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The paper develops an integration approach to stochastic nonlinear partial differential equ-
ations (SPDE’s) with parameters to be random fields. The methodology is based upon
assumption that random fields are from a special class of functions, and can be described
as a product of two functions with dependent and independent random variables. Such an
approach allows one to use Karhunen-Loève expansion directly, and the modified stochastic
spectral finite element method (SSFEM). It is assumed that a random field is stationary
and Gaussian while the autocovariance function is known. A numerical example of one-
dimensional heat waves analysis is shown.
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1. Introduction

In the literature, one can find works describing SPDE’s solutions using SSFEM for stationa-
ry problems (Le Maitre and Knio, 2010; Matthies and Keese, 2005). There are also methods
handling transient problems such as the Monte Carlo method (MC), perturbation method (Ka-
miński, 2013; Służalec, 2003), stochastic collocation method (SCM) (Acharjee and Zabaras,
2006; Babuška et al., 2007; Xiu and Hesthaven, 2005). These methods are widely used for many
problems, e.g. continuum mechanics, fluid dynamics, heat flow and have their advantages and
disadvantages (Stefanou, 2009; Xiu, 2010). As the leading in the literature, the SCM method is
listed due to the possibility of analyzing complex nonlinear problems. It reduces analysis time by
using multithreading and can be simply implemented (deterministic solver is treated as so-called
“black box”). Competitive to SCM is the method of Stochastic Spectral Finite Element Method
proposed by Ghanem and Spanos (2003). This method is one of the so-called intrusive methods,
which is very effective in solving linear problems, but requires building the source code from
scratch. An important disadvantage that is mentioned in many works is the coupling of equ-
ations that prevent the use of parallel solvers. This problem was solved by applying the domain
decomposition method (Subber and Sarkar, 2014). Another important disadvantage mentioned
in the works on numerical solution with SSFEM is the considerable difficulty of solving nonlinear
problems. Mathematical formulation of nonlinear stationary equations can be found in works
(Arregui-Mena et al., 2016; Ghosh et al., 2008; Hu et al., 2015; Matthies and Keese, 2005; Nouy,
2008; Nouy and Le Maitre, 2009; Stefanou et al., 2017; Xiu and Karniadakis, 2003; Zakian and
Khaji, 2016) rather than description of a general numerical approach. There is also no compre-
hensive solution to transient problems. This paper presents a methodology based upon a special
class of functions occurring in constitutive equations which can be described as a product of
two functions, respectively with dependent and independent variables. This approach allows one
to extend the applicability of SSFEM to solve wide range of nonstationary nonlinear stochastic
PDE’s.
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2. Stochastic description

In this work, a modified SSFEM is used. This method is based upon notion of a random field.
The random field α(x, ω) (Acharjee and Zabaras, 2007; Xiu, 2010) (x ∈ D ⊂ R, ω ∈ Ω) is a
real valued measurable function which assigns a random variable α(ω) to each point x on a
fixed probability space (Ω,Z,P). Here Ω is the set of elementary events, Z is the σ-algebra and
P : Z → [0, 1] is a probability measure. To obtain a computationally useful representation of
the process α(x, ω), it will be presented in the canonical form. Among various forms of such a
representation, a spectral representation - Karhunen-Loève expansion will be adopted in further
considerations (Ghanem and Spanos, 2003). This expansion may be presented in the following
form

α(x, ω) = ξ0α(x) +
∞
∑

i=1

ξi(ω)
√

λifi(x) x ∈ D, ω ∈ Ω (2.1)

Such a Karhunen-Loève expansion is truncated to M terms

α(x, ω) ≈ ξ0α(x) +
M
∑

i=1

ξi(ω)
√

λifi(x) x ∈ D, ω ∈ Ω (2.2)

In equation (2.1), {ξi(ω)}∞i=1 is a set of othonormal independent Gaussian random variables
with mean ξ0 = 1 and standard deviations equal to one, (·) is the expected value operator.
Constants {λi}∞i=1 and deterministic functions {fi(x)}∞i=1 are the eigenvalues and eigenfunctions
of the covariance kernel
∫

D

Ckernel(x1, x2)fi(x2) dx2 = λifi(x1) i ∈ N = {1, 2, . . .} (2.3)

The polynomial chaos (Ghanem and Spanos, 2003; Le Maitre and Knio, 2010) representation of
the random variable U(ω), truncated to P terms, can be written as

U(ω) ≈ U(ξ) =
P
∑

i=0

uiΦi(ξ) (2.4)

where {Φi(ξ)}Pi=0 denotes polynomial chaoses (Ghanem and Spanos, 2003), and {ui}Pi=0 are
coefficients of the expansion. The coefficient P described by the expression (Ghanem and Spanos,
2003)

P = 1 +
p
∑

s=1

2

s!

s−1
∏

r=0

(M + r) (2.5)

is the total number of polynomial chaoses used in the expansion, excluding the zero-th order
term, with p denoting the order of polynomial chaoses (detailed description of polynomial chaoses
can be found in Ghanem and Spanos (2003), Le Maitre and Knio (2010)).

3. Governing equations formulation of SSFEM – an approach for a special class
of equations

3.1. Method of solution of the stochastic problem (SSFEM)

First step in solving SPDE’s, after finite element discretisation, is the stochastic random field
discretisation. Let K denotes the number of nodes of the discretized domain. The equation of
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motion with given initial and boundary conditions, which is analyzed, can be written in a well
known matrix form (Bathe, 1996)

M(x, ω,q(t, ω))q̈(t, ω) +C(x, ω,q(t, ω))q̇(t, ω) +K(x, ω,q(t, ω))q(t, ω) = F(x, ω,q(t, ω))

(3.1)

where t ∈ T denotes time, x ∈ D × D × D
def
= D

3 ⊂ R
3 denotes space variables, q(t, ω) is

a generalized K × 1 displacement vector and q̇(t, ω), q̈(t, ω) is the first and second derivative
in time. Suppose that for the K × K matrices M,C,K and K × 1 vector F separation of
dependent and independent variables can be made, which allows one to use Karhunen-Loève
expansion directly, e.g.

K(x, ω,q(t, ω)) = K(x, ω)fK(q(t, ω)) (3.2)

where fK(q(t, ω)) is a real valued Riemann integrable function on a suitable space and K(x, ω)
is a K ×K matrix. Such an approach limits applicability of this method to problems in which
constitutive equations or nonlinear boundary conditions can be written as a product of functions
of independent and dependent variables, e.g. k(x, q(x, t)) = ka(x)kb(q(x, t)). Many physical
relations can be written in this way or can be reduced to either k(x, q(x, t)) = kb(q(x, t)) or
k(x, q(x, t)) = ka(x).
Assume that the discretized function of generalized displacement at each node has represen-

tations in polynomial chaos

qk(t, ω) ≈
P
∑

i=0

(qspect(t))k,iΦi(ξ(ω)) k = 1, 2, . . . ,K (3.3)

(index k denotes node number) and let it be derived its first and second order derivative with
respect to the time

q̇k(t, ω) ≈
P
∑

i=0

(q̇spect(t))k,iΦi(ξ(ω)) k = 1, 2, . . . ,K

q̈k(t, ω) ≈
P
∑

i=0

(q̈spect(t))k,iΦi(ξ(ω)) k = 1, 2, . . . ,K

(3.4)

The vector of nodal generalized displacement can be written as

q(t, ω) ≈ q(t, ξ) = qmatrixspect (t)Φnode(ξ) (3.5)

where qmatrixspect (t) is a K × (P + 1) matrix built from spectral coefficients and

Φnode(ξ) =
[

Φ0(ξ) Φ1(ξ) · · · ΦP (ξ)
]T

(3.6)

is a vector built from the polynomial chaoses.
Substituting appropriate derivatives of equation (3.5) to equation (3.1) and using (3.2),

(3.5)-(3.6), the following equation

M(x, ω)fM (q
matrix
spect (t)Φnode(ξ))q̈

matrix
spect (t)Φnode(ξ)

+C(x, ω)fC(q
matrix
spect (t)Φnode(ξ))q̇

matrix
spect (t)Φnode(ξ)

+K(x, ω)fK(q
matrix
spect (t)Φnode(ξ))q

matrix
spect (t)Φnode(ξ) = F(x, ω)fF (q

matrix
spect (t))

(3.7)

can be obtained.
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Let us represent the matricesM(x, ω), C(x, ω), K(x, ω), F(x, ω) using the Karhunen-Loève
expansion, e.g.

K(x, ω) ≈ K(x, ξ) = (K(x))0ξ0 +
M
∑

i=1

ξi(ω)(K
0(x))i (3.8)

where (·)0 denotes a matrix computed for the mean value of the process and (·)0 denotes a
matrix built of the shape functions and Karhunen-Loève expansion terms (e.g. (K0(x))i =
∫

D
∇N(
√
λifi(x))∇NT dx, where N is a vector built of test functions from the Sobolev space

H1(0, lelem) where lelem is a finite element length).
In order to formulate a suitable system of equations, let us represent the matrix of stochastic

eigenmodes of the solution as a vector qmatrixspect → qvectorspect where

qvectorspect (t) =
[[

q00(t) q01(t) · · · q0P (t)
] [

· · · qK0(t) · · · qKP (t)
]]T

(3.9)

where P , as before, is the total number of polynomial chaoses used in the expansion and K is
the total number of nodes in the FEM solution. The global vector of polynomial chaoses takes
the form

Φ(ξ) =
[

(Φnode(ξ))0 (Φnode(ξ))1 · · · (Φnode(ξ))K
]T

(3.10)

where the vectors of polynomial chaoses are the same for each node

(Φnode(ξ))0 = (Φnode(ξ))1 = . . . = (Φnode(ξ))K (3.11)

After substitution of appropriate expansions (3.8) of the matrices M(x, ω), C(x, ω), K(x, ω),
F(x, ω), equation (3.9) and (3.10) into (3.7), then multiplying by Φ(ξ) and averaging with
respect to the random space

〈

Φ(ξ)
(

(M(x))0ξ0 +
MM
∑

iM=1

ξiM (M
0(x))iM

)

fMT

(

(qvectorspect (t))
TΦ(ξ)

)(

q̈vectorspect (t)
)T
Φ(ξ)

〉

+
〈

Φ(ξ)
(

(C(x))0ξ0 +
MC
∑

iC=1

ξiC (C
0(x))iC

)

fCT

(

(qvectorspect (t))
TΦ(ξ)

)(

q̇vectorspect (t)
)T
Φ(ξ)

〉

+
〈

Φ(ξ)
(

(K(x))0ξ0 +
MK
∑

iK=1

ξiK (K
0(x))iK

)

fKT

(

(qvectorspect (t))
TΦ(ξ)

)(

qvectorspect (t)
)T
Φ(ξ)

〉

=
〈

Φ(ξ)
(

(F(x))0ξ0 +
MF
∑

iF=1

ξiF (F
0(x))iF

)

fF
(

(qvectorspect (t))
TΦ(ξ)

)〉

(3.12)

can be obtained, where

〈·〉 =
∫

Ω

(·) dP(ω) (3.13)

and MM , MC , MK , MF denote the numbers of terms in the Karhunen-Loève expansion.
Finally, the set of (P + 1)K nonlinear deterministic equations of the SSFEM method is

obtained

Mexpand(x,qvectorspect (t))q̈
vector
spect (t) +C

expand(x,qvectorspect (t))q̇
vector
spect (t)

+Kexpand(x,qvectorspect (t))q
vector
spect (t) = F

expand(x,qvectorspect (t))
(3.14)
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where, for example, the generalized stiffness matrix (matrices Mexpand and Cexpand can be
written in the same way)

Kexpand(x,qvectorspect (t))

=
〈

Φ(ξ)
(

(K(x))0ξ0 +
MK
∑

iK=1

ξi(K
0(x))iK

)

fK
(

(qvectorspect (t))
TΦ(ξ)

)

(Φ(ξ))T
〉 (3.15)

and the generalized force vector

Fexpand(x,qvectorspect (t)) =
〈

Φ(ξ)
(

(F(x))0ξ0+
MF
∑

iF=1

ξi(F
0(x))iF

)

fF
(

(qvectorspect (t))
TΦ(ξ)

)〉

(3.16)

For fr(q
TΦ(ξ)) = 1, r = M,C,K,F equation (3.14) is linear. Moreover, the terms

〈ξiΦ(ξ)(Φ(ξ))T〉 and 〈ξiΦ(ξ)〉 of the above stated matrices obtained from integration over the
random space have a lot of zero entries (Ghanem and Spanos, 2003). In addition, this terms
may be determined in advance and only once.
In the proposed solution of nonlinear equation (3.14), the matrices in this equation ha-

ve to be numerically integrated both in the iteration step and time step, over a random and
geometric space. This is due to nonlinear functions fr (where r = M,C,K,F ) of the depen-
dent variable q appearing in the parts 〈ξiΦ(ξ)fg(qTΦ(ξ))(Φ(ξ))T〉 (where g = M,C,K) and
〈ξiΦ(ξ)fF (qTΦ(ξ))〉 of these matrices. Methods of evaluating the above mentioned inner pro-
duct for different types of nonlinearities of the functions fr can be found in work of Le Maitre
and Knio (2010).
For a complete presentation of the stochastic process q(x, t, ω), the covariance matrix is

determined (Ghanem and Spanos, 2003)

Covqq(t) =
P
∑

j=0

〈Φj(ξ)Φj(ξ)〉(qvectorspect (t))j [(q
vector
spect (t))j ]

T (3.17)

where Covqq = {(Covqq)i,j}Pi,j=1, the j-th eigenmode of the vector qvectorspect (t) has been written
as (qvectorspect (t))j . Therefore, the expected value may be calculated

E(qvectorspect (t)) = (q
vector
spect (t))0 (3.18)

and the variance

V arq(t)i = Covqq(t)i,i i = 1, 2, . . . , P (3.19)

Matrix equation (3.14) is a deterministic system of nonlinear equations, therefore, in order to
solve it, one of methods of direct integration, for example Newmark method, can be used (Bathe,
1996).

3.2. Application of SSFEM to non-classical stochastic heat conduction constitutive model
– heat waves analysis

The most widely used model for many engineering problems is the classic equation of Fourier
(Fourier, 1822), which can be represented as a function of a random field. The expression for
the heat flux can be written

qF (x, t, ω) = −kF (x, ω, T )∇T (x, t, ω) x ∈ D
3 ⊂ R

3, ω ∈ Ω, t ∈ T (3.20)

where kF (x, ω, T ) is Fourier thermal conductivity.
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Because of the anomalies associated with the Fourier model (Vernotte, 1958) and the presence
of finite speed propagation of heat, a Cattaneo model that takes into account heat flux relaxation
has been introduced (Cattaneo, 1948; Służalec, 2003)

τ∂tqC(x, t, ω) + qC(x, t, ω) = −kC(x, ω, T )∇T (x, t, ω) x ∈ D
3 ⊂ R

3, ω ∈ Ω, t ∈ T

(3.21)

where τ represents the relaxation time and kC(x, ω, T ) is the Cattaneo thermal conductivity.
The Jeffreys type model is another heat conduction constitutive model of which the Cattaneo

model and a Fourier-like diffusive model are subcases that can be obtained from this model
(Joseph and Preziosi, 1989; Straughan, 2011; Tamma and Zhou, 1998; Ván and Fülöp, 2012)

τ∂tq(x, t, ω) + q(x, t, ω) = −k(x, ω, T )[∇T (x, t, ω) −K(x, ω, T )∂t(∇T (x, t, ω))] (3.22)

where x ∈ D
3 ⊂ R

3, ω ∈ Ω, t ∈ T, and

k(x, ω, T ) = kF (x, ω, T ) + kC(x, ω, T ) (3.23)

and

K(x, ω, T ) =
τkF (x, ω, T )

k(x, ω, T )

is the so-called retardation time.
When the retardation time, K = 0, the Jeffreys model is reduced to the Cattaneo model.

When selecting, K = τ , the Jeffreys model only degenerates to a Fourier-like diffusive model
with relaxation (Tamma and Zhou, 1998).
Zhou and co-workers (Tamma and Zhou, 1998) introduced C-process and F-process models

which are a linear combination of the Fourier and Cattaneo models. The basic assumption is the
simultaneous occurrence of a fast process based on equation (3.21) and a slow process related
to equation (3.22). This model is a generalization of the above stated relations. The equations
describing connection between heat flux and temperature have the following form (Tamma and
Zhou, 1998)

qCF (x, t, ω) = qF (x, t, ω) + qC(x, t, ω) x ∈ D
3 ⊂ R

3, ω ∈ Ω, t ∈ T (3.24)

where

qC(x, t, ω) + τ∂tqC(x, t, ω) = −(1− FT (x, ω, T ))k(x, ω, T )∇T (x, t, ω)
qF (x, t, ω) = −FT (x, ω, T )k(x, ω, T )∇T (x, ω)

FT (x, ω, T ) =
kF (x, ω, T )

kF (x, ω, T ) + kC(x, ω, T )

k(x, ω, T ) = kF (x, ω, T ) + kC(x, ω, T )

(3.25)

After substitution of equation (3.25)1,2 into (3.24), it can be obtained

qCF (x, t, ω) + τ∂tqCF (x, t, ω)

= −[k(x, ω, T )∇T (x, t, ω) + τ∂t(k(x, ω, T )FT (x, ω, T )∇T (x, t, ω))]
(3.26)

Indexes F and C in the conductivity coefficient and in the heat flux vector respectively refer to
the Fourier model with infinite propagation speed of wave and to the Cattaneo model, occurring
simultaneously. Also the model number FT ∈ [0, 1] has been introduced. It can be seen that
for FT ∈ [0, 1] the Jeffrey model is obtained, for FT = 1 the Fourier one, and for FT = 0 the
equation is reduced to the Cattaneo model.



Time integration of stochastic generalized equations... 43

4. Stochastic nonlinear 1D transport equation

To obtain equations describing the flow of heat in a rigid conductor, the following energy balance
equation (for clarity the shorthand notation is adopted T ≡ T (x, t, ω))

C(x, ω, T )∂tT +∇ · qCF = 0 x ∈ D, ω ∈ Ω, t ∈ T (4.1)

where C(x, ω, T ) = ρc(x, ω, T ) is combined with one of the model constitutive equation, initial
condition T (x, t = 0, ω) = T0 and a suitable boundary condition on ∂D. The equation associated
with C- and F-process models (which can be reduced to the above mentioned models) is stated
below

τ∂t(C(x, ω, T )∂tT ) +C(x, ω, T )∂tT − ∂x(kF (x, ω, T )∂xT )− τ∂t(∂x(kF (x, ω, T )∂xT ))
− ∂x((1 − FT (x, ω, T ))k(x, ω, T )∂xT ) = 0

(4.2)

5. Governing equations formulation of the Galerkin Finite Element Method
(GFEM) – C- and F-processes model

The first step to solve the stochastic problem is discretisation of a deterministic space by the use
of the finite element method in the Galerkin approach (Bathe, 1996). To this end, the response
in terms of the temperature field is approximated by the expression

T (x, t, ω) = (T(t, ω))TN(x) (5.1)

where N(x) is a vector built of the test functions (as defined in Section 3.1), T(t, ω) is a vector
representing the discretized temperature field and the upper index T denotes transposition. The
final equations after appropriate transformations read

M(T)T̈ +C(T)Ṫ+K(T)T = F(T) (5.2)

where Ṫ and T̈ denote the first and second order temperature derivative with respect to time.
The individual matrices in equation (5.2) can be obtained through a standard FE method (Bathe,
1996).

6. Numerical example

Distributions of temperature statistical moments as functions of time of the considered model
for a thin steel sheet (similar to the work (Al-Nimr, 1997)) (Fig. 1) heated by a sudden heat
impulse (Ván and Fülöp, 2012) will be analyzed. For this purpose and for further analysis, the
following data will be adopted (Joseph and Preziosi, 1989; Ván and Fülöp, 2012).

Pulsed heating can be modeled as an internal heat source (Bargmann and Favata, 2014) with
various time characteristics or as external boundary conditions. Let the heating function for the
mixed boundary condition (convection-radiation) takes the form

Tpulse(t) = T0 + a sin(bt) exp(−ct) (6.1)

with parameters T0 = 293.15K, a = 15 · 104K, b = π/10, c = 50.
One dimensional region of the sample (modeled as a bar) is divided into 20 elements. The

adopted heating time is equal to tmax = 0.6·10−10 s with 60 time steps (time increment∆t = 0.01·
10−10). Cattaneo thermal conductivity has been considered as a random function independent
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Fig. 1. Schematic of a thin steel plate heated by a pulse

of temperature (stationary and Gaussian process), kC(x, ω, T ) = kC(x, ω) with the covariance
kernel

Ckernel(x1, x2) = σ
2
kC
exp
(−|x1 − x2|

b

)

(6.2)

where the coefficient of variation σ2kC and correlation length b are stated in Table 1.

Table 1. Parameters used in analysis

Parameter Value

Heat capacity per unit volume
c = 434.0 J/(kgK)

(deterministic)

Density (deterministic) ρ = 7850.0 kg/m3

Fourier thermal conductivity
kF = 54W/(mK)(deterministic)

Cattaneo thermal conductivity 〈kC(x, ω)〉 = 1210.0 · 1010W/(mKs)(random – mean)

Cattaneo thermal conductivity σ2kC = 2500.0 · 10
10W/(mKs)

(random – coefficient of variance)

Relaxation time τ = 20.0 · 10−12 s
Heat convection coefficient αc = 9.0W/(m

2K)
(deterministic)

Emissivity (deterministic) εr = 0.625

Stefan-Boltzmann constant σB = 5.67 · 10−8W/(m2K4)
Thickness L = 0.005m

Correlation length b = 0.001m

Using the Karhunen-Loève expansion, the Cattaneo thermal conductivity can be written in
the form

kC(x, ω) ≈ 〈kC(x, ω)〉+
M
∑

i=1

ξi(ω)
√

λifi(x) (6.3)
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Therefore, the random matrix present in equation (3.14) can be expressed as

Fexpandx=0 (x = 0,T
vector
spect (t))

=
〈

Φ(ξ)
(

(Fx=0(x = 0))0ξ0 +
MF
∑

iF=1

ξi(F
0(x = 0))iF

)

fF
(

(Tvectorspect (t))
TΦ(ξ)

)〉 (6.4)

This matrix takes non-zero values for the boundary node (x = 0). The matrices (F(x))0 = 0,
(F0(x))iF = 0 are generally equal to zero, only for x = 0 (Fx=0(x = 0))0 = I. For the mixed
boundary condition (convection-radiation) it can be assumed that (parameters in Table 1)

fF
(

(Tvectorspect (t))
TΦ(ξ)

)

= αc
(

Tpulse(t)−
(

(Tvectorspect (t))
TΦ(ξ)

))

+ εrσB
[

Tpulse(t)
4 −
(

(Tvectorspect (t))
TΦ(ξ)

)4] (6.5)

Because the Cattaneo thermal conductivity is independent of the temperature function fK
included in the matrix

Kexpand(x,Tvectorspect (t))

=
〈

Φ(ξ)
(

(K(x))0ξ0 +
MK
∑

iK=1

ξiK (K
0(x))iK

)

fK
(

(Tvectorspect (t))
TΦ(ξ)

)

(Φ(ξ))T
〉 (6.6)

(6.6) can be written as fK(·) = 1, and the matrices (K(x))0, (K0(x))iK can be determined from

(K(x))0 =

∫

D

∇NkF∇NT dx+
∫

D

∇N〈kC(x, ω)〉∇NT dx

(K0(x))iK =

∫

D

∇N(
√

λiKfiK (x))∇NT dx
(6.7)

the proposed modified SSFEM has been compared to the Monte Carlo method using the C- and
F-process models. As the relevant set of points, the heated surface has been chosen. As shown in
Fig. 2, there is a good correlation between the methods. SSFEM is giving smaller values for the

Fig. 2. Temperature mean value and relative error between SSFEM (3rd order polynomial chaos,
2nd order Karhunen-Loève expansion) and Monte Carlo (5000 samples) solution in function of time at

the heated surface
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standard deviation than MC (Fig. 3), which is typical for this method (Ghanem and Spanos,
2003). It can be seen that the biggest relative error for the standard deviation occurs in time
nodes with smallest values. The relative error of temperature (Fig. 2) between the mean value
obtained from the SSFEM and Monte Carlo solution is small with the extremum not exceeding
2.5 · 10−8. Computations have been performed for P = 3 order of polynomial chaos and M = 2
order of Karhunen-Loève expansion.

Fig. 3. Temperature standard deviation and relative error between SSFEM (3rd order polynomial chaos,
2nd order Karhunen-Loève expansion) and Monte Carlo (5000 samples) solution in function of time at

the heated surface

Fig. 4. Temperature eigenmodes obtained from SSFEM solution in function of time at the heated
surface – 1st and 2nd order of polynomial chaos, 2nd order Karhunen-Loève expansion

Figure 4 illustrates solutions for successive orders of polynomial chaos. As can be seen, the
biggest influence is the first order of the expansion on the basis of which it can be concluded that
the improvement of the convergence of statistical moments by increasing the order of expansion
in polynomial chaos will be small.
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7. Concluding remarks

The paper develops an approach to analysis stochastic nonlinear partial differential equations
(SPDE’s). As an example of stochastic analysis, the heat waves equation has been shown. The
C-F-processes constitutive model has been chosen for the analysis. It can be reduced to the
Fourier, Cattaneo and Jeffery types of models. A modified SSFEM, which consists in the sepa-
ration of dependent and independent variables in the main matrices, has been proposed to solve
nonlinear governing equations. The modified SSFEM has been compared to the Monte Carlo
method. The comparison has shown that the proposed method works with nonlinear problems
well and for equation (4.1) the solutions generated by the SSFEM method are convergent to
solutions generated by the Monte Carlo method due to the first and second statistical moment.
The analysis has revealed that the largest difference in the results obtained from the SSFEM
and MC method is generated in time nodes with the smallest standard deviation (local minima).
Comparison of the results from the methods has aimed at demonstrating compliance rather than
efficiency or time consumption of the SSFEM. In order to check time consumption of the me-
thod in relation to MC or SCM, one should use the domain decomposition method (Subber and
Sarkar, 2014) and methods of reducing the integration time of the main matrices (e.g. Smolyak
sparse grid method (Smolyak, 1963)) which would allow one to use parallel processing.

References

1. Acharjee S., Zabaras N., 2006, Uncertainty propagation in finite deformations – a spectral
stochastic Lagrangian approach, Computer Methods in Applied Mechanics and Engineering, 195,
19, 2289-2312

2. Acharjee S., Zabaras N., 2007, A non-intrusive stochastic Galerkin approach for modeling
uncertainty propagation in deformation processes, Computational Stochastic Mechanics, 85, 5,
244-254

3. Al-Nimr, M., 1997, Heat transfer mechanisms during short-duration laser heating of thin metal
films, International Journal of Thermophysics, 18, 5, 1257-1268

4. Arregui-Mena J.D., Margetts L., Mummery P.M., 2016, Practical application of the sto-
chastic finite element method, Archives of Computational Methods in Engineering, 23, 1, 171-190
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