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The problem of free vibrations of a two-member column loaded by a
sretched element is considered in the paper. The influence of rigidity
asymmetry on the bending between the stretched element and column
rods, and the influence of the rigid mounting of the loading element and
its length on the course of natural frequency in relation to the external
load are analysed. The regions, for which the tested systems appear to
be of divergence or divergence-pseudo-flutter type, are determined for
presented physical and geometrical parameters of the column and sys-
tems for border values of the coefficient of bending asymmetry. Numeri-
cal computations are supported by appropriate results of experimental
investigations.
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1. Introduction

In the scientific literature dealing with vibration and stability of slender
elastic systems (columns, frames), the following types of systems can be di-
stinguished depending on the course of a curve in the plane: load P – natural
frequency ω (characteristic curves):

• divergence systems – loosing their stability due to buckling (conservative
systems) (Gajewski and Życzkowski, 1969a,b; Leipholz, 1974; Timoshen-
ko and Gere, 1963; Ziegler, 1968),

• flutter systems – loosing their stability due to growing amplitudes of
oscillatory vibrations (non-conservative systems) (Beck, 1953; Bogacz
and Janiszewski, 1986; Bolotin, 1963; Langthjem and Sugiyama, 2000),
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• hybrid systems – loosing their stability by flutter or divergence due to
certain geometrical or physical parameters (non-conservative systems)
(Dzhanelidze, 1958; Sundararajan, 1973, 1976; Tomski and Przybylski,
1985; Tomski et al., 1990, 2004),

• divergence-pseudo-flutter systems (Bogacz et al., 1998; Tomski et al.,
1994, 1995, 1996, 1998, 1999, 2004) – loosing their stability due to buc-
kling (conservative systems) for which the function in the plane: load P –
natural frequency ω (Fig. 1) has the following course:

– for P ∈< 0, Pc) (Pc – the critical load) the angle of the tangent
to the characteristic curve can take a positive, zero or a negative
value,

– for P ≈ Pc the slope of the characteristic curve is negative,

– change of the natural vibration form (from the first to the second
and inversely) takes place along the characteristic curves, (M1,M2
denote the first and second form of vibrations, respectively).

Fig. 1. The course of characteristic curves for a divergence-pseudo-flutter system (cf.
Tomski et al., 1995, 1996, 1998, 1999, 2004)

2. Formulation of the problem

Two systems (Fig. 2b,c) are considered in this paper:

• a column loaded by a stretching beam B, Fig. 2b (Tomski et al., 1997,
2004),

• a column loaded by a force through a string C (the force directed towards
the positive pole), Fig. 2c (Fieodosjew, 1969; Gajewski, 1970; Gajewski
and Życzkowski, 1969).
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Fig. 2. Physical models of considered systems: (a) column loaded by a follower force
applied to the positive pole A, (b) column loaded by a stretching beam B,
(c) column loaded by a force directed towards the positive pole C

The method of mounting and loading the considered columns as well as
the shape of axes of deflected rods are shown in Fig. 2. The systems are com-
posed of two rods with the flexural rigidities (EJ)1 and (EJ)2, respectively,
and the mass per unit length (ρ0A)1 and (ρ0A)2 (while: (EJ)1 = (EJ)2,
(ρ0A)1 = (ρ0A)2, (EJ)1 + (EJ)2 = EJ , (ρ0A)1+ (ρ0A)2 = ρ0A). The column
rods have the same cross-section and they are made of the same material.
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For the column B, see Fig. 2b, the above mentioned elements are loaded by
a compressive force P through infinitely rigid element (5) and a stretching
beam with the flexural rigidity (EJ)3 and mass per unit length (ρ0A)3. The
mounting elasticity of the stretched element is determined by the rigidity of a
rotational spring C1. Rods (1,2,3) are connected at the free end by cube (4)
with the concentrated mass m. This is done in a rigid way, that is to say that
the deflection angles and displacement of the free end are equal for every rod.
Changeable length l3 of the stretched element: bolt, beam or string (position
of point O) is realized by mechanical system (6).
The coefficient of asymmetry of the flexural rigidity µ1 is defined for the

considered system

µ1 =
(EJ)3

(EJ)1 + (EJ)2
(2.1)

For µ1 = 0 (system C) it was assumed that element (3) is not characterized
by flexural rigidity (string). In the case of 1/µ1 = 0 (system A), the flexural
rigidity of the considered element is multitudinously higher for the stretching
rods of the column (rigid bolt). In this case, the model of the column (Fig. 2a)
loaded by the follower force directed towards the positive pole is obtained
(Tomski et al., 1998, 2004). System A can be of a divergence or divergence-
pseudo-flutter type.
The influence of the mentioned below parameters on the type of the system

(divergence, divergence-pseudo-flutter) is analysed for columns with:
• asymmetry of the flexural rigidity between the stretched element and
compressive rods of the column (system B)

• mounting elasticity of the stretched element:

– rigid mounting (1/C1 = 0) – system B
– hinged mounting (C1 = 0) – systems B, C

• length of the stretched element of the column l3 – systems B, C, and
with the constant value of the concentrated mass m at free end of the
column.

3. Equations of motion and boundary conditions. Solution to the

boundary value problem

The equations of motion for the considered structures have been determi-
ned from relationships (3.1), for column B – the three-rod system, and from
relationship (3.1)1 for column C) – the two-rod system
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(EJ)i
∂4Wi(x, t)
∂x4

+ Si
∂2Wi(x, t)
∂x2

+ (ρ0A)i
∂2Wi(x, t)
∂t2

= 0
(3.1)

(EJ)3
∂4W3(x1, t)
∂x41

+ S3
∂2W3(x1, t)
∂x21

+ (ρ0A)3
∂2W3(x1, t)
∂t2

= 0

where i is the ith stretching rod of the system (i = 1, 2) and

S1 = S2 =
P

2
S3 = −P (3.2)

The geometrical boundary conditions for the rigidly restrained point (x = 0)
are

W1(x, t)
∣

∣

∣

x=0
=W2(x, t)

∣

∣

∣

x=0
=W ′1(x, t)

∣

∣

∣

x=0
=W ′2(x, t)

∣

∣

∣

x=0
= 0 (3.3)

The remaining conditions, necessary for solving the boundary value problem,
are given in the form
— column B

∂W1(x, t)
∂x

∣

∣

∣

x=l1
=
∂W2(x, t)
∂x

∣

∣

∣

x=l1
=
∂W3(x1, t)
∂x1

∣

∣

∣

x1=l3

W1(l1, t) =W2(l1, t) =W3(l3, t) W3(0, t) = 0

(EJ)3
∂2W3(x1, t)
∂x21

∣

∣

∣

x1=0
= C1

∂W3(x1, t)
∂x1

∣

∣

∣

x1=0
(3.4)

2
∑

i=1

(EJ)i
∂2Wi(x, t)
∂x2

∣

∣

∣

x=l1
+ (EJ)3

∂2W3(x1, t)
∂x21

∣

∣

∣

x1=l3
= 0

2
∑

i=1

(EJ)i
∂3Wi(x, t)
∂x3

∣

∣

∣

x=l1
+ (EJ)3

∂3W3(x1, t)
∂x31

∣

∣

∣

x1=l3
−m
∂2W (l1, t)
∂t2

= 0

— column C

∂W1(x, t)
∂x

∣

∣

∣

x=l1
=
∂W2(x, t)
∂x

∣

∣

∣

x=l1
W1(l1, t) =W2(l1, t)

2
∑

i=1

(EJ)i
∂2Wi(x, t)
∂x2

∣

∣

∣

x=l1
= 0 (3.5)

2
∑

i=1

(EJ)i
∂3Wi(x, t)
∂x3

∣

∣

∣

x=l1
+ P
(∂W1(x, t)
∂x

∣

∣

∣

x=l1
−
W1(l1, t)
l3

)

−m
∂2W (l1, t)
∂t2
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The column undergoes small vibrations, therefore

Wi(x, t) = yi(x) cos(ωt) W3(x1, t) = y3(x1) cos(ωt) (3.6)

The solution to equations of motion (3.1), after previous separation of
variables towards time and displacement (3.6), is

yi(x) = C1i cosh(αix) + C2i sinh(αix) + C3i cos(βix) + C4i sin(βix)
(3.7)

y3(x1) = C13 cosh(β3x1) + C23 sinh(β3x1) + C33 cos(α3x1) + C43 sin(α3x1)

where Cnj are integration constants n = 1, 2, 3, 4, j = 1, 2, 3 and

α2j = −
1
2
k2j +

√

1
4
k2j +Ω

2
j β2j =

1
2
k2j +

√

1
4
k2j +Ω

2
j

while

Ω2j =
(ρ0A)jω2

(EJ)j
k2i =

Si
(EJ)i

k23 =
P

(EJ)3

Substitution of solutions (3.7) into the boundary conditions (3.3) and (3.4)
for column B or (3.3) and (3.5) for column C (after previous separation of
variables towards time and displacement) allows one to receive a system of
twelve or eight homogeneous equations. The characteristic equation for the
natural frequency of the considered column is obtained when the determinant
of the characteristic system of equations equals zero.

4. Characteristic curves in the plane: load-natural frequency

A characteristic curve in the plane: load-natural frequency determines the
type of a system. This is why the results of theoretical research are presented
below.
Leipholz (1974) introduced a criterion for the loss of stability by divergence.

He stated that for conservative columns (divergence systems) described by the
boundary conditions

y′′(x)y(x)
∣

∣

∣

x=l1

x=0
= 0

(4.1)
[

y′′′(x) +
P

EJ
y′(x)

]

y(x)
∣

∣

∣

x=l1

x=0
= 0
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the course of curves of eigenvalues Ω in relation to the external load λ has
the negative slope in the whole range of the load (see curve (a) in Fig. 3)

dΩ

dλ
=
−
l1
∫

0
[y′(x)]2 dx

l1
∫

0
[y(x)]2 dx

< 0 (4.2)

where y(x) is the lateral displacement of the column, Ω = Ω21 , λ = P/(EJ).

Fig. 3. The course of the basic characteristic curve of the parameter Ω

Leipholz’s research, concerning characteristic curves for conservative and
non-conservative loads, was generalised in works by Tomski et al. (1996, 1997,
1998, 2004). Adequate relationships, representing the eigenvalues in the plane
Ω-λ, i.e. the parameter of the natural frequency Ω vs. the parameter of the
external load λ, are:
— for a generalised load (conservative systems, cf. Tomski et al., 1996, 2004)

dΩ

dλ
=
−
l1
∫

0
[y′(x)]2 dx+ ρ[y′(l1)]2 − γ[y(l1)]2 + 2νy(l1)y′(l1)

l1
∫

0
[y(x)]2 dx+ m[y(l1)]

2

ρ0A

(4.3)

where µ, γ, ρ, ν are established coefficients of the generalised load (Tomski et
al., 2004),
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— for a follower force directed towards the positive pole (A), see Fig. 2a,
(conservative systems, cf. Tomski et al., 1998, 200)

dΩ

dλ
=
−
l1
∫

0
[y′(x)]2 dx+ y(l1)y′(l1)

l1
∫

0
[y(x)]2 dx+ m[y(l1)]

2

ρ0A

(4.4)

— for a column loaded by a stretched beam (B), see Fig. 2b (conservative
system, cf. Tomski et al., 1997)

dΩ

dλ
=

−
l1
∫

0
[y′1(x)]

2 dx−
l2
∫

0
[y′2(x)]

2 dx+
l3
∫

0
[y′3(x1)]

2 dx1

l1
∫

0
[y1(x)]2 dx+

l2
∫

0
[y2(x)]2 dx+

(ρ0A)3
(ρ0A)1

l3
∫

0
[y3(x1)]2 dx1 +

m[y1(l1)]2

(ρ0A)1

(4.5)

— for non-potential systems (non-conservative system, cf. Tomski et al., 2004)
(i) Beck’s generalised column

dΩ

dλ
=
−
l1
∫

0
[y′(x)]2 dx+ ηy(l1)y′(l1)− λη

[

y′(l1)
∂y(l1)
∂λ
− y(l1)

∂y′(l1)
∂λ

]

l
∫

0
[y(x)]2 dx+ m[y(l1)]

2

ρ0A
+ λη

[

y′(l1)
∂y(l1)
∂Ω
− y(l1)

∂y′(l1)
∂Ω

]

(4.6)

(ii) Reut’s generalised column

dΩ

dλ
=
−
l1
∫

0
[y′(x)]2 dx+ ηy(l1)y′(l1) + λη

[

y′(l1)
∂y(l1)
∂λ
− y(l1)

∂y′(l1)
∂λ

]

l
∫

0
[y(x)]2 dx+ m[y(l1)]

2

ρ0A
− λη

[

y′(l1)
∂y(l1)
∂Ω
− y(l1)

∂y′(l1)
∂Ω

]

(4.7)

where η is a coefficient of the follower force (Beck’s column) or a coefficient
of the follower moment (Reut’s column).
In the case of columns A, B, C and generalised loads (conservative sys-

tems), the slope of a curve of the natural frequency may be negative (diver-
gence system – curve (a) in Fig. 3), positive (divergence-pseudo-flutter system
– curve (c)) or equal to zero (curve (b)) depending on geometrical parameters
of the loading and receiving heads.
In the case of the generalised load (cf. Tomski et al., 1996), the parameter

of natural frequency (4.8)2 was determined on the basis of Rayleigh’s quotient.
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Relationship (4.3), conservative condition of load (4.8)1 and boundary condi-
tions at the restrained and free end of the column were used

ν + µ− 1 = 0
(4.8)

Ω =

l1
∫

0
[y′′(x)]2 dx

l1
∫

0
[y(x)]2 dx+ m[y(l1)]

2

ρ0A

+ λ
dΩ

dλ

5. Results of numerical computations

Numerical computations were accomplished on the basis of the solution
to the boundary value problem for the considered systems. The influence of
length l3 of the stretched element of the column and the asymmetry of flexural
rigidity between the compressed rods and stretched element on the type of the
system were determined. The range of µ1, l∗3 parameters, for which the con-
sidered columns were of the divergence type (D) or divergence-pseudo-flutter
type (PF), was specified taking into account an educed criterion (systems A,
B, C – compare Tomski et al., 1997, 1998, 2994) describing eigenvalue curves in
the plane: load P - natural frequency ω, (4.3) and (4.5). The computations we-
re carried out for two extreme cases of the mounting of the stretched element,
i.e. hinged mounting (c∗1 = 0), see Fig. 4a, and rigid mounting (1/c

∗

1 = 0), see
Fig. 4b, with a constant value of the concentrated mass m∗ at the free end of
the systems, where

l∗3 =
l3
l1

c∗1 =
C1l1
EJ

m∗ =
m

l1ρ0A
(5.1)

In the case of the hinged mounting (Fig. 4a), the influence of parameter l∗3
on the type of the system for a column loaded by a force directed towards the
pole (C − µ1 = 0) and a column loaded by a follower force directed towards
the pole (A− 1/µ1 = 0) was additionally determined.
Numerical computations were carried out for the considered systems in

order to determine the course of changes in natural frequencies in relation to
the external load for chosen parameters µ1, l∗3 (lines 1-4 in Fig. 4). The charac-
ter of changes of the first two natural frequencies in a dimensionless form Ω ∗t
(t = 1, 2) and additional symmetrical natural frequencies Ω∗s2 (Tomski et al.,
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Fig. 4. The effect of µ1, l∗3 parameters on the type of systems: divergence (D),
divergence-pseudo-flutter (PF) for: (a) hinged mounting – columns A, B, C,

(b) rigid mounting – column B

1997) in relation to the dimensionless loading parameter λ∗ were specified
(Fig. 5-Fig. 8). It was assumed that

λ∗ = λl21 =
P l21
EJ

Ω∗ = Ωl41 =
ρ0Aω

2l41
EJ

(5.2)

Fig. 5. Characteristic curves for Ω∗ parameter in relation to l∗
3
for c∗

1
= 0
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Two cases of mounting of the stretched element; i.e. hinged mounting
(Fig. 5, Fig. 6) and rigid mounting (Fig. 7, Fig. 8) with the fixed value of the
concentrated mass at the free end of the system were considered similarly as
in Fig. 4.

Fig. 6. Characteristic curves for Ω∗ parameter in relation to µ1 for c∗1 = 0

The slope of the basic natural frequency Ω∗ for λ∗ = 0 may be negati-
ve, positive or equal to zero. This is depicted in graphs concerning different
parameters µ1, l∗3 see lines 1-4 in Fig. 4).
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Fig. 7. Characteristic curves for Ω∗ parameter in relation to l∗
3
for 1/c∗

1
= 0

Changes in the slope of the considered natural frequency curve allows one
to rank the considered systems among one of the two types: divergence (D) –
(∂Ω∗/∂λ∗)|λ∗=0 < 0 or divergence-pseudo-flutter (PF) – (∂Ω∗/∂λ∗)|λ∗=0 > 0.
The course of eigenvalues was distinguished by broken lines (Fig. 5-Fig. 8). The
quality (∂Ω∗/∂λ∗)|λ∗=0 = 0 is received for eigenvalues at the determined para-
meters m∗, µ1, l∗3, c

∗

1. The course of the natural frequency Ω
∗s
2 corresponding

to the symmetrical form of vibrations is identical for every presented graph
due to the constant total rigidity EJ and length l1 of the stretching rods of
the system assumed in calculations. The value of the critical load is determi-
ned for Ω∗ = 0 for the presented curves of changes in the natural frequencies
(Fig. 5-Fig. 8).
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Fig. 8. Characteristic curves for Ω∗ parameter in relation to µ1 for 1/c∗1 = 0

6. Results of experimental research

Numerical computations were carried out for the systems considered in the
paper. The course of natural frequencies in relation to the external load for
the column loaded by the stretching rod B and for the column loaded by
the force directed towards the pole C, was verified on experimental set-ups
(Tomski et al., 1996, 1998, 2004). Physical and geometrical parameters are
given in Tables 1 and 2.
The results of experimental research (points) and numerical computations

(lines) are presented in Fig. 9 and Fig. 10 (column B) and in Fig. 11 (column C).
Systems B1, B2, B3, B5, B6, C are characterised by a hinged mounting of the
stretched element (c∗1 = 0) for x1 = 0. The rigid mounting was applied to the
remaining cases.
Experimental investigation of the column B was limited to the first three

basic natural frequencies (M1, M2, M3) and to two additional frequencies
(M2e, M3e) corresponding to the symmetrical form of vibrations (Tomski et
al., 1997). In the case of column C, numerical computations and experimental
investigation were carried out for the first two natural frequencies (M1, M2)
for six chosen positions of the pole (length l3). The results of numerical com-
putations and experimental investigations are in good agreement.
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Fig. 9. The course of characteristic curves for column: B1 (a), B2 (b), B3 (c)
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Fig. 10. The course of characteristic curves for column: B4 and B5 (a),
B6 andB7 (b), B8 and B9 (c)
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Fig. 11. The course of characteristic curves for column C

Table 1. Physical and geometrical parameters of the column loaded by
the stretching rod B

Column
EJ ρ0A (EJ)3 (ρ0A)3 l1 l3 m
[Nm2] [kg/m] [Nm2] [kg/m] [m] [m] [kg]

B1 716.58 2.401 2132.6 2.918 0.63 0.31 0.39
B2 362.062 2.586 2132.6 2.918 0.63 0.31 0.35
B3 716.58 2.401 76.32 0.315 0.63 0.31 0.43
B4 152.68 0.631 589.04 0.877 0.61 0.305 0.34
B5 152.68 0.631 589.04 0.877 0.61 0.305 0.34
B6 362.062 2.586 76.32 0.315 0.61 0.305 0.35
B7 362.062 2.586 76.32 0.315 0.61 0.305 0.35
B8 716.58 2.401 38.81 0.219 0.9 0.9 0.58
B9 716.58 2.32 831.49 1.041 0.9 0.9 0.58

Table 2. Physical and geometrical parameters of the column loaded by
the force directed towards the positive pole C

Column
EJ ρ0A (EJ)3 (ρ0A)3 l1 m
[Nm2] [kg/m] [Nm2] [kg/m] [m] [kg]

C 206.17 1.199 – – 0.6 1.03

The above presented changes of natural frequencies in relation to the exter-
nal load are typical for divergence-pseudo-flutter systems.
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7. Summary

On the basis of experiments and carried out numerical simulations for the
presented two-member column loaded by the stretching rod, it can be stated
in this paper that:

• Different characteristic cases of column loading, i.e. from Euler’s load,
through loads by forces directed towards the positive pole to loads by
a follower force directed towards the positive pole, can be obtained in
relation to assumed values of parameters determining the elasticity of
mounting of the stretching rod.

• The considered systems (a column loaded by the stretched element and a
column loaded by the force directed towards the positive pole) appear to
be ones of the two characteristic types, namely divergence or divergence-
pseudo-flutter systems. This can be resolved on the basis of the course
of the natural frequency in relation to the external load for the given
geometrical and physical parameters.

• The obtained results of numerical computations and experimental inve-
stigations regarding the course of natural frequencies in relation to the
external load showed good agreement.
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Drgania swobodne kolumn obciążonych poprzez rozciągany element

Streszczenie

W pracy rozważa się zagadnienie drgań swobodnych dwuprętowej kolumny ob-
ciążonej poprzez rozciągany element. Analizuje się wpływ asymetrii sztywności na
zginanie pomiędzy elementem rozciąganym układu a prętami kolumny, wpływ sztyw-
ności zamocowania elementu obciążającego oraz jego długości na przebieg częstości
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drgań własnych w funkcji obciążenia zewnętrznego. Dla prezentowanych parametrów
fizycznych i geometrycznych kolumny oraz układów dla granicznych wartości współ-
czynnika asymetrii na zginanie wyznacza się obszary, w których omawiane układy są
typu dywergencyjnego lub dywergencyjnego pseudoflaterowego. Obliczenia numerycz-
ne poparte są odpowiednimi wynikami badań eksperymentalnych.
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