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The paper presents, among others, a survey of works connected with
the problem of the modeling of gears by means of versatile graph theory
models. This approach to the problems of gear modeling allows compu-
ter based analysis and synthesis. Some recent papers claim that graph
representations and derived methods belong to the branch of artificial
intelligence due to the possibility of obtaining automatically versatile re-
sults, e.g. different constructional design solutions of mechanisms. Some
examples are enclosed to explain which class of tasks is solved by means
of the graph theory approach, i.e. modeling by means of bond graphs and
linear graphs. The following problems have been considered: derivation
of systems of equations describing the behaviour of gear subsystems and
detection of a redundant wheel. The survey is based on over 60 papers
published mainly within last 10 years, some of them in world-wide high
level scientific magazines.
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1. Introduction

The graph theory is a branch of mathematics which has versatile appli-
cations to many fields of engineering, which was summarized in well-known
monographs (Deo, 1974; Wojnarowski, 1977a, Murota, 1987). Since the edition
of these books, many new results have been achieved, especially in the field of
the modeling of mechanisms.
The aim of this paper is to present a selected range of applications of gra-

phs for the modeling of gears. Recently, this area of application of graphs has
been extensively developed all over the world. The term ”graphs”, used in the
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title of the paper, covers a wide range of objects, i.e. graphs and hypergraphs
considered by the graph theory (i.e. linear graphs, digraphs, weighted graphs),
as well as bond graphs. The term ”gears” is connected with different types of
gears: car gear boxes, planetary gears, mixed geared trains as well as parts
of machines enclosing geared pairs or geared mechanisms (e.g. geared robot
wrists). In fact, as has been just mentioned, bond graphs have strong theore-
tical connections with graphs in the sense of a pure graph theory, but for their
application purpose there is not any need to analyze them. Nevertheless, this
direction of investigations is developed as well (Ort and Martens, 1974). The
methods described underneath are based not only on graphs themselves, but
also on different algebraic objects assigned to the graphs: matrices, structural
numbers, vector spaces and systems of equations.

In general, the idea of application of graphs to the modeling of technical
objects consists in: automation of analysis, generation of all possible construc-
tional forms or solutions, synthesis of particular mechanical systems, finding
particular parts inside technical systems (i.e. a redundant wheel), optimiza-
tion of particular engineering problems, e.g. the shortest path, the maximum
flow or transmission system containing a gear. This approach is recognized as
a subarea of the artificial intelligence which should be added to its standard
elements like pattern recognition, machine translation or expert systems. This
idea arose from the proposal of Shai and Preiss (1999) and it is supported by
the present paper. In the opinion of the authors of the present work, the di-
rection of investigation concerning the usage of artificial intelligence methods
is worth carrying on and propagating Shai’s statement that methods based
upon graphs are just such ones.

Another scientist who independently started works in this field is Schmidt
et al. (2000) who called the methodology developed by her team as ”graph
grammars”. It consists in algorithmization of engineering tasks in a special
meta-language (quasi-language). A simple graph G (Bondy and Murty, 1977;
Deo, 1974) is a pair (V,E), where V – a set of vertices, E – a set of edges
and E is a subset of the cartesian product of the set V . A weighted graph is
a triple (V,E,W ), where W is a weight function having the domain E and
a particular set of values, e.g. R – set of real numbers. The weight can be a
real number, e.g. a distance in [km] when we model a road network, but it can
be also a vector of two or more components. This will be illustrated in the
following sections. A hypergraph H is a pair (V,HE) where HE is a set of
hyperedges i.e. the family of subsets of V . A bond graph constitutes the idea of
representing relationships between different physical parameters of the system
in form of a pictogram or an icon coupled with adequate algebraic formulas
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and joining rules. The linear graphs and bond graphs are matched with other
algebraic objects to create powerful models of engineering systems based on
the rules of assignment ”system-graph” and derived intelligent methodology
concerning different problems listed underneath. The graphs can be considered
as models of such different technical objects like e.g.: (a) vibrating systems
(Wojnarowski, 1977a), (b) trusses (Shai and Preiss, 1999a,b), (c) mechanisms
(Chen and Yao, 2000) (d) gears (Wojnarowski, 1977b; Choi and Bryant, 2002),
(e) robot wrists (Lin, 1990), (f) networks of particular media (e.g. water, gas,
railway, electric current, etc.) (Deo, 1974).
The problems considered by means of these modeling are as follows:

• analysis of vibrating systems (determination of eigen-requencies)

• finding the redundant gear wheel, velocity calculations, dynamical ana-
lysis

• enumeration of all possible constructional forms of a gear

• optimization of a particular problem (layout, ratios, weight of the gear-
box)

• synthesis of a system with particular properties, e.g. degree of freedom,
transmission function.

The question arises how it can be possible to model such different objects
and consider such different problems by means of the same class of objects?
It is especially characteristic for Polish scientists because interest in this field
of knowledge is relatively narrow, just opposite to the situation in western
countries, America and The Far East. The answer to such a formulated qu-
estion consists in modeling process, i.e. what is assigned to a vertex, what is
recognized as an edge or hyper-edge, what is a set of weights or how is a bond
graph built as well as how to assign more advanced algebraic structures as
matrices and matrix-based systems of equations or generalized networks. Mo-
reover, the mystery is veiled in these matrix formulas and systems of quations
which can be automatically created in dedicated computer programs where a
graph (representing a mechanical system) is the initial data. These standard
packages are widely used, e.g. MODELICA, 20-Sim, SIMULINK or others. In
general, methods derived from the modeling of graphs are algorithmizable and
programmable, which is an essential benefit arising from the effort of learning
and applying these graphs.
As has been previously said, different mechanical systems can be modeled

by means of graphs, but in this paper we focus our attention on some class of
gears.
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In the paper by Summers et al. (2001), the authors distinguished two pur-
poses of modeling a system: (a) representing the structure of the system and
(b) representing the behavior of the system. It would be best to have one
model for these two purposes but, till now, not enough attempts have been
made in this context. Both attitudes can be performed by means of graphs:
the structure by means of simple graphs and behavior by means of bond gra-
phs. A more detailed explanation of what is understood under these terms is
presented afterwords in the present paper.
Besides the explanation of the essence of the modeling process, the goal

of this paper is also to provide a wide review of recent papers on these topics
published in well known scientific magazines and on a query throughout the
internet and private communications obtained via snail-mail from authors or
even via personal meetings during conferences. It gives an impression of the
state-of-art of this field nowadays. Usually, authors discuss usage of linear gra-
phs and bondgraphs separately, this paper tries to set both these approaches
together. The paper encloses also some exemplary considerations as well as a
list of approx. 60 references. The reader – who might be then eager to make a
detailed study of the described papers – can easily find vast areas for further
investigations, which is also the aim of this paper.

2. Graphs as models of gears

Methods of assignment of graphs to mechanical systems are different de-
pending on a task which to be realized and a solution to be found. A compa-
rison of these methods referring to gears was made by Prahasto (1992). The
author had taken into account six methods proposed by Freudenstein, Ravi-
sankar, Olson, Hsu, Wojnarowski and himself – basing on his supervisor’s (i.e.
Prof. Andrews’) achievements.
In this paper, we present methods based on graphs (structure analysis)

and based on bondgraphs (dynamic analysis). It is worth noting that both
presented approaches were generalized to a synthesis task as well, but it is not
the subject of the included examples.
In the paper by Summers et al. (2001), a definition of a model is formulated

as follows:

”Models are simplified abstract constructs used to predict beha-
vior of a system and to get a quantitative understanding of their
operation, improve their performance by variation of parameters,
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and find possible critical points before the actual system is built.
Models can be catalogued as functional or structural”.

It is almost a perfect definition. Aiming at an analysis of a structure,
models should represent a system preferably in various ways, which is achieved
via graph-based models.
What does artificial intelligence of a graph-based system representation

consist in? These models generalize structures of every system, they are as-
signed or represent the flow of energy, power, rotational speeds, etc. Hence,
the analysis can be performed automatically. Moreover, it is possible to so-
lve the inverse problem, i.e. create a family of objects satisfying particular
requirements (by some authors the term atlas of solutions” is used).
The assignment of a graph to a mechanical system is a modeling procedure.

According to the definition mentioned above, it is a simplified object, but its
advantage is that some useful calculations can be made by means of a model
which is adequate to the introductory mechanical system.
In the following considerations we focus our attention on the modeling of

gears. An exemplary gear is presented schematically in Fig. 1a. In some consi-
derations, we can abstract from the method of supporting a system, therefore,
in Fig. 1b, the support is removed from the gear scheme.

Fig. 1. Gear schemes; (a) general, (b) simplified

Some methods of graph assignment are presented in the following diagrams:

• corresponding to the bearing system (Fig. 2a):

G1 – displacement, Fig. 2a (Hsu and Lin, 1994)
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Fig. 2. Graphs assigned to a gear: (a) displacement, (b) displacement simplified,
(c) conventional labelled, (d) canonical, (e) conventional, (f) geared kinematic chain
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G2 – canonical, Fig. 2d (Chatterjee and Tsai, 1996)

G3 – conventional, Fig. 2e (Chen and Yao, 2000)

G4 – geared kinematic chain, Fig. 2f (Tsai, 2000)

• corresponding to the system without constraints (Fig. 2b):

G5 – displacement, Fig. 2b (Hsu and Lin, 1994)

G6 – conventional labeled or coincident-joint graph, Fig. 2c (Olson et
al., 1991).

The elements of the gear are represented by vertices of graphs G1-G3, G5,
G6, except for case G4, where the elements are represented by polygons or
edges. In the last mentioned case, the meshings (of engaged elements, geared
pairs) are marked by black dots and turning pairs by single circles, respectively.
The double concentric circles denote the common axis of several rotational
elements fixed on common supports (bearings). The last rule is the same for
all the graphs considered here. Relationships between gear elements are coded
by means of graph edges. In the case of almost all the graphs, except for
G4, the geared pairs (in mesh) are represented by dashed lines, and other
relationships between the elements by continuous lines which are labeled or
are not marked by weights. If they are labeled, the assigned descriptions mean
the common axis, a − a, see Fig. 1a. Furthermore, an edge can represent the
so-called turning pair in the case when one of the elements is mounted on
another one. Then the notation of the adequate rotational axis is considered
as its label (marked on the general scheme), i.e. b or c, respectively. In the case
of graphs G1 and G5, the coaxial elements are drawn as vertices of a gray filled
polygon. The idea of distinguishing the elements of a gear is realized in the
case of graph G2 by means of the so-called levels: ground (support, bearings),
first and second level. Graph G5 can be obtained from graph G6 by replacing
the subgraph generated by vertices {1, 3, 4, 6}, i.e. clique K4 and replacing it
by a respectable polygon. Rules and derived methods of the analysis of gears
are described in detail in the cited references.
In the present paper, a methodology based on graph G5 is considered.

The methodology of gear synthesis depicted in Fig. 3 has been developed for
different representations, but it is beyond the range of this paper and can be
studied from the references listed at the end.
The above mentioned graphs are used to analyse the layout of gears, ho-

wever dynamics can be analyzed by Prahasto’s graphs (Prahasto, 1992), Woj-
narowski’s graphs (Wojnarowski, 1977b) and bondgraphs.
The usage of graphs and bondgraphs of selected gears will be presented in

Section 4.
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Fig. 3. Graph based methodology of the modeling of mechanical systems

3. Selected gear problems solved by means of graphs

Problems which are considered in references have been mentioned briefly
in Section 1. In this paper, some descriptions of contents of the references
will be given. One of the highly exploited topics is the analysis of gears
and geared mechanisms. This problem was considered in papers described
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hereafter. In Freudenstein and Yang (1972), a kinematic and static analysis
of a spur-gear is presented. The authors present the rules on how to assign
a graph to a gear and next how to perform the analysis on an exemplary
Glover’s train. The graph creation rules are also described in Shai’s papers
(Shai, 1999a,b). Another approach is presented in Lei and Lu [25], where the
authors omitted the phase of graph representation assigning a matrix to a gear.
They derived a system of equations for kinematic and dynamic analysis of the
gear. Topological analysis of gears can also be performed complying with the
concept of kinematic fractionation (Liu and Chen, 2000) and kinematic units
(Liu and Chen, 2001).

A different graph-based method of gear analysis was presented in the thesis
by Prahasto (1992). The author used the vector-network method propagated
Andrews (Rogers and Andrews, 1975). The description of the procedure for
analyzing planetary gear trains using the vector-network method is presented
also in Prahasto and Andrews (1999).

A special branch in the field of gear analysis is the enumeration of all possi-
ble design solutions. The solution to this problem allows one, in consequence,
to formulate synthesis process rules. The paper dedicated to this approach,
see Castillo (2002), focused on the enumeration of 1-dof planetary gear train
graphs based on functional constraints.

Another problem is the optimization of gears or whole machine sub-
systems including a gear. In Vetadzokowvska (1999), the author presents an
algorithm for synthesis of an optimal 6-stage-gear for assumed transmission
ratios for each stage. Graphs obtained by the author and diagrams of gears
are included. Another approach to the optimization of gears is presented in
Michelena and Papalambros (1995, 1997) – hypergraphs are used for the de-
composition of an optimization task of gear trains.

The next problem mentioned here is the synthesis of gears and geared
mechanisms. Articulated gear mechanisms were synthesized in Chen and Liu
(1999). The authors used hierarchical decomposition schemes. They created
a database of so-called design primitives and obtained admissible mechani-
sms. The design primitives have their graph representations. Furthermore, all
possible graph representations can be efficiently enumerated. Two 3-dof exam-
ples are presented for the sake of illustration. Another method of enumeration
of epicyclic gear trains is described in Shina and Krishnamurty (1993) whe-
re the so-called standard code technique was used. An efficient methodology
for structural synthesis of geared kinematic chains is presented in Hsu and
Hsu (1997). The whole catalog of 1-dof geared kinematic chains (or rather
their graph representations) is enclosed. Some fundamentals for this methodo-



148 J.Wojnarowski et al.

logy were presented by one of the authors in Hsu (1994), where he described
mathematical gear models and a special structural code. The idea of the frac-
tionation of gears (Liu and Chen, 2000) was used for topological synthesis of
fractionated geared differential mechanisms (Chen and Yao, 2000). The con-
siderations are based upon the 2-dof automotive gear differential. Theoretical
grounds for the synthesis of gears are presented in Prasad Raju Pathapati
and Rao (2002), where a new technique based on loops for the investigation
of displacement isomorphism in planetary gear trains is described. The me-
thodology is based on a graph representation, loop concept and the Hamming
number concept. The 6-link PGT was considered. A detailed study of the
synthesis of a bevel-gear-type robotic wrist mechanism by means of graphs is
presented in Lin (1990). The author created an atlas of wrist mechanisms for a
particular task.
Gears are also analyzed by means of bondgraphs (Orlikowski, 2003; Choi

and Bryant, 2002; Wojnarowski and Kopeć, 2003; Cichy, 2001). The last of
the listed publications is a book (i.e. lecture notes), where methods of the
transmission system modeling are described. Gears are just subsystems of
such devices. In Choi and Bryant (2002), the bond graph method was co-
upled with a finite element model of shafts of a gear, which is an unique
approach. Orlikowski (2003) analyzes a more complex transmission system in-
cluding geared pairs. In general, it can be stated that it is not easy to find
a publication concerning strict application of bond graphs to the gear mode-
ling. In Wojnarowski and Kopeć (2003), the authors intensively developed this
topic.
The considerations presented above can be summarized by the scheme

presented in Fig. 3. After a vast exploration of problems via generalization
and abstraction, gear synthesis methods have been developed. The advantage
of the synthesis methodology is comprehensively and fully proved in Castillo
(2002), Lin (1990), Olson et al. (1987).

4. Exemplary problems

In the present section, some selected methods are roughly described to
give an impression what are the approaches to the gears modeling by means
of graphs. The making use of these chosen methods is realised on different
objects to underline the versatile possibilities and the powerfulness of the graph
based methodology. As was mentioned previously, the essence of every method
consists in the graph assigning rules. Three problems will be considered:
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• calculations of a gear ratio (see Section 4.1)

• detection of redundant wheel (see Sectio 4.2)

• determination of eigen-vibration of gears by means of bond graphs (see
Section 4.3).

4.1. Representation of kinematic gear structure by means of graphs

The goal of this section is to present a method of modeling planetary gears
by means of graphs and analyzing the existence of redundant gear wheels.
Planetary gears have many advantages, e.g. they are compact, light and

permit an essential reduction of rotational speed; therefore they are frequently
used in vehicles, machining tools and heavy-duty machines. The graph the-
ory is a useful tool for structural analysis and synthesis of kinematic chains
containing gear wheels (Tsai, 2000).
A redundant gear wheel in a planetary gear is such a wheel which can

be removed without changing kinematic characteristics of the gear. The re-
cognition of redundant gear wheels is important for making proper schemes
of power transmission in automatic gear boxes. It has also a fundamental
meaning for the automatic synthesis of gears. The theory has a further appli-
cation which is not the subject of this paper, i.e. it allows one to enumerate
gears having similar structure schemes, the so-called atlases of all possible so-
lutions. This permit one to choose the most suitable solution and can help a
designer in his conceptual work on a particular project, see e.g. Olson et al.
(1991).
In Hsu and Lin (1994), the method of assigning a graph to a gear has

been proposed. The graph was called the displacement or kinematic graph of a
gear. Detection of redundant gear wheels requires special matrix representation
associated with this graph. Methods of assigning a kinematic graph to an
exemplary gear, building a matrix (which is not used here) and searching for
the redundant wheel are briefly presented below. Other graph representations
of gears are also known.
A layout of shafts and wheels of a planetary gear is usually presented

by means of a scheme like shown in Fig. 1. Due to the extent of the present
work, only some elements of the graph-based methodology are enclosed. A full
description can be found in the references listed at the end. The number of
degrees of freedom can be calculated by means of Grubbler’s formula

F = 3(N − 1)− 2Po − Pz
(4.1)

Pz = N − F − 1
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where
F – number of the degree of freedom
N – number of elements
Po – number of rotational pairs
Pz – number of meshed pairs.

Elements of the gear are labeled by numbers 0 – 6, furthermore positions
of axes are marked by letters a, b and c. The kinematic chain, in which the
support system is neglected, is presented in Fig. 2b. In our case, the values
of parameters are as follows: N = 7, Pz = 4 and therefore F = 2. One-dof
planetary gear trains are considered in Olson et al. (1991), and the atlases of
graphs assigned to 1-, 2- and 3-dof gears are listed in Tsai (2000).

Based on Hsu and Lin (1994), the kinematic chain can be transformed into
a displacement graph according to the rules roughly described and graphical-
ly illustrated in Fig. 2a. The displacement graph for a particular kinematic
chain can be used for the determination of the equation of motion automati-
cally (Freudenstein and Yang, 1972). The methodology is based upon the well
known idea of fundamental cycles of a graph. The sketch of the routine can
be formulated as follows.

A fundamental cycle (the so-called f-cycle), which corresponds to two en-
gaged wheels i and j together with the coupled carrier k, consists of three
vertices, one meshing edge i− j and two turning edges or/and edges of a po-
lygon i−k and j−k. The vertex k, which is not incident to the meshing edge
i − j, is a coupled transition vertex. For the sake of simplicity, the f-cycle is
marked as (i, j)k. In this code, the first two numbers determine two meshing
wheels (planet and geared wheel, respectively). The third one is the trans-
mission/displacement vertex representing a carrier. The number of f-cycles is
equal to the number of meshing edges in the kinematic chain. It can be se-
en that there are four f-cycles: (5, 3)6, (5, 4)6, (2, 1)3 and (2, 4)3. The basic
equation connected with the f-cycle (i, j)k describing relationships between
angular velocities is as follows (Tsai, 2000)

ωi − ωj = ∓Nji(ωj − ωk) (4.2)

where Nji = Zj/Zi and Zj, Zi – numbers of teeth on the geared wheels i
and j, the sign (∓) depends on the type of engagement; it is positive if a
positive rotation of the gear wheel i relative to the carrier k causes a positive
rotation of the gear wheel j, otherwise it is negative.
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For the analyzed gear presented in Fig. 1b, the following system of equ-
ations can be written

ω5 − ω3 = +N35(ω3 − ω6)

ω5 − ω4 = −N45(ω4 − ω6)

ω2 − ω3 = +N12(ω1 − ω3)

ω2 − ω3 = −N42(ω4 − ω3)

(4.3)

Assuming the following numbers of teeth on consecutive geared wheels:
Z1 = 72, Z2 = 16, Z3 = 58, Z4 = 44, Z ′4 = 32, Z5 = 18, the transmission ratio
R can be calculated. Additionally, we assume that element 6 is stationary
(fixed, ω6 = 0), input element is 1 and output 3. Therefore, the transmission
ratio R is equal to

R =
ω1
ω3

(4.4)

Solving the system of equations (4.3), a solution can be found in the following
form

R = 1 +
N42
N12

(

1 +
N35
N45

)

(4.5)

The needed values are as follows: N42 = 2.75, N12 = 4.5, N35 = 3.22,
N45 = 1.77. Finally, for the assumed data, the transmission ratio is equal
to R ≈ 2.72.
The algorithm can be performed in the following steps: assignment of the

graph to the system, automatic derivation of the kinematic matrix, automatic
generation of f-cycles, creation of equations (4.3), introduction of assumptions
for the gear (e.g. the selected element is fixed). Further calculations can also
be performed taking into account angular velocities of the carriers, etc.

4.2. Detection of the redundant wheel

In Hsu and Lin (1994) an algorithm was derived, which enabled detection of
the redundant gear wheel (in the case of assumed input and output elements).
The algorithm consists in the analysis of base cycles in the displacement ki-
nematic) graph. A sketch of the method is presented below in consecutive
steps:

(S1) creation of the displacement graph for the analyzed gear

(S2) derivation of all f-cycles

(S3) assumption of the input and output elements

(S4) creation of sets of f-cycles
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(S5) for every set consisting of 2 up to Pz − 1 cycles, derivation of the asso-
ciated set of vertices

(S6) checking the criterion for the existence of redundant wheels: m = F +K
where: m – number of unknowns, K – number of necessary equations
needed for the determination of rotational speeds in the base cycles,
F – number of degrees of freedom (dof),

(S7) listing the sets of vertices for which the criterion is satisfied and checking
which wheel is redundant in all the sets.

Table 1. Analysis of existence of a redundant wheel

K f-cycles Vertex set
Condition
m = F +K

2 (5,3)6; (5,4)6 {3,4,5,6} =
(5,3)6; (2,1)3 {1,2,3,5,6} >
(5,3)6; (2,4)6 {2,3,4,5,6} >
(5,4)6; (2,1)3 {1,2,3,4,5,6} >
(5,4)6; (2,4)3 {2,3,4,5,6} >
(2,1)3; (2,4)3 {1,2,3,4} =

The algorithm can be applied to the considered exemplary gear train
(Fig. 1b). The results of analysis for K = 2 are depicted in Table l. There
are four f-cycles listed above, because there are Pz = 4 geared pairs. There-
fore, two and three element subsets are considered in the routine. One can
extract the following stages of analysis:

1. theoretical assumption of possible input and output elements in the con-
sidered gear e.g. {1, 3, 4}

2. creaating of F + 1 (F =dof) combinations of the mentioned elements,
F = 2 therefore F + 1 = 3, and the set is {1, 3, 4}

3. making a 2-element set of cycles as listed in Table 1

4. checking condition (S6) and drawing conclusions.

In our case: F = 2, K = 2, and m is equal to the cardinality of the vertex
set. For the first row in Table 1 we have m = 4, therefore the condition is
fulfilled. Analyzing possible inputs or outputs {1, 3, 4} for the set {1, 2, 3, 4}
(i.e. input 1, output 4), elements (5), 6 are redundant. Analyzing possible
inputs or outputs {3, 4, 6} for the set {3, 4, 5, 6}, it follows that the elements
(2), 1 are redundant. The planetary gear wheel is highlighted by parentheses.
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The conclusion is that the gear has a redundant gear wheel depending on
the choice of the input, output and ground. The above mentioned considera-
tions indicate capabilities of the graph-based methodology for gear analysis.
The most fruitful is the enumeration of all possible solutions – the so-called
atlases of designs, which can be read in Tsai (2000) and will be the subject of
further investigations of the authors of this paper.

4.3. Analysis of gear dynamics with bondgraphs

Achievement of design reliability and elimination of failures is easier since
a variety of commercial CAD and structural analysis tools became available.
However, on the preliminary stage of the design process (the conceptual one),
a flexible, compact and ultimate method is needed. One of the valuable tools
is the bondgraph method.
Bondgraps describe the power flow in discrete or lump systems, and are

cold power flow graphs. The bondgraphs were invented by Paynter, and deve-
loped by Karnopp et al. (2000) and Thoma (1990).
In this paper, torsional vibration is considered. As a unified pair of varia-

bles, the angular velocity (flow variable) and torsional moment (effort variable)
are selected. The product of these variables gives the power

P = ef =Mω (4.6)

Physical properties of the modeled part, namely inertias and compliances as
well as resistances, are regarded in the model. These properties are associa-
ted with standard bondgraph elements using common procedures (Karnopp et
al., 2000; Thoma, 1990): inertias are described with I elements, compliances
with C elements, energy dissipation with R elements, dynamic and kinematic
excitations with Se and Sf elements, respectively. Transformers TF descri-
be the corresponding gear ratios. Table 2 contains collected set of standard
bondgraph elements.
The lines with half-arrows represent the power flow in the system. The

goal is to write down equations from the graph (manually or automatical-
ly) and skip differentiation. Comparing the linear graph theory, arcs are cold
bonds and vertex elements, respectively. One can obtain the equation of mo-
tion automatically by using a computer software. Figure 4shows the way from
the existing element or its drawing (Fig. 4a) to the dynamical model in the
form of a bondgraph, the simplest model (see Fig. 4b) with no compliance,
then extended dynamical models with the compliance of the connecting shaft
and friction losses regarded (Fig. 4c), and finally with the wheel compliance
(Fig. 4d).
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Table 2. Basic elements of bondgraphs

Element Symbol Equation

Effort source Se e = is known

Flow source Sf f = is known

Inertial element I : m f = 1
m

∫

e dt+ f0
Compliance C : c e = 1

c

∫

f dt+ e0
Resistance R : r e = rf

1-Nod 1 f = idem,
∑

ei = 0

0-Nod 0 e = idem,
∑

fi = 0

Transformer TF : n e1 = ne2, f2 = nf1
Gyrator GY : r e1 = rf2, e2 = rf1

Fig. 4. Development of a bondgraph model of a gear part: from a ”rough” graph to
an enhanced model (causality analysis marks are not added to the graphs)



Gears and graphs 155

The next stage is derivation of equations from the graph. The causality
analysis procedure (see Karnopp et al., 2000) is required. It creates a proper
order for equations and permits automatic generation of solutions. Short per-
pendicular lines and numbers under the bonds denote the causality assignment
order and equation form (details in Karnopp et al., 2000). The set of equations
has a different form depending on the causality analysis. Figures 5a,b,c show
possible causality forms and Fig. 5d shows a case when a proper denoting
graph (causality assignment) is impossible.

Fig. 5. Bondgraphs for a simple model with different causalities

The full set of equations has the form



















































f1 = is known f5 = f3

e2 = is known e3 = −e4 − e5

f3 =
1
n1
f1 e4 = J4

df4
dt

e1 =
1
n1
e3 f2 = n2f5

f4 = f3 e5 = n2e2

(4.7)

hence






















f1 = is known

e2 = is known

e4 = J4
1
n1

df1
dt

(4.8)
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The arranged sets of equations for bondgraphs from Fig. 5b and 5c have
the form























e1 = is known

f2 = is known

e4 = J4
1
n2

df2
dt























e1 = is known

e2 = is known

df4
dt
= J4(−n1e1 − n2e2)

(4.9)

It is impossible to express a consistent system of equations for the graph
from Fig. 5d. This system of equations is contradictory







































f1 = is known

f2 = is known

e4 = J4
1
n1

df1
dt

and e4 = J4
1
n2

df2
dt

f4 = f3 =
1
n1
f1 and f4 = f5 =

1
n2
f2

(4.10)

Figure 6 shows bondgraphs of compliant models after performing the cau-
sality analysis.

Fig. 6. A bondgraph model for compliant models with causality analysis marks

The equations of dynamics for the model shown in Fig. 4b and Fig. 6a have
the form



























































f1 = is known

e2 = is known

e4 = J41
1
n1

df1
dt

e9 =
1
c4

∫

(

−
1
n1
f1 − f11

)

dt

df11
dt
=
1
J42
[e9 − r42(f11 − f15)− n2e2]

(4.11)
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The subscripts correspond to the number of bonds. The equations of dy-
namics of the model shown in Fig. 4d and Fig. 6b have the form



















































































































f1 = is known

e2 = is known

e4 =
1
c41

∫

(

−
1
n1
f1 + f7

)

dt

df7
dt
=
1
J41
[−e4 + e11 − r41(f7 − f10)]

f10 = is known

e11 =
1
c43

∫

(−f7 − f14) dt

df14
dt
=
1
J42
[e11 − n2e2 − r42(f14 − f17)]

f17 = is known

f18 = c42n2
de2
dt

(4.12)

5. Final remarks and conclusions

Graphs can be recognized as versatile, concise and powerful models of
gears. The assignment of a graph to a particular gear is only the first step of the
procedure. The assignment of further algebraic objects is an immanent phase
of all described methods. Depending on the procedure of modeling, different
tasks can be performed. One can mention here: analysis, synthesis, finding
a particular part, optimization or generation of all possible design solutions.
Only some of them is roughly described in this work. However, a wide range
of publications on this topic is briefly presented. In all cases, the graph-based
methodology allows automatization of a particular task and its realization
by means of a computer routine. Graph-based methods can be coupled with
FEM and evolutionary algorithms, which means – together with all previously
mentioned features – that the graph-based methodology can be recognized as
an artificial intelligence method. These methods are intensively developed just
recently, and enjoy great interest confirmed by numerous investigations which
are carried on.
During a design and analysis process, an engineer requires a tool for valida-

tion of dynamic properties of a created machine. A bondgraph model is easy to
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build and modify, regarding or neglecting selected dynamical properties in the
model, drawing or erasing adjacent bonds and elements. Some authors (Shai
and Preiss, 1999a) claimed that the graph method can be recognized as a new
branch of strong artificial intelligence (Kasperski, 2003). The paper supports
this point of view due to the fact that the graph-based methods consist in the
algorithmization of particular tasks.
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Grafy i przekładnie

Streszczenie

W pracy przedstawiono, między innymi, przegląd prac związanych z zadaniem
modelowania przekładni zębatych za pomocą uniwersalnych modeli wykorzystują-
cych teorię grafów. To podejście do zadań modelowania przekładni zębatych umożli-
wia przeprowadzenie zadania analizy i syntezy za pomocą komputerów. W niektórych
najnowszych pracach pojawia się stwierdzenie, że reprezentacja za pomocą grafów
i metod pochodnych są działem sztucznej inteligencji, gdyż umożliwiają automatycz-
ne uzyskiwanie pożądanych wyników, np. różnych rozwiązań konstrukcyjnych me-
chanizmów. Załączono kilka przykładów dla wyjaśnienia, jakie klasy zadań można
rozwiązywać za pomocą metod wywodzących się z teorii grafów; tj. modelowanie za
pomocą grafów przepływu mocy i grafów liniowych. Omówiono następujące zagad-
nienia: automatyczne tworzenie układów równań opisujących dynamikę podzespołów
przekładni i wykrywanie kół nadmiarowych. Przegląd został oparty o prawie 60 prac,
opublikowanych głównie w okresie ostatnich 10. lat; część z nich pochodzi z uznanych
czasopism specjalistycznych o ogólnoświatowym zasięgu.
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