)2 1
δ13

]
wLmax = w

U
max = CM

[
6
1

δ11
+ 16

α2
α3

(h
a

)2 1
δ13

]
(3.5)

— the simply supported plate strip

wMmax = CM
[5
8

1

δ11
+
1

α0

(h
a

)2 1
δ13

]
wLmax = w

U
max = CM

[1
4

1

δ11
+ 4

α2
α3

(h
a

)2 1
δ13

]
(3.6)

— the clamped-clamped plate strip

wMmax = CM
[1
8

1

δ11
+
1

α0

(h
a

)2 1
δ13

]
wLmax = w

U
max = CM

[1
8

1

δ11
+ 4

α2
α3

(h
a

)2 1
δ13

]
(3.7)

where CM = −a
4q0/(8EAh). In these cases, the deflection functions depend on the correction

factors αi (i = 0, 1, 2, 3) but for the middle references surface only on the factor α0.

Fig. 5. Plate strips: (a) cantilever, (b) simply supported, (c) clamped-clamped

For all analysed plate strips, displacements describing the membrane state are equal to zero
only for the middle reference surface: uM1 (ξ) = ψ

M (ξ) = 0. For the lower and the upper surfaces,
the axial displacement is a polynomial function of the degree three, and for each surface there
is an equality: uL1 (ξ) = −u

U
1 (ξ). The drilling rotation is a polynomial function of the degree two

and ψL(ξ) = −ψU (ξ). The rotations φα(ξ) do not depend on the reference surface, and for each
surface: φL1 (ξ) = φ

M
1 (ξ) = φ

U
1 (ξ) and φ

L
2 (ξ) = φ

M
2 (ξ) = φ

U
2 (ξ).

For the cantilever and the clamped-clamped plate strip, the internal forces do not depend on
the reference surface. The membrane force and the drilling couple are equal to zero: N11(ξ) = 0,
M13(ξ) = 0, and the transverse force and the bending couple are as follows:
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— the cantilever plate strip

N13(ξ) = −aq0(1− ξ) M11(ξ) = −
a2q0
2
(1 + 2ξ − ξ2) (3.8)

— the clamped-clamped plate strip

N13(ξ) = −
aq0
2
(1− 2ξ) M11(ξ) =

a2q0
12
(1− 6ξ + 6ξ2) (3.9)

For the simply supported plate strip, the transverse force and the bending couple do not depend
on the reference surface, as for previous cases

N13(ξ) = −
aq0
2
(1− 2ξ) M11(ξ) = −

a2q0
2
(ξ − ξ2) (3.10)

the drilling couple is equal to zero M13(ξ) = 0, but for the lower and the upper surface, the
constant axial force occurs additionally

NL11(ξ) = −N
U
11(ξ) = −

a2q0
8h

NM11 (ξ) = 0 (3.11)

Internal forces (3.8)-(3.11) do not depend on geometric and physical properties of tensegrity
plate-like structures. Based on Eqs. (3.5)-(3.7), the influence of the self-stress and the stiffness
of cables and struts on the displacement in tensegrity plate-like structures can be estimated. As
an example, the parametric results, for h/a = 0.25, on the assumption m = n, are represented
graphically in Figs. 6-8. Values of the correction factors are assumed like for the analysed jointly
supported plate. Formulas (3.5)-(3.7) are specified only for n > 0.121σ.

Fig. 6. Maximum deflection of the cantilever plate strip

Fig. 7. Maximum deflection of the simple-supported plate strip

4. Conclusions

The paper proposes the application of the linear six-parameter shell theory to the analysis of
orthotropic tensegrity plate-like structures. The continuum model of the plate is used. The
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Fig. 8. Maximum deflection of the clamped-clamped plate strip

parametric analysis including the self-stress and selected geometrical parameters of tensegrity
are considered. In the analysis, different planes of support of tensegrity plate-like structures
are taken into account. The proposed approach helps one to understand unique properties and
structural behaviour of tensegrities.

Comparing the obtained results, it can be noticed that displacements depend on the reference
surface. Additionally, the influence of the self-stress level on the displacements also depends on
the reference surface – is bigger when the lower (or upper) surface is considered. It means that the
plane of support of tensegrity structures significantly affect the displacements. Furthermore, the
results of parametric analysis shown that the influence of the self-stress level on the displacements
decreases with an increase in the stiffness of cables (the parameter n increases).

The closed form of the displacements and the internal forces obtained in the paper simplifies
calculations. It is not necessary to describe the whole complex tensegrity structures with the use
of computational methods. The closed formulas can be useful in the design process and construc-
tion of different types of tensegrity systems, such as beams, plates or more complex structures.
Additionally, the obtained in the paper functions of the displacements and the internal forces
can be used for analysis of orthotropic plate strips with any external loads and any boundary
conditions.
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