
JOURNAL OF THEORETICAL

AND APPLIED MECHANICS

44, 2, pp. 393-403, Warsaw 2006

NUMERICAL SOLUTIONS TO BOUNDARY VALUE

PROBLEM FOR ANOMALOUS DIFFUSION EQUATION

WITH RIESZ-FELLER FRACTIONAL OPERATOR

Mariusz Ciesielski
Jacek Leszczynski

Institute of Mathematics and Computer Science, Czestochowa University of Technology

e-mail: mariusz@imi.pcz.pl; jale@imi.pcz.pl

In this paper, we present a numerical solution to an ordinary differential
equation of a fractional order in one-dimensional space. The solution
to this equation can describe a steady state of the process of anoma-
lous diffusion. The process arises from interactions within complex and
non-homogeneous background. We present a numerical method which
is based on the finite differences method. We consider a boundary value
problem (Dirichlet conditions) for an equation with the Riesz-Feller frac-
tional derivative. In the final part of this paper, some simulation results
are shown. We present an example of non-linear temperature profiles in
nanotubes which can be approximated by a solution to the fractional
differential equation.
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1. Introduction

Anomalous diffusion is a phenomenon strongly connected with interac-
tions within complex and non-homogeneous background. This phenomenon is
observed in transport of a fluid in porous materials, in chaotic heat baths,
amorphous semiconductors, particle dynamics inside a polymer network, two-
dimensional rotating flow and also in econophysics. The phenomenon of ano-
malous diffusion deviates from the standard diffusion behaviour. In opposite
to the standard diffusion where a linear form in the mean square displace-
ment 〈x2(t)〉 ∼ k1t of the diffusing particle over time occurs, the anomalous
diffusion is characterized by a non-linear one 〈x2(t)〉 ∼ kγt

γ , for γ ∈ (0, 2]. In
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this phenomenon, there may exist a dependence 〈x2(t)〉 → ∞ characterized
by occurrence of rare but extremely large jumps of diffusing particles – well-
known as the Levy motion or the Levy flights. An ordinary diffusion follows
Gaussian statistics and Fick’s second law for finding the running process at
time t whereas anomalous diffusion follows non-Gaussian statistics or can be
interpreted as the Levy stable densities.

Many authors proposed models which base on linear and non-linear forms
of differential equations. Such models can simulate anomalous diffusion but
they do not reflect its real behaviour. Several authors (Carpinteri and Ma-
inardi, 1997; Hilfer, 2000; Gorenflo and Mainardi, 1998; Metzler and Klafter,
2000) apply fractional calculus to the modelling of this type of diffusion. This
means that time and spatial derivatives in the classical diffusion equation are
replaced by fractional ones. In comparison to derivatives of the integer order,
which depend on the local behaviour of the function, the derivatives of the
fractional order accumulate the whole history of this function.

In our previeus works (Ciesielski and Leszczynski, 2003, 2005), we presen-
ted a solution to a partial differential equation of the fractional order with the
time fractional operator and the space ordinary operator, respectively. Those
solutions were based on the Finite Difference Method (FDM) and are called
the Fractional FDM (FFDM).

2. Mathematical background

In this paper we consider an ordinary differential equation of fractional
order in the following form

dα

d|x|αθ
T (x) = 0 x ∈ R (2.1)

where T (x) is a field variable (i.e. field temperature), (dα/d|x|αθ )T (x) is the
Riesz-Feller fractional operator (Metzer and Klafter, 2000; Samko et al., 1993),
α is the real order of this operator and θ is the skewness parameter. Accor-
ding to (Gorenflo and Mainardi, 1998), the Riesz-Feller fractional operator is
defined as

dα

d|x|αθ
T (x) = xD

α
θ T (x) = −[cL(α, θ)−∞D

α
xT (x) + cR(α, θ) xD

α
+∞T (x)] (2.2)
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for 0 < α ¬ 2, α 6= 1 where

−∞D
α
xT (x) =

( d
dx

)m
[−∞I

m−α
x T (x)]

(2.3)

xD
α
+∞T (x) = (−1)

m
( d
dx

)m
[xI
m−α
+∞ T (x)]

for m ∈ N, m − 1 < α ¬ m, and the coefficients cL(α, θ), cR(α, θ) (for
0 < α ¬ 2, α 6= 1, |θ| ¬ min(α, 2− α)) are defined as

cL(α, θ) =
sin (α−θ)π2
sin(απ)

cR(α, θ) =
sin (α+θ)π2
sin(απ)

(2.4)

The fractional integral operators of the order α: −∞I
α
x T (x) and xI

α
∞T (x)

are defined as the left- and right-hand of Weyl’s fractional integrals (Carpinteri
and Mainardi, 1997; Oldham and Spaner, 1974; Podlubny, 1999; Samko et al.,
1993) whose definitions are

−∞I
α
x T (x) =

1

Γ (α)

x∫

−∞

T (ξ)

(x− ξ)1−α
dξ

(2.5)

xI
α
∞T (x) =

1

Γ (α)

∞∫

x

T (ξ)

(ξ − x)1−α
dξ

Considering Eq. (2.1), we obtain the steady state of the classical diffusion
equation for α = 2, i.e. the heat transfer equation. If α = 1, and the parameter
of skewness θ admits extreme values in (2.4), the steady state of a transport
equation is noted. Therefore we assume variations of the parameter α within
the range 0 < α ¬ 2. Analysing behaviour of the parameter α < 2 in Eq. (2.1),
we found some combination between transport and propagation processes in
steady states.

In this work, we will consider equation (2.1) in one dimensional domain
Ω : L ¬ x ¬ R with boundary-value conditions of the first kind (Dirichlet
conditions) as

{
x = L : T (L) = gL

x = R : T (R) = gR
(2.6)
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3. Numerical method

According to the finite difference method (Hoffman, 1992; Majchrzak and
Mochnacki, 1996), we consider a discrete from of equation (2.1) in space. The
problem of solving equation (2.1) lies in a proper approximation of Riesz-Feller
derivative (2.2) by a numerical scheme.

3.1. Approximation of the Riesz-Feller derivative

In order to develop a discrete form of operator (2.2), we introduce a homo-
genous spatial grid −∞ < . . . < xi−2 < xi−1 < xi < xi+1 < xi+2 < . . . < ∞
with the step h = xk − xk−1. We denote a value of the function T in the
point xk as Tk = T (xk), for k ∈ Z. For the numerical integration scheme, we
assumed the trapezoidal rule and we used various weighted numerical diffe-
rential schemes for the first and second derivatives, respectively. The method
of determination of the discrete form of this operator was described in detail
in work by Ciesielski (2005) and its final form is the following

xiD
α
θ Ti ≈

1

hα

∞∑

k=∞

Ti+kw
(α,θ)
k (3.1)

where coefficients w
(α,θ)
k , for 0 < α < 1, have the form

w
(α,θ)
k =

−1

2Γ (2− α)
·

(3.2)

·






[(|k| + 2)1−αλ1 + (|k| + 1)
1−α(2− 3λ1)+

+ |k|1−α(3λ1 − 4) + (|k| − 1)
1−α(2− λ1)]cL for k ¬ −2

[31−αλ1 + 2
1−α(2− 3λ1) + 3λ1 − 4]cL + λ1cR for k = −1

(21−αλ1 − 3λ1 + 2)(cL + cR) for k = 0

[31−αλ1 + 2
1−α(2− 3λ1) + 3λ1 − 4]cR + λ1cL for k = 1

[(k + 2)1−αλ1 + (k + 1)
1−α(2− 3λ1)+

+ k1−α(3λ1 − 4) + (k − 1)
1−α(2− λ1)]cR for k ­ 2
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and for 1 < α ¬ 2, we obtain

w
(α,θ)
k =

−1

2Γ (3− α)
·

(3.3)



[(|k|+ 2)2−α(2− λ2) + (|k| + 1)
2−α(4λ2 − 6)+

+ |k|2−α(6− 6λ2) + (|k| − 1)
2−α(4λ2 − 2)+

+ (|k| − 2)2−α(−λ2)]cL for k ¬ −2

[32−α(2− λ2) + 2
2−α(4λ2 − 6)− 6λ2 + 6]cL+

+ (2− λ2)cR for k = −1

[22−α(2− λ2) + 4λ2 − 6](cL + cR) for k = 0

[32−α(2− λ2) + 2
2−α(4λ2 − 6)− 6λ2 + 6]cR+

+ (2− λ2)cL for k = 1

[(k + 2)2−α(2− λ2) + (k + 1)
2−α(4λ2 − 6)+

+ k2−α(6− 6λ2) + (k − 1)
2−α(4λ2 − 2)+

+ (k − 2)2−α(−λ2)]cR for k ­ 2

Assuming α = 2, θ = 0 and cL(2, 0) = cR(2, 0) = −1/2, we obtain

w
(2,0)
k =






0 for k ¬ −2

1 for k = −1

−2 for k = 0

1 for k = 1

0 for k ­ 2

(3.4)

These coeeficients are identical as in the well known central difference scheme
for the second derivative.
The authors did not find exact values of the approximating coefficients

in literature. When α = 1, the Riesz-Feller operator is singular, hence the
problem occurs.

3.2. Fractional FDM

Having the discretization of the Riesz-Feller derivative in space done, in this
subsection we describe the finite difference method for equation (2.1). Here we
restrict the solution to one dimensional space in comparison with the standard
diffusion equation where the discretization of the second derivative in space
can approximate the central difference of the second order. The differences
appear in the setting of boundary conditions.
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In the scheme of FDM, we replaced equation (2.1) by the following formula

1

hα

∞∑

k=−∞

Ti+kw
(α,θ)
k = 0 (3.5)

Here, for the unbounded domain we are obliged to solve a system of algebraic
equations with an infinite dimension.

3.2.1. Boundary value problem

Present numerical scheme (3.5) with the included unbounded domain
−∞ < x <∞ has no practical implementations to computer simulations.

Fig. 1. Spatial distribution of grid nodes

Now we show solution to this problem on the finite domain Ω : L ¬ x ¬ R
with boundary conditions (2.6). We divide domain Ω into N sub-domains with
h = (R − L)/N . Figure 1 shows a modified spatial grid. Here we can observe
additional ’virtual’ points in the grid placed outside the domain Ω. In order to
introduce the Dirichlet boundary conditions, we proposed a treatment which
is based on the assumption that values of the function T in outside points are
identical with values in the boundary nodes x0 or xN

T (xk) =

{
T (x0) = gL for k < 0

T (xN ) = gR for k > N
(3.6)

On the basis of above considerations, we modify expression (3.1) for the di-
scretization of the Riesz-Feller derivative. Thus we have

xiD
α
θ T (xi) ≈

1

hα

(N−i∑

k=−i

Ti+kw
(α,θ)
k + gLsL

(α,θ)
i + gRsR

(α,θ)
N−i

)
(3.7)

for i = 1, . . . , N − 1, where

sL
(α,θ)
j =

−j−1∑

k=−∞

w
(α,θ)
k =




cL(α, θ)r̃j for 0 < α < 1

cL(α, θ)˜̃rj for 1 < α ¬ 2
(3.8)

sR
(α,θ)
j =

∞∑

k=j+1

w
(α,θ)
k =




cR(α, θ)r̃j for 0 < α < 1

cR(α, θ)˜̃rj for 1 < α ¬ 2
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and

r̃j =
(j + 2)1−αλ1 + (j + 1)

1−α(2− 2λ1) + j
1−α(λ1 − 2)

2Γ (2 − α)
(3.9)

˜̃rj =
(j + 2)2−α(2− λ2) + (j + 1)

2−α(3λ2 − 4) + j
2−α(2− 3λ2)

2Γ (3− α)
+

+
(j − 1)2−αλ2
2Γ (3 − α)

Putting expression (3.7) to equation (2.1), we obtain the following finite
difference scheme

N−i∑

k=−i

Ti+kw
(α,θ)
k + gLsL

(α,θ)
i + gRsR

(α,θ)
N−i = 0 i = 0, . . . , N

(3.10)

T0 = gL TN = gR

The above scheme described by expression (3.12) can be written in a matrix
form as

A · T = B (3.11)

where

A =




1 0 0 0 . . . 0 0 0
a−1 a0 a1 a2 . . . aN−3 aN−2 aN−1
a−2 a−1 a0 a1 . . . aN−4 aN−3 aN−2
a−3 a−2 a−1 a0 . . . aN−5 aN−4 aN−2
a−4 a−3 a−2 a−1 . . . aN−6 aN−3 aN−4
...

...
...

...
. . .

...
...

...
a−N+2 a−N+3 a−N+4 a−N+5 . . . a0 a1 a2
a−N+1 a−N+2 a−N+3 a−N+4 . . . a−1 a0 a1
0 0 0 0 . . . 0 0 1




(3.12)

B = [gL, b1, b2, b3, b4, . . . , bN−2, bN−1, gR]
>

with

aj = w
(α,θ)
j for j = −N + 1, . . . , N − 1

bj = gLsL
(α,θ)
j + gRsR

(α,θ)
j for j = 1, . . . , N − 1

(3.13)
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and T = [T0, T1, T2, . . . , TN ]
> is the vector of unknown values of the func-

tion T .

We can observe that the boundary conditions influence all values of the
function in every node. In opposite to the second derivative over space, which is
approximated locally, the characteristic feature of the Riesz-Feller and other
fractional derivatives is the dependence on values of all domain points. For
α = 2 and θ = 0, our scheme is identical as with the well known and used
central difference scheme in space (Hoffman, 1992; Majchrzak and Mochnacki,
1996).

The skewness parameter θ has significant influence on the solution. For
α → 1+ and θ → ±1+ one can obtain the classical ordinary differential equ-
ation.

4. Simulation results

In this section, we present results of calculation. In all presented si-
mulations we assumed 0 ¬ x ¬ 1. Figure 2 shows temperature profiles
over space with boundary conditions gL = 2, gR = 1 for different values
α = {0.1, 0.5.0.75, 1.01, 1.25, 1.5, 1.75, 2} and θ = 0. Figure 3 presents another
example of the solution in which we assumed α = 1.01 and different values of
the skewness parameter θ = {0, 0.1, 0.3, 0.5, 0.7, 0.9, 0.99}.

Fig. 2. Spatial solution to equation (2.1) for different values of α and θ = 0
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Fig. 3. Spatial solution to equation (2.1) for a steady value of the parameter
α = 1.01 and different values of θ = 0

The last example illustrates the heat transport in nanotubes. Figure 4
presents experimental data prerformed by Zhang and Li (2005) and results of
our numerical solution of equation (2.1). For such a comparison we assumed
α = 0.35 and θ = −0.055 to best fit the experimental data. It should be noted
that the temperature profile inside the nanotube deviates from the profile
obtained by solving the standard heat transfer equation.

Fig. 4. Comparison of temperature profiles in nanotubes measured by Zhang and Li
(2005) and obtained by numerical solution to equation (2.1)
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5. Conclusions

Summing up, we proposed a fractional finite difference method for the
fractional diffusion equation with the Riesz-Feller fractional derivative which
is an extension of the standard diffusion. We analysed a linear case of the
steady state of the anomalous diffusion equation, and in the future we will
work on non-linear cases. We obtained the FDM scheme which generalises
classical scheme of FDM for the diffusion equation. Moreover, for α = 2,
our solution is equivalent with that obtained by the classical finite difference
method.

Analysing plots included in this work, we can see that in the case α = 2,
solution of Eq. (2.1) is a linear function. In the other cases, when α < 2,
solutions are non-linear functions. When we analyse the probability density
function generated by fractional diffusion equation for α < 2, we observe a
long tail of distribution. In this way we can simulate same rare and extreme
events which are characterised by arbitrary very large values of particle jumps.

Analysing the changes in the skewness parameter θ, we observed intere-
sting behaviour in the solution. For α→ 1+ and for θ→ ±1+, we obtained the
steady state of the first order wave equation. For θ ∈ (0, 1) (with restrictions
to the order α), we generated non-symmetric solutions. It should be noted
that we can good approximate the temperature profile inside the nanotubes
using solution of Eq. (2.1).
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Numeryczne rozwiązanie zagadnienia brzegowego równania anomalnej

dyfuzji z operatorem frakcjalnym Riesza-Fellera

Streszczenie

W pracy zaprezentowano numeryczne rozwiązanie jednowymiarowego równania
różniczkowego zwyczajnego niecałkowitego rzędu. Rozwiązanie tego równania może
opisywać stan ustalony procesu anomalnej dyfuzji. Proces ten wynika z oddziaływań
zachodzących w złożonych i niejednorodnych systemach. Zaprezentowana metoda nu-
meryczna oparta jest na metodzie różnic skończonych. Rozważane było zagadnienie
brzegowe z warunkami Dirichleta dla tego równania z pochodną frakcjalną Riesza-
Fellera. W końcowej części przedstawiono wyniki symulacji. Jako przykład zaprezen-
towano nieliniowy profil temperatury w nanorurkach, który może być przybliżony
przez rozwiązanie frakcjalnego równania różniczkowego.

Manuscript received December 15, 2005; accepted for print January 23, 2006


