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The dynamical linear theory of a material surface placed in vacuum and
subjected to an external strong magnetostatic field is considered. Motion
of the surface is described by a position function. The material of the
surface is assumed to be an isotropic elastic non-magnetizable electric
conductor. The residual stress is taken into account. Displacement-based
field equations are obtained in a coordinate-free notation.
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1. Introduction

A three-dimensional thin body may be represented by a two-dimensional
continuum as a result of reduction of the thickness dimension or by a direct
approach. A deformable surface with usual kinematics (one deformation func-
tion) serves as a direct model underlying the membrane theory. In this paper,
we develop the theory of Gurtin and Murdoch (1975) providing an exten-
sion necessary for magnetoelastic interactions. The mechanical part is directly
obtained as two-dimensional, however, the electromagnetic part is subsequ-
ent to three-dimensional considerations. Displacement of the surface, normal
magnetic induction at the surface and scalar potentials of outward magne-
tic induction are unknowns involved in the final field equations. The MKSA
system of units is used.
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2. Initial state

2.1. Surface

Let s denote a surface in the three-dimensional Euclidean point space X
endowed with an appropriate structure (see Gurtin and Murdoch, 1975), espe-
cially the tangent space 7T}, and the unimodular vector field a3 : s — V, where
V is the translation space, such that as(p) € TpL at each point p € s. We use
the following notation: I(p) for the inclusion map from T}, into V, P(p) for
the perpendicular projection from V onto T),. If ¢: s — R, where R stands
for the reals, v : s - V,S: s — V®V, where S(p) € V ® T}, then
grad sc(p) € T, gradu(p) € V®T),, grad,S(p) € V®V ® T,. Moreover, we
have

u = Pu + uas S=PS+a3® 8 (2.1)

where u(p) € R and S(p) € T), are defined by
u=1u-as S=S"a; (2.2)

with ST being the transpose of the tensor S. Given surface gradients and
making use of the following notations

1
skw(a@b):§(a®b—b®a) Ala®@b—-b®a)=axb
tr(a®@b)=a-b trag(a®@b®ec)=(a-cb (2.3)
dp13(@a®@bre)=brarec

where x and - mean the cross product and the inner product, respectively, we
define surface divergence and curl operations as

divsu = tr (P grad su)
curlyu = —A[2skw (P grad su)] (2.4)
div SS = tr (1,3) P6(27173) grad SS

Thus, divsu(p) € R, curlsu(p) € Tpl, and divS(p) € V.

2.2. Static bias magnetic field

The bias magnetic induction B is governed in a certain neighbourhood of
the surface s by equations

curlB =0 divB =0 (2.5)
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Introduce surface vector fields: L,G : s — V by

¢-p (2.6)

L=B =
s 8903 s

where x3 is the metric coordinate in the normal direction. Then, when calcu-
lating on the surface s, Egs (2.5), take the form

Pgrad ;L — K(PL) - PG =0
(2.7)

curly L =0 divy,L+G=0

where K denotes the Weingarten map.

3. Present state

3.1. Kinematics

Deformation of the surface s during the time interval T is a mapping
X : sxT — X. The displacement corresponding to x is the field w: sxT — V
defined by

u(p,t) = x(p,t) —p (3.1)

where t is time. Thus

grad ;x = | + grad ;u (3.2)

where gradx(p,t) € V ® T),. The rotation field corresponding to u is a
mapping r: s X T'— V defined by

1

The infinitesimal strain reads
E = sym(P grad ;u) = sym[P grad s(Pu)] + uK (3.4)

where ”sym” means the symmetrical part of a tensor.
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3.2. Magnetic field outside the surface

Let 27 and {2~ denote certain outward material-free regions touching the
surface s from the upper and lower side, respectively, and b represents induced
magnetic induction governed in the regions 27 and {2~ by the equations

curlb =0 divb =10 (3.5)
accompanied by the continuity condition at the surface s in the form
b] =0 (3.6)

where [] denotes the jump across the surface. Introducing scalar potentials
T 2T xT — Rand ¢~ : 27 x T — R with the use of the space gradient

b= grady (3.7)
Egs (3.5) lead to the Laplace equations in the regions 27 and 2~
Ayt =0 AY~ =0 (3.8)

with the Neumann boundary conditions on the surface s

0

2 9
8:63

+
89531’[) =

v =b (3.9)

3.3. Electromagnetic field within the surface
The surface current density on the surface s is determined by the relation

1
J = Sy x (b (3.10)

where p means the magnetic permeability of vacuum. Moreover, the quantities
b and Pe, where e denotes the electric field, are identical at both sides of the
surface s. The corresponding differential equation reads

curls(Pe) — %b =0 (3.11)

Making use of the inverted Ohm law

1 1
Pe = ijsw" +P(L x v) = —)\P(ag x lgrads[¢]) + P(L x v) (3.12)
u
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where v denotes the velocity vector and A is the electric surface conductivity,
Eq (3.11) becomes

At — ) — u)\%b + MA%[L diviu+G-u— (PL)-(Pr)) =0 (3.13)

where A, stands for the surface Lagrangian. In the case of perfect conduction,
Eq (3.13) simplifies to the relation

b=Ldiviu+G-u— (PL)-(Pr) (3.14)

3.4. Electromagnetic momentum and energy

The following linearized identity is derivable from three-dimensional Ma-
xwell equations when simplified by neglecting the displacement current

fE=divTM (3.15)

where L and TM are the electromagnetic force and magnetic stress, respec-
tively, defined by (see Costen and Adamson, 1965)

1
ff=jxB TM:;(b®B+B®b)—wM1 (3.16)

where, in turn, j is the conduction current density, 1 denotes the identity
on V, and w™ means the electromagnetic energy density in the form

1
wM==-B-b (3.17)
7

Similarly, the power per unit volume lost by the fields equals

PY — _divsM — DM (3.18)
ot
where )
SM — Pk B (3.19)

denotes the Poynting vector. In an integral form, the electromagnetic momen-
tum and energy laws are

/fL: /TMn /SMn+/%wM =0 (3.20)
14 ov ov %4
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where n represents the outward unit vector normal to the surface 9V. In the
limit for the surface s, setting m = ag, the electromagnetic momentum law

reduces to
£ = [TM]as (3.21)

Using Egs (3.16), (3.10) and (3.17), we find

[TM] = (45" x a3) ® B+ B® (%% x a3) — [(§°*" x a3) - B]1  (3.22)

[TM]az = (55" x a3)(B - a3) — [(°“" x a3) - Blas = j°*" x B (3.23)

Similarly,

[SM] = i[e] X B = %[e]ag x B (3.24)

Thus, the electromagnetic energy law for the surface s takes the form
[SM]. a3 =0 (3.25)

3.5. Stress-based equations of motion

The stress equation of motion of a material surface has the local form
82
div ;8 + fmech 4 pour — PoE (3.26)

where S denotes the surface stress tensor, p is the mass density per unit area,
and ™" stands for the mechanical force. Using Eqs (2.1), (2.6), (3.10) and
(3.7), Eq (3.26) may be put in a more detailed form

2

P div ,(PS) + KS + Pfmech 4 1 grad;[Y] = po 5 (Pu)
H (3.27)
1 9?
div S — K- (PS) + fmeeh — o (PL) grad o [9] = p7u

where ”-” denotes the inner product of two tensors.

3.6. Stress-strain relation

The constitutive relation for the stress S reads

S = (grad ;x){S" + C[E]} (3.28)
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where S is the residual stress and C denotes the elasticity tensor. If the
material is isotropic relative to the reference configuration, then

S = o1, C[E] = AL (trE)1, + 2u.E (3.29)

where Ap and g, are Lame constants, and 14(p) is the identity on 7T},. Making
use of Egs (2.1) and (3.2), we arrive at

PS =01, + oPgradsu + AL (trE)1s 4+ 2uE S =oPr (3.30)

3.7. Displacement-based equations of motion

Now assume that o, A and uj, are constant on the surface s. Then, making
use of Egs (3.30) and (3.4), Egs (3.27) are transformed to the displacement-
based form

(0 +2pr)Pdivg[Pgrad s(Pu)| + Az grad s div (Pu) —

—2urag x [lgrad s(agcurlsu)] — oK[K(Pw)] +

+2(0 + pr)Kgrad su + 2H A, grad su + 2(0 + 2ur, + Az)(grad s H)u +
2

1
+Pfmech 4 ;Lgrauds(ifr —7) = pﬁ(Pu)
(3.31)
o Agu— (0 +2up)(K - K)yu — A\ (2H)?u — 2Ho — 20(grad (H) - (Pu) —
=2\ H div 3(Pu) — 2(0 + pp)K - [P grad s(Pu)] +
mech l . + ) 8_2
+f L (PL) - grads(y7 —v7) = pgmu

where H is the mean curvature.

4. Conclusions

e In order to incorporate magnetoelastic effects in the theory of a material
surface, the concept of surface electric current is required, even in the
case of real conduction.

e The obtained model is not entirely two-dimensional because Eqs (3.8)
are needed for completeness.
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e The lack of a term including normal bias magnetic induction in the
second equation of motion seems to be the most significant difference
occurring within the electromagnetic part between the presented model
and shell-like models based on the electromagnetic thickness hypotheses
(cf. Rudnicki, 1995).
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Elektroprzewodzaca powierzchnia sprezysta w polu magnetostatycznym

Streszczenie

Przedmiotem rozwazan jest teoria liniowa powierzchni materialnej umieszczonej
w prozni i poddanej dzialaniu silnego zewnetrznego pola magnetostatycznego. Ruch
powierzchni opisuje funkcja potozenia. Zalozono, ze material powierzchni jest izotro-
powy, sprezysty, niemagnetyzowalny i przewodzacy prad elektryczny. Uwzgledniono
naprezenia rezydualne. Otrzymano réwnania rozwiazujace z uzyciem przemieszczen.
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