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In this contribution, a new averaged non-asymptotic model of Reissner-
type plates with a periodic non-homogeneous structure is proposed. This
model is obtained by the tolerance averaging technique (TAT) and makes
it possible to investigate the effect of the period length parameter on
the overall plate behaviuor (the length-scale effect). A new element is
applying TAT directly to the equation of 3D-theory of elasticity of solids
with periodic structures. Then, taking into account the Hencky-Bolle
kinematic assumption, a non-asymptotic 2D-model of plates with periods
of an order of the plate thickness is derived. The proposed model is
applied to the analysis of some vibration problems.
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1. Introduction

The subject of analysis are medium thickness (Reissner-type) rectangular
elastic plates with a periodic non-homogeneous structure in directions parallel
to the plate mid-plane. The geometry of the above plates, apart from the global
mid-plane length dimensions L1, L2 and constant thickness d, is characteri-
sed by the length l which determines the period of structure inhomogeneity,
l = min(l1, l2). A fragment of the aforementioned plate is shown in Fig. 1.

Direct applications of Reissner-type plate equations to the analysis of spe-
cial problems of periodic plates are rather difficult due to the highly oscil-
lating and possibly non-continuous form of the coefficients, cf. Bensousson
et al. (1978). Thus, a problem arises here how to formulate an approximate
2D-model of a periodic plate described by an equation with certain averaged
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Fig. 1. An example of a medium thickness periodic plate

constant coefficients. This problem can be solved by using the homogenisation
theory of PDEs with periodic coefficients, see Caillerie (1984), Kohn and Vo-
gelius (1984). Homogenized models of the Reissner-type plates were studied
by Lewiński and Telega (2000) and Lewiński (1991, 1992). However, homoge-
nized equations cannot describe the effect of the period l on the overall plate
behaviour, the so called length-scale effect.

The main aim of this paper is to formulate a new non-asymptotic mo-
del of medium thickness periodic plates which is free of the aforementioned
drawback. To this end, we shall take into account the modelling approach
proposed by Woźniak et al. (2004), which is a certain generalization of the
tolerance averaging technique presented by Woźniak and Wierzbicki (2000).
So far, the tolerance averaging technique has been applied to the modelling of
medium thickness plates, cf. Woźniak and Baron (1995), Baron (2002, 2005).
In contrast to the results derived in the aforementioned papers, where the
period of plate inhomogeneity was assumed to be large when compared to
the plate thickness, the obtained model describe the behaviour of Reissner-
type prestressed plates with periods of an order of the plate thickness. This
model is obtained by the tolerance averaging technique, applied directly to
3D-equations of linear elastodynamics. Using the Hencky-Bolle kinematic as-
sumption, we shall derive a non-asymptotic 2D-model of medium thickness
periodic plates. In contrast to the homogenized 2D-model, it takes into acco-
unt the effect of plate rotational inertia on the dynamic response and enables
one to determine higher-order vibration frequencies caused by the plate perio-
dic inhomogeneity. The presented general results are illustrated by the analysis
of some vibration problems.

Throughout the paper, subscripts α, β, . . . (i, j, . . .), run over 1, 2 (1, 2, 3),
where superscripts A,B, . . . take the values 1, 2, . . . , N . The summation co-
nvention holds related to all aforementioned indices.
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2. Preliminaries

Let 0x1x2x3 be an orthogonal Cartesian coordinate system in a physical
space E3, and Ω is a region occupied by the solid under consideration in its
reference state. Let ∆(x) = ∆ + x be a periodic cell of the central of point
x ∈ E3. By li we denote the period of the solid inhomogeneity in the direction
of the xi-axis. It will be assumed that li are sufficiently small when compared
to the minimum characteristic length dimension of Ω. It is possible to consider
three special cases of the non-homogeneity, cf. Woźniak et al. (2004). In this
paper, considerations will be restricted to the bending of plates with a bi-
directional periodic structure. Therefore, for a solid periodic in the x1 and
x2-axis directions, we shall introduce the averaging operator

〈f〉(x) =
1

l1l2

∫

∆(x)

f(y1, y2, x3) dy1dy2

(2.1)

x = {xi} ∈ Ω0 Ω0 = {x ∈ E
3, ∆(x) ⊂ Ω}

for an arbitrary integrable function f defined on Ω.
The basic concept is that of a slowly varying function of the argument x. It

is a function satisfying the following tolerance averaging approximation (TAA)

〈Ef〉(x) ' 〈f〉(x)F (x) (2.2)

which has to hold for every integrable function f ; where ' is a certain toleran-
ce relation, see Woźniak and Wierzbicki (2000). If condition (2.2) holds for all
continuous derivatives of F (which exist) then we shall write F (·) ∈ SV∆(T ).
By T we denote the set of all tolerance relations in the problem under consi-
deration.

3. Modelling technique

Let ui(xj , t), xj ∈ Ω, be a displacement field at the time t from the
reference configuration of the periodic solid. The solid material is assumed to
be elastic and the components Aijkl of the elastic moduli tensor as well the
mass density ρ depend on xj and are periodic functions with respect to the
x1 and x2 coordinates.
Let σ0 = σ0ji be a tensor of the initial stress, bi stands for body forces.

From the principle of stationary action for the functional depending on the
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displacement field components, we obtain the following linearized equations of
motion for a prestressed solid

(Aijkluk,l),j + σ
0
klui,kl − ρüi + ρbi = 0 (3.1)

Equations (3.1) have highly oscillating (frequently non-continuous) coefficients
Aijkl and ρ. In most cases, the prestressing field tensor σ0ji is also periodic
and non-continuous.
Treating Eqs. (3.1) as a starting point, we formulate an approximate mo-

del of the solid under consideration, which will be represented by equations
with constant coefficients. The proposed modelling technique is based on two
assumptions. To formulate these assumptions, we introduce the following de-
composition of displacements

ui(x, t) = u
0
i (x, t) + ri(x, t) x ∈ Ω0 (3.2)

where u0 is an averaged part of the displacement defined by

u0i (x, t) = 〈ui〉(x, t) = [〈ρ〉(x3)]
−1〈ρui〉(x, t) (3.3)

and ri(·, t) is a part of the residual displacement field.
The first assumption states that in the macroscopic description of these

class of considered problems, the averaged displacement field is slowly-varying
for every t

u0i (·, x3, t) ∈ SV∆(T )

On the ground of (2.2), we obtain 〈ρri〉 ' 0. It follows that ri can be interpre-
ted as a fluctuation displacement field caused by the periodic non-homogeneous
structure of the solid.
The second assumption states that the fluctuation of the displacement

field, represented by ri and caused by the non-homogeneous periodic structure,
conforms to this structure. It means that in every cell ∆(x), x ∈ Ω0, these
fluctuations can be approximated by periodic functions in the form of finite
sums

ri(x, t) = h
A
i (xα)V

A(x, t)

A = 1, 2, . . . , N summation convention holds

where V A(·, x3, t) for every t are slowly-varying functions V A(·, x3, t) ∈
∈ SV∆(T ) and hAi (xα) are periodic linear independent functions such that
〈hAi 〉 = 0.
The functions V A(·, x3, t) constitute new kinematical variables called fluc-

tuation amplitudes, and hAi (·) are assumed to be known a priori and are
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referred to as mode-shape functions. In general, hAi (·) represent free periodic
vibrations of the 3D-periodic cell and can be treated as eigenvectors related to
a certain eigenvalue problem. An alternative specification of the mode-shape
functions based on mass discretization of the periodic cell is also possible.
In order to derive the governing equations for fields u0i , V

A, we shall intro-
duce a displacement field ui in the form given below into the action functional

ui(x, t) = u
0
i (x, t) + h

A
i (xα)V

A(x, t) (3.4)

Taking into account that u0i (·, x3, t) ∈ SV∆(T ), V
A(·, x3, t) ∈ SV∆(T ) we

shall use in calculations the tolerance averaging approximation given by (2.2).
We will also restrict considerations to the problem in which Aijkl(·) and ρ(·)
are even, and hAi (·) are odd functions. In such a case, applying the principle of
stationary action, for bi = const , we obtain the following system of equations
for u0i and V

A

〈ρ〉ü0i − (〈Aijkl〉u
0
k,l + 〈Aijkαh

A
k,α〉V

A),j − 〈σ
0
kl〉u

0
i,kl − 〈ρ〉bi = 0

(3.5)

〈ρhAi h
B
i 〉V̈

B − (〈Ai3k3h
A
i h
B
k 〉V

B
,3 ),3 + 〈Aiαkβh

A
i,αh
B
k,β〉V

A +

+〈Aijkαh
A
k,α〉u

0
i,j + 〈σ

0
αβh
A
k,αh

B
k,β〉V

B = 0

Equations (3.5) have constant coefficients and hence represent a certain ma-
croscopic model of a prestressed periodic solid. The solutions u0i (·, t), V

A(·, t)
have physical sense only if u0i (·, t) ∈ SV∆(T )and V A(·, t) ∈ SV∆(T ) for eve-
ry t. These equations cannot be used in analysis of boundary-value problems.
The boundary conditions for V A may not be derived as approximations of
boundary conditions for the displacement ui = u

0
i + h

A
i V
A.

4. Applications to medium thickness plates

Let Π = (0, L1) × (0, L2) be a rectangle with the dimensions L1 and
L2 on the plane 0x1x2. Assume that equations (3.5) hold in a region
Ω = Π × (−d/2, d/2) occupied by a Reissner-type un-deformed plate with
a constant thickness d. Let us also assume that the plate has a plane periodic
structure, and hence ∆ = (−l1/2, l − 1/2) × (−l2/2, l2/2) is a 2D-periodicity
cell on the 0x1x2-plane. Moreover, let the plate be homogeneous in the di-
rection of the x3-axis and be made of periodically distributed materials along
the mid-plane. The dimensions lα are of an order of the plate thickness d and
sufficiently small with respect to Lα, d� Lα.
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Setting x = (x1, x2), z = x3, we shall use denotation

∆(x) = ∆+ x

Π0 = {x ∈ Π : ∆(x) ⊂ Π}

Ω0 = {(x, z) ∈ Ω : ∆(x, z) ⊂ Ω}

Instead of operator (2.1), we introduce the following two kinds of averaging of
an arbitrary integrable function f(·)

〈f〉(x, z) =
1

l1l2

∫

∆(x)

f(y1, y2, z) dy1dy2 x ∈ Π0 −
d

2
¬ z ¬

d

2

(4.1)

〈f〉(x) =
1

d

d/2
∫

−d/2

〈f〉(x, z) dz

For ∆-periodic function f , 〈f〉 is constant.
Assuming that the planes z = const are elastic symmetry planes, we

define

Cαβγ3 = Aαβγ3 −Aαβ33A33γδ(A3333)
−1

Bαβ = KAα3β3

where K is the shear coefficient of the medium-thickness plate theory.
We introduce the Hencky-Bolle kinematics assumption in the known form

uα(x, z, t) = zϑα(x, t) u3(x, z, t) = w(x, t) (4.2)

where w(·, t) are displacements of points of the mid-plane Π, whereas ϑα(·, t)
are independent rotations.
Taking into account the modelling assumptions, outlined in the previous

Section, there exist decompositions of ϑα and w into slowly varying avera-
ged parts ϑ0α, w

0 and residual displacements approximated by finite sums
hAi (x)V

A(xj , t). Assuming that h
A
3 (·) = 0 and V

A = zψA(x, t), we obtain

uα(x, z, t) = zϑ
0
α(x, t) + zh

A
α (x)ψ

A(x, t)
(4.3)

u3(x, z, t) = w
0
α(x, t)

where ϑ0α, w
0, ψA are basic unknowns which are slowly varying for every

time t.
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Substituting the right-hand sides of (4.3) into the action functional, we
obtain from (3.5) the following system of equations for the mid-plane deflection
w0(x, t), rotations vt0α(x, t) and 2D-fluctuation amplitudes ψ

A(x, t)

j〈ρ〉ϑ̈0α − j(〈Cαβγδ〉ϑ
0
γ,δ),β + 〈Bαβ〉(ϑ

0
α +w

0
,α)− j(〈Cαβγδh

A
γ,δ〉ψ

A),β +

−j(〈σ0γβ〉ϑ
0
α,γ),β + 〈zσ

0
γ3〉ϑ

0
α,γ = 0

〈ρ〉ẅ0 − [〈Bαβ〉(ϑ
0
α + w

0
,α)],β − (〈σ

0
γβ〉w

0
,γ),β = 0 (4.4)

j〈ρhAαh
B
α 〉ψ̈

B + (j〈Cαβγδh
B
γ,δ〉+ 〈Bαβh

A
αh
B
β 〉)ψ

B + j〈Cαβγδh
A
γ,δ〉ϑ

0
α,β +

+j〈σ0αβh
A
γ,αh

B
γ,β〉ψ

B = 0

where j = d2/12 and, for the sake of simplicity, we have neglected the body
forces.

The characteristic feature of the derived system of equations (4.4) is that
the fluctuation amplitudes ψA are governed by the system of ordinary diffe-
rential equations involving only time derivatives of ψA. Hence, these variables
do not enter into the boundary conditions and play the role of certain internal
variables. Let us observe that the underlined coefficients 〈ρhAαh

B
α 〉, 〈Bαβh

A
αh
B
β 〉

are values of an order of the period length. Thus, equations (4.4) describe the
effect of the period length on the overall behaviour of the plate. This inho-
mogeneity period is of an order of the plate thickness. Neglecting the terms
involving the period length, we can eliminate fluctuation variables ψA from
(4.4) and hence obtain a system of equations for ϑ0α and w

0 as the basic unk-
nowns. It can be shown that this system represents a certain approximation
of the homogenized 2D-model of the periodic plate under consideration. For
a homogeneous plate ρ, Cαβγδ , Bαβ are constant and hence 〈Cαβγδh

A
γ,δ〉 = 0.

In this case, equation (4.4)3 yields ψ
A = 0 provided that σ0ij = 0, the ini-

tial conditions for ψA are homogeneous and (4.4) takes the form of known
Hencky-Bolle plate equations.

Equations (4.4) represent the non-asymptotic averaged 2D-model of the
Reissner-type prestressed plates with a plane periodic structure. In contrast
to the 2D-models of plates obtained from the equations of the plate theory by
Baron and Woźniak (1995), Baron (2000, 2002, 2005), the above model was
derived from the macroscopic 3D-model of a periodic solid, and hence can be
applied to problems in which period lengths are of the same order as the plate
thickness.
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5. Dynamic behaviour of medium-thickness plates

The aforementioned results will be now applied to the analysis of free
bending vibrations of a plate with a periodic non-homogeneous structure on-
ly in the direction of the x2-axis. The plate under consideration is simply
supported on the edges x2 = 0, x2 = L and subjected to the initial stress

N =
∫ d/2
−d/2 σ

0
22 dz, see Fig. 2. The plate is made of two linear elastic, isotropic

and homogeneous materials. It will be assumed that all unknown functions de-
pend on time and variable x2, exclusively. It is a plate with a one-directional
periodic structure which can be treated as a special case of plates with bi-
directional periodic structures.

Fig. 2. A plate with a one-directional periodic structure

Considering the isotropy (in this special case also orthotropy) of the plate,
it is denoted C = C2222, D = B22 = K2A2323.

In the first approximation, we can introduce only one vector of shape func-
tions h1 = (0, h(x2)), where h(·) is a saw-like l-periodic function shown in
Fig. 3.

Thus, in this example, we shall deal with only one fluctuation amplitude
ψ1(x2, t) = ψ(x2, t), and formulae (4.2) in the form

u1(x2, z, t) = 0

u2(x2, z, t) = zϑ
0
α(x2, t) + zh(x2)ψ(x2, t) (5.1)

u3(x2, z, t) = w
0(x2, t)

Under these conditions, equations (4.4) reduce to the system of three equ-
ations for the averaged plate deflection w0(x2, t), rotation ϑ = ϑ02(x2, t) and
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Fig. 3. Diagrams of the function h(·)

fluctuation amplitude ψ(x2, t)

j〈ρ〉ϑ̈0 − 〈C〉ϑ0,22 − j〈Ch,2〉ψ,2 + 〈D〉(ϑ
0 + w,2)− jNϑ

0
,22 = 0

〈ρ〉ẅ0 − 〈D〉(ϑ0 + w,2),2 −Nw
0
,22 = 0 (5.2)

j〈ρh2〉ψ̈ + (j〈Ch2,2〉+ 〈Dh
2〉)ψ + j〈Ch,2〉ϑ

0
,2 + jN〈h

2
,2〉ψ = 0

where N = const, j = d2/12.

It can be seen that the coefficients 〈Dh2〉 = l2〈D〉/12, 〈ρh2〉 = l2〈ρ〉/12
depend explicitly on the period length l and describe the length-scale effect.

Assuming the unknown functions in the form

w0(x2, t) = e
iωtw(x2) ϑ0(x2, t) = e

iωtϑ(x2)

ψ(x2, t) = e
iωtψ(x2)

where ω is a vibration frequency, we obtain from (5.2)3

ψ = −
〈Ch,2〉

Rω
ϑ,2

(5.3)

Rω = 〈Ch
2
,2〉+ j

−1〈Dh2〉+ 〈h2,2〉N − 〈ρh
2〉ω2

Substituting (5.3) into (5.2)1, taking into account the previous assumption,
we can look for a solution to (5.2) in the well known form

w(x2) = wn sin knx2 ϑ(x2) = ϑn cos knx2
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where kn = nπ/L, n = 1, 2, . . ., and wn, ϑn are arbitrary constants, summa-
tion convention holds. In this case, we arrive at a system of linear algebraic
equations for wn, ϑn

[

k2nj
(

〈C〉 −
〈Ch,2〉2

Rω
+N
)

+ 〈D〉 − 〈ρ〉ω2 knj〈D〉

knj〈D〉 k2n(〈D〉 +N)− 〈ρ〉ω
2

] [

ϑn
wn

]

=

[

0
0

]

(5.4)

Equations (5.4) have a nontrivial solution provided that their determinant
is equal to zero. In this way, bearing in mind that h, lh,2 and d are of an order
of the period l and l � L, we obtain the following approximate formulae for
the first three free vibration frequencies

ω21 =
k2nN

〈ρ〉
+
k4nH

〈ρ〉
+O(ε6)

ω22 =
〈D〉

j〈ρ〉
+
1

〈ρ〉
[k2nH0 + k

2
nj(N + 〈D〉)] +O(ε

4) (5.5)

ω23 =
〈Ch2,2〉+N〈h

2
,2〉+ j

−1〈Dh2〉

〈ρh2〉
+
k2n
〈ρ〉

〈Ch,2〉
2

〈Ch2,2〉+N〈h
2
,2〉
+O(ε4)

where

H = j
(

〈C〉 −
〈Ch,2〉

2

〈Ch2,2〉+N〈h
2
,2〉+ j

−1〈Dh2〉

)

H0 = j
(

〈C〉 −
〈Ch,2〉

2

〈Ch2,2〉+N〈h
2
,2〉

)

For medium thickness plates, relations (5.5) have a physical meaning provided
that ε2 = k2nj � 1.

Now let us discuss an asymptotic approximation of Eqs. (5.2). By formal
transition l→ 0, Eqs. (5.2)3 lead to an algebraic equation for ψ

〈Ch2,2〉ψ = −〈Ch,2〉ϑ
0
,2 −N〈h

2
,2〉

and to a system of equations for the mid-plane deflection w0 and rotation ϑ0

j〈ρ〉ϑ̈0 −H0ϑ
0
,22 + 〈D〉(ϑ

0 + w0,2)− jNϑ
0
,22 = 0

(5.6)

〈ρ〉ẅ − 〈D〉(ϑ0 + w0,2),2 −Nw,22 = 0
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Substituting w0 = eiωtwn sin(knx2), ϑ
0 = eiωtϑn cos(knx2) into (5.6), we

arrive at the single frequency equation

j〈ρ〉ω4 − 〈ρ〉[(k2nH0) + 〈D〉+ k
2
nj(2N + 〈D〉)]ω

2 +
(5.7)

+k2nN(k
2
nH0 + 〈D〉) + k

2
n(k
2
nH0 + k

2
njN) = 0

Taking into account that k2nj � 1 and using the approximation

√

1 + k2nj ≈ 1 +
1

2
k2nj

we obtain from (5.7) the following formulae for the free vibration frequencies

ω21 =
k2nN

〈ρ〉
+
k4n
〈ρ〉

H0〈D〉

〈D〉(1 + k2nj) + k
2
nH0

(5.8)

ω22 =
〈D〉

j〈ρ〉
+
1

j〈ρ〉
[k2nH0 + k

2
nj(N + 〈D〉)] +

k4n
〈ρ〉

H0〈D〉

〈D〉(1 + k2nj) + k
2
nH0

One should remember that d is of an order of l, then it is possible to
neglect the terms involving j in formulae (5.6) and (5.7). This assumption is
equivalent to the neglecting of the rotational inertia in the model described by
(5.6). In that case, considering that k2nH0/〈D〉 � 1, we obtain an asymptotic
model equation

ω20 =
k2n(N + k

2
nH0)

〈ρ〉
(5.9)

In the course of numerical calculations, the analysis of interrelations be-
tween the non-dimensional lower free vibration frequency and geometrical pa-
rameter κ = l/d is carried out. The obtained results are compared with those
corresponding to the asymptotic model.
Let the orthotropic constituents of the plate have mass densities ρ′, ρ′′ and

elastic moduli C ′, C ′′ and D′, D′′, Fig. 3. In this case, by denoting x = l′/l,
x ∈ (0, 1), the averaging operator reduces to the form

〈f〉 = xf ′ + (1− x)f ′′

and

〈fh2〉 =
l2

12
〈f〉 〈fh,2〉 = f

′ − f ′′ 〈fh2,2〉 =
f ′

x
+

f ′′

1− x

For simplicity, we assume that N = 0, ρ′ = ρ′′ = ρ. Next we introduce
parameters η = C ′′/C ′, ζ = D′′/D′ and ν = D′/C ′. Multiplying both relations
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(5.5)1 and (5.9) by ρ(C
′k4nj)

−1 and taking into account the above denotations
and assumptions, we arrive at the following formulae for the non-dimensional
free vibration frequencies

Ω0 =
η

(1− x) + xη
Ω1 =

R[x− (1− x)η]− (1− η)2

R
(5.10)

R =
1

x
+
1

1− x
+ κ2ν[x+ (1− x)ζ]

Calculations were performed for three values of the parameters η = 2;
10; 20 and κ = 0.5; 1.0; 2.0. We found that ν = 0.3 and ζ = η. Diagrams
representing the interrelation between non-dimensional frequencies Ω and the
size of the periodicity cell (given by x and κ) as well the parameter η are
shown in Fig. 4.

Commenting the obtained results it should be stated that, with assump-
tions made regardless of the material η, and geometrical κ parameters, the
asymptotic model gives the lowest values of the vibration frequency. The influ-
ence of κ on the frequency values rises with the growth of η. For the given η,
the highest frequency is obtained when the period l is of an order the pla-
te thickness. The differences in the vibration frequency depending on κ are
the highest when the material of greater material parameters fills up the cell
periodicity by about 2/3 of its volume.

The calculation assumptions are fulfilled by glued timber plates which are
composed of elements cut along and across the fibres, see Fig. 5. Mechanical
properties of timber can be treated in different ways. According to PN-B-
03150-2000, timber is a quasi-isotropic material with elastic moduli:

C ′ = E90 = 430 MPa C ′′ = E = 13000 MPa
D′ = D′′ = G = 810 MPa (for timber GL-35)

According to Neuhaus (2004), timber can also be treated as an anisotro-
pic material for which, after certain calculations, we obtain C ′ = 428MPa,
C ′′ = 12290MPa, D′ = 558MPa, D′′ = 37MPa.

In Fig. 6, diagrams of relation between the vibration frequency and the
parameter κ for the both mentioned cases are presented. It is clearly seen
that no significant differences in the values of vibration frequencies can be
observed both for quasi-isotropic and anisotropic timber if the period l is of
an order of the plate thickness or lower. The conclusions obtained beforehand
have also been confirmed as far as the comparison to the asymptotic model is
concerned.
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Fig. 4. Diagrams of free vibration frequencies versus different material characteristics

Fig. 5. An example of glued timber plate
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Fig. 6. Interrelation between the frequency and mechanical properties for timber

6. Summary of new results

The following new results and remarks on composite periodic plates have
been derived in this paper:

• The obtained 2D-model of periodic Reissner-type plates, makes it po-
ssible to investigate dynamic (also and stability) problems, in which the
constant plate thickness d is of an order of the period length l.

• In contrast to the homogenized model, the model obtained in this con-
tribution can also be used to determination of higher free vibration fre-
quencies caused by the plate periodic structure.

• The proposed 2D-model is a certain complementation for the model pre-
sented by Baron and Woźniak (1995) in which the period lengths were
assumed to be much larger than the plate thickness.

• The analysis confirms thesis that if the period lengths are small when
compared to the plate thickness then the length-scale effect is reduced;
in this case the homogenisation approach is used.
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• The analysis of the free vibration problem of a simply supported plate-
band leads to the conclusion that the asymptotic model gives the lowest
values of the basic free vibration frequency.

• The calculations for glued laminated timber plates prove that no signi-
ficant differences in the values of vibration frequencies can be observed,
both for quasi-isotropic and anisotropic timber, if the period l is equal
to the plate thickness or smaller.
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Modelowanie periodycznie niejednorodnych płyt o okresie periodyczności

rzędu ich grubości

Streszczenie

W pracy zaproponowano nowy uśredniony model płyt typu Reissnera o struktu-
rze periodycznie niejednorodnej. Jest to model nieasymptotyczny, otrzymany tech-
niką uśredniania tolerancyjnego (tolerance averaging technique, TAT), pozwalający
uwzględnić wpływ okresu powtarzalności l na makro-mechaniczne (w sensie mecha-
niki kompozytów) własności płyty. Wpływ ten nazywamy efektem skali. Dotychczas
metodami nieasymptotycznymi modelowano periodyczne płyty średniej grubości speł-
niające założenie, że okres l jest dużo większy od maksymalnej grubości płyty. TAT
stosowano wtedy do uśrednionych na grubości, równań 2Dmodelu płyty.
Elementem oryginalnym jest zastosowanie TAT bezpośrednio do równań trójwy-

miarowej liniowej teorii sprężystości ośrodka o strukturze periodycznej w kierunkach
równoległych do pewnej płaszczyzny środkowej. Uwzględniając w tych równaniach hi-
potezę kinematyczną Henckey-Bolle’a otrzymano równania 2D-modelu średniej gru-
bości płyt o płaskiej strukturze periodycznej i okresie l rzędu grubości płyty. Jak
dotąd modelowano w ten sposób tylko periodyczne płyty spełniające założenia Kich-
hoffa.
Dla przypadku szczególnego, swobodnie podpartego pasma płytowego wyznaczo-

no częstości drgań własnych w zależności od parametrów geometrycznych oraz ma-
teriałowych i porównano je z częstościami uzyskanymi w ramach modelu asympto-
tycznego.
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