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An analysis of local buckling of thin-walled beam-columns, taking ac-
count global precritical bending within the first order approximation, is
presented in the paper. The problem of interactive buckling of the struc-
ture is solved by means of Byskov and Hutchinson’s (1977) or Koiter’s
(1976) approximation theory. Beam-columns made from orthotropic pla-
tes with the main directions of orthotropy parallel to the wall edges cha-
racterised by a widthwise varying orthotropy coefficient ηi = Eyi/Exi
are investigated. Beam-columns with open sections (i.e. channel sec-
tions), simply supported on the loaded edges, are analysed. The girders
are subjected to loads which cause a uniform or linearly variable shorte-
ning of the edges.
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Notation

A – cosinusoid amplitude
ag, agLL, aL, aggg – coefficients of the non-linear equilibrium equation,

where the subscript g denotes the global mode
(n = 1), L refers to the local buckling mode (n = 2)

bi – ith band (narrow plate) width
Di, D1i – plate stiffness of the ith band;

(Di = Eih
3
i /[12(1 − ηiν

2
i )], D1i = Gih

3
i /6)

Ei = Eix – lengthwise Young’s modulus for the ith band of the
girder wall

Eiy – widthwise Young’s modulus for the ith band
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Gi – modulus of elasticity (Kirchhoff’s modulus) for the
ith band

hi – thickness of the ith band
i – number of the band, wall (subscript i = 1, 2, . . .)
l – girder length
Mix,Miy,Mixy – sectional bending moment of the ith band
N – force field

N
(0)
i – force field of the zero state (prebuckling state)

N
(n)
i – force field of the nth buckling mode

Nix, Niy, Nixy – sectional membrane forces for the ith band
U – displacement field

U
(0)
i – displacement field of the zero state (prebuckling sta-

te)

U
(n)
i – displacement field of the nth buckling mode

ui, vi, wi – middle surface displacements for the ith band

u
(0)
i , v

(0)
i , w

(0)
i – prebuckling displacement field for the ith band (zero

state)

u
(1)
i , v

(1)
i , w

(1)
i – critical displacement field for the ith band (for the

first order)
xi, yi, zi – local Cartesian co-ordinate system for the ith band
β0 = 3.2292 – assumed constant value for the inversed coefficient of

orthotropy
βi = 1/ηi – inverse of the assumed coefficient of orthotropy, as-

sumed in order to facilitate the analysis of data
εix, εiy – relative strain along xi, yi
γixy = 2εixy – non-dilatational strain angle
κ – parameter of the external load distribution (ratio of

the displacement of the upper part of the girder with
respect to the bottom part)

ηi = Eiy/Eix – coefficient of orthotropy of the ith plate (band)
λ – scalar load parameter
λg – critical value of λ (critical value of buckling) of the

global mode
λL – critical value of λ (critical value of buckling) of the

first local mode
λmin – minimal critical value of λ (critical value of buckling)
λ∗ – critical value of local buckling with global pre-critical

bending taken into account
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νi = νixy – Poisson’s ratio for the ith band in the x direction (the
first subscript denotes a transverse direction, whereas
the second one – the load direction)

νiyx – Poisson’s ratio for the ith band in the y direction (the
first subscript denotes a transverse direction, whereas
the second one – the load direction)

ϕ – angle enclosed between the wall i and i+ 1
ξ – amplitude of the linear eigenvector of buckling (nor-

malised with the equality condition between the ma-
ximum deflection and the thickness of the first pla-
te h1)

ξn – amplitude of the linear eigenvector of buckling for
the nth buckling mode

ξL – amplitude of the linear eigenvector of buckling for
the first local buckling mode

ξg – amplitude of the linear eigenvector of buckling for
the global buckling mode

ξ∗L – initial imperfection consistent with the first local buc-
kling mode

ξ∗g – initial imperfection consistent with the global buc-
kling mode.

Moreover, the following notation has been used

(·),x =
∂(·)

∂x
(·),y =

∂(·)

∂y

1. Introduction

Interactive buckling of isotropic and orthotropic thin-walled structures has
been investigated in many works (e.g. Luongo and Pignataro, 1988; Maniewicz
and Kołakowski, 1997). Results of these investigations show a possibility of
building thin-walled structures that are light, safe and reliable.

As far as composites are concerned, their material properties can be freely
modelled in selected directions or regions, thus it is possible to manufacture
plates or girders with variable strength properties. An example of materials
characterised by such properties are fibrous composites with properly distri-
buted (concentrated or dispersed) fibres. Composite materials are most often
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modelled as orthotropic materials. In the wide literature devoted to stability
problems, there is a lack of analysis of the influence of plate widthwise varying
orthotropy on values of critical loads of coupled buckling of girders built of
such plates.

In the present paper, the problem of local loss of stability, accounting
for global pre-critical bending in the elastic range, is discussed. Thin-walled
beam-columns with open sections built of homogeneous orthotropic plates with
widthwise varying orthotropy are considered. The consideration of a particular
variation in the orthotropy is carried out simply to demonstrate that such
variations can be dealt with analytically, and to illustrate the influence of
material properties.

2. Problem under consideration

Beam-columns with open sections and made of plates with widthwise vary-
ing orthotropy (Fig. 1) have been analysed. For discretized material properties
varying widthwise, a model built of narrow longitudinal orthotropic bands has
been assumed. Each band has constant material properties. The coefficient of
orthotropy for individual bands (narrow plates) of the model varies according
to the formula

βi = β0 +A cos
2πyi
bi

(2.1)

where β0 = 3.2292, A ∈ 〈−2, 2〉 is the amplitude of the cosine wave, yi is a
coordinate defining the distance of the band from the one of the longitudinal
edges; bi is the plate width.

It has been assumed that the main axes of wall orthotropy are parallel
with respect to the wall edges. For the ith orthotropic band, a complete strain
tensor for thin plates has been assumed in the form

εix = ui,x +
1

2
(w2i,x + u

2
i,x + v

2
i,x)

εiy = vi,y +
1

2
(w2i,y + u

2
i,y + v

2
i,y) (2.2)

2εixy = γixy = ui,y + vi,x + wi,xwi,y + ui,xui,y + vi,xvi,y

where: ui, vi, wi are displacements parallel to the respective axes xi, yi, zi of
the local Cartesian system of co-ordinates, whose plane (xi, yi) coincides with
the central area of the ith plate (ith band) before its buckling (Fig. 2).
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Fig. 1. The band model of a plate characterised by variable orthotropy

Fig. 2. Dimensions of the ith plate and the assumed local system of co-ordinates

Well known in the theory of orthotropic plates relations (e.g. Chandra and
Raju, 1973; Królak, 1995) describe sectional forces and moments reduced to
the middle surface of the ith plate ( ith band)

Nix =
Eihi
1− ηiν2i

(εix + ηiνiεiy) Mix = Di(κix + ηiνiκiy)

Niy =
Eihi
1− ηiν2i

(ηiνiεix + ηiεiy) Miy = ηiDi(νiκix + κiy)

Nixy = Niyx = Gihiγixy = 2Gihiεixy Mixy = D1iκixy
(2.3)
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Fig. 3. Local co-ordinate systems of interactive walls (bands)

where

Ei ≡ Eix νi ≡ νixy ηi =
Eiy
Eix

(2.4)

According to the Maxwell-Betti theorem, Young’s moduli and Poisson’s
ratios occurring in equations (2.3) have to fulfil the following relation

Eiνiyx = Eiyνi (2.5)

The equation of equilibrium of thin-walled structures has been derived
using a variational method (Kołakowski, 1993; Królak, 1995). The total po-
tential energy variation for the ith plate (ith band) can be written as

δΠi = δ

∫

Si

(Nixεix +Niyεiy +Nixyγixy) dSi +

−δ

∫

Si

(Mixwi,xx +Miywi,yy + 2Mixywi,xy) dSi −

∫

pi(yi)hiδui dyi + (2.6)

−

∫

pi(xi)hiδvi dxi −

∫

τixyhiδvi dyi −

∫

τixyhiδui dxi −

∫

qiδwi dSi

where: pi(y), pi(x), τixy are the external pre-critical loads of the plate, and
qi – transverse load.
The present paper deals with the stability problem, hence in the further

part of the present analysis, the transverse load qi will be neglected (qi = 0).
Equation (2.6) indicates that the potential energy Πi of the ith plate sec-

tor in the equilibrium state has a non-varying value in the class of permissible
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equations. It means that equation (2.6) for all permissible virtual displace-
ments complying with the imposed constrains has to be satisfied.

In order to obtain the variation of potential energy for an orthotropic pla-
te, strain tensor relation (2.2) has been substituted into equation (2.6). After
grouping the components at respective variations, variational equations of equ-
ilibrium and boundary conditions have been obtained. Variational equations
of equilibrium corresponding to equations (2.2) take the form

∫

S

[Nix,x +Nixy,y + (Nixui,x),x + (Niyui,y),y + (Nixyui,x),y +

+(Nixyui,y),x]δui dS = 0
∫

S

[Nixy,x +Niy,y + (Nixvi,x),x + (Niyvi,y),y + (Nixyvi,x),y +

+(Nixyvi,y),x]δvi dS = 0 (2.7)
∫

S

[(Nixwi,x),x + (Niywi,y),y + (Nixywi,x),y + (Nixywi,y),x +

+Mix,xx +Miy,yy + 2Mixy,xy]δwi dS = 0

and the boundary conditions are as follows

∫

y

Mixδwi,x dyi
∣

∣

∣

xi=const
= 0

∫

x

Miyδwi,y dxi
∣

∣

∣

yi=const
= 0

2Mixy
∣

∣

∣

xi=const ; yi=const
δwi = 0

∫

x

(Nixy +Niyui,y +Nixyui,x − hiτixy)δui dxi
∣

∣

∣

yi=const
= 0

∫

y

(Nix +Nixui,x +Nixyui,y − hipi(y))δui dyi
∣

∣

∣

xi=const
= 0 (2.8)

∫

x

(Niy +Niyvi,y +Nixyvi,x − hipi(x))δvi dxi
∣

∣

∣

yi=const
= 0

∫

y

(Nixy +Nixvi,x +Nixyvi,y − hiτixy)δvi dyi
∣

∣

∣

xi=const
= 0
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∫

x

(Miy,y + 2Mixy,x +Niywi,y +Nixywi,x)δwi dxi
∣

∣

∣

yi=const
= 0

∫

y

(Mix,x + 2Mixy,y +Nixwi,x +NixyWi,y)δwi dyi
∣

∣

∣

xi=const
= 0

Static interaction conditions at the longitudinal edges of neighbouring pla-
tes, which follow from (2.8) for y = const , can be written as

ui+1
∣

∣

∣

yi+1=0
= ui
∣

∣

∣

yi=bi

wi+1
∣

∣

∣

yi+1=0
= wi

∣

∣

∣

yi=bi
cos(ϕi;i+1)− vi

∣

∣

∣

yi=bi
sin(ϕi;i+1)

vi+1
∣

∣

∣

yi+1=0
= wi

∣

∣

∣

yi=bi
sin(ϕi;i+1) + vi

∣

∣

∣

yi=bi
cos(ϕi;i+1)

wi+1,y
∣

∣

∣

yi+1=0
= wi,y

∣

∣

∣

yi=bi (2.9)

M(i+1)y

∣

∣

∣

yi+1=0
=Miy

∣

∣

∣

yi=bi

N∗(i+1)y

∣

∣

∣

yi+1=0
−N∗iy

∣

∣

∣

yi=bi
cos(ϕi;i+1)−Q

∗

iy

∣

∣

∣

yi=bi
sin(ϕi;i+1) = 0

Q∗(i+1)y

∣

∣

∣

yi+1=0
+N∗iy

∣

∣

∣

yi=bi
sin(ϕi;i+1)−Q

∗

iy

∣

∣

∣

yi=bi
cos(ϕi;i+1) = 0

N∗(i+1)xy

∣

∣

∣

yi+1=0
= N∗ixy

∣

∣

∣

yi=bi

where

N∗iy = Niy +Niyvi,y +Nixyvi,x

N∗ixy = Nixy +Nixyui,x +Niyui,y (2.10)

Miy = −ηiDi(wi,yy + νiwi,xx)

Q∗iy = −ηiDiwi,yyy − (νiηiDi + 2D1i)wi,xxy +Niywi,y +Nixywi,x

The interactive (coupled) stability problem has been solved by means of
Koiter’s asymptotic method (Koiter, 1976). The fields of displacements U i and
the sectional forces N i have been expanded into power series with respect to
the parameter ξn, i.e. the linear eigenvector amplitude of buckling (normalised
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with the equality condition between the maximum deflection and the thickness
of the first plate h1)

U i = λU
(0)
i + ξnU

(n)
i + . . .

(2.11)

N i = λN
(0)
i + ξnN

(n)
i + . . .

for n = 1, 2, . . . , N , where N is the number of coupled buckling modes, and
λ is the load parameter.
In the investigations, only the first non-linear approximation, in which

system characteristics depend only on eigenvectors, is taken into consideration.
According to (2.11) and the number of coupled buckling modes N = 2, the
displacement of the ith wall (band) has been assumed in the form

ui = λu
(0)
i + ξ1u

(1)
i + ξ2u

(2)
i + . . .

vi = λv
(0)
i + ξ1v

(1)
i + ξ2v

(2)
i + . . . (2.12)

wi = ξ1w
(1)
i + ξ2w

(2)
i + . . .

At the point where the load parameter λ reaches its maximum value for
the imperfect structure with regard to the imperfection of the buckling mode
with the amplitude ξ∗n (secondary bifurcation or limit points), the Jacobian
of the non-linear system of the equilibrium equation

an
(

1−
λ

λn

)

ξr + ajknξjξk + . . . =
λ

λn
anξ
∗

n n = 1, 2, . . . , N (2.13)

is equal to zero. The expressions an and ajkn in Eq. (2.13) are calculated by
know from literature (Byskov and Hutchinson, 1977; Królak, 1995) formulas
which only depend on the buckling modes. This fact is worth noticing as it
reduces solutions to problems in the case when considerations can be limited
to the first order non-linear approximation.
The non-linear equations of equilibrium are simplified within the first order

approximation to a large extent in the case of interactions between two modes
of buckling only. In a further part of this paper, N = 2 is assumed and
equilibrium equations (2.13) have the form

ag
(

1−
λ

λg

)

ξg + agggξ
2
g + agLLξ

2
L = agξ

∗

g

λ

λg
(2.14)

aL
(

1−
λ

λL

)

ξL + 2agLLξgξL = aLξ
∗

L

λ

λL
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where the subscript g denotes the global mode (n = 1), L refers to the local
buckling mode (n = 2), ξ∗g stands for the initial imperfection of the global
character, and ξ∗L indicates the initial imperfection consistent with the first
local buckling mode.
If we assume that there are no local initial deflections (ξ∗L = 0), ξ

∗

g 6= 0 and
that the minimum value of the critical stress corresponds to the local buckling
mode (λmin = λL), then equations (2.14) assume the form

ag
(

1−
λ

λg

)

ξg + agggξ
2
g + agLLξ

2
L = agξ

∗

g

λ

λg
(2.15)

ξg
[

aL
(

1−
λ

λmin

)ξL
ξg
+ 2agLLξL

]

= 0

The following notation has been introduced

(

1−
λ

λmin

) 1

ξg
= ψ (2.16)

where ψ denotes the slope of straight line (2.16) being the post-critical equ-
ilibrium path that lies in the plane (λ, ξg).
In the pre-critical state ξL = 0, the global deflections, according to (2.13),

are described by the relation

ξg = ξ
∗

g

λ

λg − λ
(2.17)

Then, equation (2.15)2 takes the form corresponding to the eigenvalue
problem

(2agLL
aL
+ ψ
)

ξL = 0 (2.18)

For the eigenvalue determined from (2.17), ψ can be obtained from the
following equation

ψ = −
2agLL
aL

(2.19)

The coupled (interactive) buckling between the global and local mode
starts when we obtain a non-zero solution ξL 6= 0. For ψ from equation (2.19),
the eigenvector has been calculated with the accuracy up to the constant ρ

which has been normalised with the condition
√

(ξ0L)
2 = 1. Hence, equation

(2.14)1 can be written as

ρ2 =
ag

agLLξ
0
L

[

ξ∗g
λ

λg
−
(

1−
λ

λg

)(

1−
λ

λL

) 1

ψ
−
aggg
ag

(

1−
λ

λL

)2 1

ψ2

]

(2.20)
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The maximum value (the so called limit load carrying capacity) λ∗ ob-
tained within the first order non-linear approximation and corresponding to
ρ = 0 (the intersection point of pre-critical path (2.17) with post-critical one
(2.16)) can be called the critical value of the local buckling mode that accounts
for global pre-critical bending (as ξ∗L = 0, ξ

∗

g 6= 0). This approach is similar to
that found in Pignataro and Luongo (1987), Luongo and Pignataro (1988) and
Manievicz and Kołakowski (1997), where, however, aggg = 0 was assumed.

For ρ = 0, equation (2.20) takes the form of a quadratic equation

ξ∗g
λ∗
λg
+
(

1−
λ∗
λg

)(

1−
λ∗
λL

) aL
2agLL

−
aggg
ag

(

1−
λ∗
λL

)2 a2L
4a2gLL

= 0 (2.21)

or

λ2
∗

[aggg
ag

1

λ2L
−
2agLL
aL

1

λLλg

]

+ λ∗
[λL + λg
λLλg

2agLL
aL
− 2

aggg
ag

1

λL
− ξ∗g
4a2gLL
a2L

1

λg

]

+

(2.22)

+
2agLL
aL
+
aggg
ag
= 0

The maximum value of the load λ∗ determined on the basis of equation
(2.21) is smaller than the critical value λL = λmin. Thus the load λ∗ can be
interpreted as such that accounts for the influence of the load corresponding
to global buckling (ξ∗g 6= 0, ξg 6= 0) on the local load value. The usage of
the term ”critical value of local buckling load with global pre-critical bending
taken into account” is probably too long, but it renders the main idea of the
problem. The author suggests here making use of the term ”reduced critical
value of local buckling load” instead.

3. Results of calculations

The analysis presented is an expansion of the analysis taking into account
the global pre-critical bending presented by Roorda (1988).

A beam-column with an open channel section and a channel section with
edge stiffened flanges characterised by the following dimensions:

section width – a = 50mm
section height – b = 25mm
edge stiffener width – c = 12.5mm
wall thickness – ha = hb = hc = 1mm
length – l = 650mm

has been analysed.
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In order to characterise the way in which the load is applied, a coefficient of
edge shortening κ = u1/u2, where u1, u2 (Fig. 4) are values of displacements
of the lower and upper plate of the girder under consideration for x = 0, l,
has been introduced.
Some sample results of numerical calculations obtained on the basis of

the analysis of interactive buckling of thin-walled beam-columns with channel
cross-sections with boundary reinforcement (Fig. 1) within the first order non-
linear approximation are presented below.

Fig. 4. Cross-sections of the considered beam-columns

As it is known, some initial global deflection ξ∗g , which should not exceed
0.001 of the girder length, i.e. ξ∗g = 0.001/h according to European standards,
is admissible for long girders.
Figures 5-7 present the influence of the parameter A on the limit load

carrying capacity within the first order approximation λ∗ (2.21) with respect
to the critical value of the local symmetrical buckling mode λL of the beam-
columns. The results are presented for beam- columns with channel sections
and channel sections with reinforcement subjected to a load causing non-
uniform shortening of the loaded edges (κ = 0).
Two curves are shown on diagrams representing the ratio λ/λL vs. A,

namely: a dashed curve for the admissible initial deflection equal to 0.65mm
(ξ∗g = 0.65) and a continuous one for the initial deflection higher than the
admissible one and equal to 1mm (ξ∗g = 1).
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Fig. 5. Influence of the parameter A on the reduced critical value of local buckling of
the beam-column with a channel section

Fig. 6. Influence of the parameter A on the reduced critical value of local buckling of
the beam-column with a channel section with inner reinforcement

Fig. 7. Influence of the parameter A on the reduced critical value of local buckling of
the beam-column with a channel section with outer reinforcement

It has been assumed that there are no local imperfections ξ∗L = 0.

For a beam-column with a plain channel section at the assumed initial
deflection ξ∗g = 0.65 (Fig. 5), the reduced critical value of local buckling decre-
ases with an increase in the parameter A, and it is lower than the local critical
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value by approx. 3% for A = −2 and by approx. 22% for A = 2, respectively.
A sharp decrease in the value of λ∗/λL is caused by the fact that the coefficient
aggg in (2.20), which increases abruptly with an increase in the parameter A
(Fig. 8), is taken into consideration in the analysis of interactive buckling. It
results from the fact that if there are no boundary reinforcements of the chan-
nel, the outer plates (flanges) have dominant impact on the stability, and the
buckling mode corresponds to flexural-distorsional buckling.

Fig. 8. Influence of the parameter A on the value of the coefficient aggg for
thin-walled beam-columns with open sections characterised by the loading

coefficient κ = 0

For the same initial deflection ξ∗g = 0.65 in beams-columns with channel
sections with inner (Fig. 6) and outer (Fig. 7) reinforcements, i.e. lipped chan-
nels with inwardly and outwardly turned lips, the reduced critical value of
local buckling slightly increases with the parameter A in the range −2 to 2,
and it is lower than the local critical value by approximately 3%.

4. Conclusions

The results of numerical calculations presented here show that variable
material properties (the coefficient of orthotropy) exert an influence only in
the case of a beam-column with a plain channel section. However, in the case of
a beam-column with a lipped channel section, the variability in the coefficient
of orthotropy along the wall width does not affect the reduced critical value
of local buckling in the analysed structures by a great amount.
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The presented method of modelling material properties allows one to select
such a function describing the widthwise varying orthotropy that the local
critical load of the structure, accounting for global imperfections, reaches its
required value for a given structure.

It should also be noted that the presented method of investigating the
interactive buckling of thin-walled structures is faster than the very popular
recently finite element method. However, it has some disadvantage: in the
presented method, the material properties and cross-section must be constant
along the longitudinal axes of beam-columns; proffesional FEM software has
better postprocessor.

References

1. Byskov E., Hutchinson J.W., 1977, Mode interaction in axially stiffened
cylindrical shells, AIAA, 15, 7, 941-948

2. Chandra R., Raju B., 1973, Postbuckling analysis for rectangular orthotropic
plates, Int. J. Mech. Sci., 16, 81-97

3. Koiter W.T., 1976, General theory of mode interaction in stiffened plate and
shell structures; WTHD, Report 590, Delf, p.41

4. Kołakowski Z., 1993, Interactive buckling of thin-walled beam-columns with
open and close cross-sections, Thin Walled Structures, 15, 159-183

5. Królak M. (ed.), 1995, Stability, Postcritical Modes and Load Carrying Capa-
city of Flat Orthotropic Thin-Walled Structures, Technical University of Łódź,
Monographs (in Polish)

6. Luongo A., Pignataro M., 1988, Multiple interaction and localization phe-
nomena in the postbuckling of compressed thin-walled members, AIAA Journal,
26, 11

7. Manievicz A., Kołakowski Z., 1997, Multiple interaction of buckling modes
in thin-walled members and imperfection sensitivity, Proc. 7th Symposium on
Structure Stability, Zakopane, 181-186

8. Pignataro M., Luongo A., 1987, Asymmetric interactive buckling of thin-
walled columns with initial imperfection, Thin Walled Structures, 3, 365-386

9. Roorda J., 1988, Buckling behaviour of thin-walled columns, Can. J. Civ.
Engng., 15, 107-116



90 T.Kubiak

Wyboczenie interakcyjne cienkościennych belek-słupów o zmiennym

współczynniku ortotropii wzdłuż szerokości ścian

Streszczenie

W pracy analizowano wyboczenie lokalne cienkościennych belek-słupów
z uwzględnieniem globalnego dokrytycznego zginania w ramach przybliżenia pierwsze-
go rzędu. Wyboczenie interakcyjne konstrukcji rozwiązano stosując aproksymacyjną
teorię Byskova i Hutchinsona (1977) lub Koitera (1976). Badano belki-słupy zbudowa-
ne z płyt ortotropowych o głównych kierunkach ortotropii równoległych do krawędzi
ścian charakteryzujących się zmiennym wzdłuż szerokości współczynniku ortotropii
ηi = Eyi/Exi. Analizowano belki-słupy o przekrojach otwartych (ceowym i ceowym ze
wzmocnieniem), przegubowo podparte na obciążonych brzegach. Dźwigary poddano
obciążeniom ppowodującym równomierne i liniowo zmienne zbliżenie brzegów.

Manuscript received May 18, 2005; accepted to print September 30, 2005


