JOURNAL OF THEORETICAL
AND APPLIED MECHANICS
43, 2, pp. 367-384, Warsaw 2005

NUMERICAL VERIFICATION OF TWO MATHEMATICAL
MODELS FOR THE HEAT TRANSFER IN A LAMINATED
RIGID CONDUCTOR

LukAsz LACINSKI

Faculty of Mechanics and Computer Science, Czestochowa University of Technology

e-mail: lukasz.lacinski@icis.pez.pl

Heat transfer problems in composites with a dense periodic structure are
usually investigated in the framework of certain averaged (macroscopic)
mathematical models. The best known are asymptotic models of periodic
heat conductors. The heuristic tolerance models take into account the
effect of period lengths on the overall behaviour of a conductor. The
purpose of this contribution is to compare the aforementioned models
and to verify the obtained solutions to certain benchmark problems.
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1. Introduction

It is known that the direct approach to the analysis of heat conduction
processes in composites with a dense periodic structure (i.e. the approach
satisfying Fourier heat conduction equation in every component) leads to ill-
conditioned and complicated computational problems, cf. Bensoussan et al.
(1978). That is why some averaged (macroscopic) mathematical models for
obtaining solutions to special problems have been formulated. This situation
is typical for both the stationary and nonstationary processes in periodic solids
and structures.

First of all we have to recall models based on the asymptotic homoge-
nization method. In this case the field equations with highly oscillating and
noncontinuous periodic coefficients, describing material structure of a perio-
dic medium, are "approximated” by certain constant (effective) coefficients.
At the same time solutions to the pertinent boundary-value problems make
it possible to describe processes occuring in the periodically nonhomogeneous
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medium under consideration. The number of references related to the homo-
genization theory is very extensive; we shall mention here only basic mono-
graphs by Bensoussan et al. (1987), Sanchez-Palencia (1980), Bakhvalov and
Panasenko (1984), Jikov et al. (1994). From the point of view of engineering
applications the main problem of homogenization is to determine the effecti-
ve moduli in the model equations, e.g. the components of the effective heat
conduction tensor. A certain drawback of homogenized models is that they
do not describe the effect of the period lenghts on the overall behaviour of
a periodically inhomogeneous solid. This drawback has been rejected in the
framework of what was called higher-order homogenization, cf. Boutin and
Ariault (1993), but even for relatively simple problems this approach requires
rather lengthy calculations, Fish and Wen-Chen (2001). Following Bensoussan
et al. (1978), p.XI, we recall that a modelling question related to the given
physical problem is not a mathematical one and asymptotic techniques with
different scalings have to be applied to different problems.

The aforementioned drawbacks of the asymptotic homogenization tech-
nique constitute a motivation for formulations of alternative approaches to
the modelling of periodic materials and structures. The overview of these ap-
proaches can be found in WoZniak and Wierzbicki (2000). Generally speaking,
these approaches are based on certain a priori hypotheses related to the expec-
ted form of basic unknowns such as a temperature and/or a displacement field.
Hypotheses of this kind are well known in formulation of different engineering
theories of rods, plates and shells as certain ”thin” bodies as well as in the deri-
vation of various approximate models for the dynamic behaviour of periodically
laminated solids, cf. Achenbach et al. (1968) and the list of references in the
monograph by WoZniak and Wierzbicki (2000). In this monograph foundations
of what was called the tolerance averaging technique have been summarized.
This modelling technique is based on certain heuristic hypotheses which can be
reasonably applied to a rather large class of engineering problems. Two main
features of the tolerance averaging technique of PDEs with functional highly
oscillating periodic coefficient have to be emphasized. First, the derived model
equations describe an effect of the periodicity cell size on the overall behaviour
of a solid under consideration (a length scale effect). Second, by neglecting in
the model equations terms describing the above length scale effect, we pass to
the homogenized model equations.

The tolerance averaging technique constitutes a certain generalization of
what was called the microlocal parameter method, Wozniak (1987), which
was applied to the modelling of micro-periodic materials in stationary pro-
blems. We have to recall a series of papers related to the elastic stratified
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media with cracks by Kaczynski and Matysiak (1988, 1989a,b, 1994, 2003),
Kulezycki-Zyhajlo and Matysiak (2004a,b), Matysiak (1989, 1991, 1992), Ma-
tysiak and Mieszkowski (1999, 2001), Matysiak and Pauk (1995), Matysiak et
al. (1998), Matysiak and Ukhanska (1997a,b). Nonstationary processes were
investigated in the framework of the tolerance averaging technique. We can
mention dynamic and stability problems of "thin” periodic bodies like rods,
plates and shells by Baron and Wozniak (1995), Baron (2003), Jedrysiak (1999,
2000, 2003), Michalak (1998, 2000), Michalak et al. (1995), Mazur-Sniady et
al. (2004), Cielecka et al. (2000), and others. Problems related to media with
saturated, periodically distributed inclusions were studied by Dell'Isola et al.
(1997, 1998). Analysis of heat conduction and stress waves problems can be
found in Ignaczak (1998), Ignaczak and Baczynski (1997), Wierzbicki et al.
(1996, 2001a,b, 2002a,b). Dynamics of micro-damaged media was studied by
Wozniak C. and Wozniak M. (1994) and Wozniak M. (1995). For the analysis
of harmonic waves in a stratified medium, cf. Ignaczak (2003, 2004). Investi-
gations of an elastic laminated solid were carried out by Wagrowska and Woz-
niak (1996), and Wagrowska (1998). A dynamic behaviour of the honeycomb
elastic media was discussed in Wierzbicki and Wozniak (2000a,b). Effects of
prestresing and stability on the plate behaviour were analysed by Wierzbicki
and Wozniak (2002), Wozniak M. et al. (2004). A certain generalization of the
tolerance averaging technique related to composites having different periods
of inhomogeneity in a certain direction can be found in Wozniak (2002). The
above review of possible applications of the tolerance averaging technique is
far from being complete; for more complete review the reader is referred to
Wozniak and Wierzbicki (2000).

The scope of this contribution is restricted to the nonstationary heat con-
duction problems in periodically laminated rigid conductors. For these pro-
blems it can be shown that the tolerance averaging technique, after formal
neglecting the terms involving the length of the inhomogeneity period, leads
to the homogenized model equations with the exact values of the effective
moduli.

The aim of this contribution is twofold.

First, we are to answer two questions:

1. What is difference between solutions to some selected initial-boundary
value problems derived respectively from the tolerance averaged model
and homogenized model?

2. What is difference between the aforementioned model solutions and the
pertinent solution obtained from the Fourier heat conduction equation
with noncontinuous and highly oscillating periodic coefficients?
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The answer to the above questions is not possible. That is why it will be
restricted to some benchmark problems.

The second aim of this contribution is to emphasize the fact that the
effect of the inhomogeneity period length on the macroscopic behaviour of a
laminated conductor plays an important role in the analysis of many physical
problems. The choice of proposed benchmark problems was motivated by this
fact.

In order to make this paper self-consistent, in the first section we recall
basic concepts and assumptions of the tolerance averaging technique for the
heat transfer in a periodically laminated rigid conductor. It is assumed that
there exists a perfect bonding between adjacent laminae which have material
symmetry planes parallel to the interfaces. The problems are investigated in
the framework of the linearized heat conduction theory based on the known
parabolic heat transfer equation.

Notations.

Subscripts 4,7, k,... and «,3,7,... run over sequences 1,2,3 and 1,2,
respectively. Partial derivates with respect to arguments z; are denoted by
O, = 0/0xy, and a time derivate by the overdot. We also denote = (x;, 22, x3).

2. Preliminary concepts

Let the physical space be parametrized by the orthogonal Cartesian coordi-
nate system Oz;zoz3 with the x3-axis perpendicular to the laminae interfaces;
and let ¢ be the time coordinate. A laminated rigid conductor is assumed to
occupy the region IT X (0, L) in the physical space where IT is a regular region
on the Oz ;z2-plane. The fragment of this conductor is shown in Fig. 1, where
l is a period of inhomogeneity, | < L, and l’, I"” are laminae thicknesses. A
specific heat and heat conduction tensor components in pertinent laminae are
denoted by ¢, K/; = Kj; and ¢, K = K}, where K3 = K3 = 0 due to
the assumed material symmetry of the conductor. Hence ¢(+) and Kj;(-) are
[-periodic piecewise constant functions of argument z3. For an arbitrary inte-
grable function f(-) defined in (0, L) we define its averaged value by means
of formula

1/2
D=7 [ fas+d  me(si-3) @)
—1/2

Obviously, if f is I-periodic function then (f) = const.
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Fig. 1. Fragment of a laminated rigid conductor

By g() we denote [-periodic continuous function of argument z3 such
that g(nl +1"/2) = V3l, g(nl +1"/2+1') = —/3l, and g¢(-) is linear in every
interval (nl +1"/2,nl +1"/2 +1'), and (nl+1"/2+1U',(n+ 1)l +1"/2), where
n =0, +£1,£2,.... The diagram of this function is shown in Fig. 2.
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Fig. 2. l-periodic shape function g(z3)

Let F(-) be a differentiable function depending on a certain parameter &
and defined in (0, L). Moreover, let I, | < L, be a length parameter. Function
F(-) will be called slowly varying (with respect to length ! and a tolerance
parameter £, 0 < ¢ < 1) provided that functions [F'(-) and eF(-) are of the
same order as related to ¢. For a detailed discussion of this concept the reader
is referred to WoZniak and Wierzbicki (2000). It follows that for every slowly
varying function F(-) the following relation holds

(Fg)' = Fg' + O(¢) (2.2)
Moreover, for an arbitrary integrable I-periodic function h of z3 we also obtain

(hF)(z) = (W) F(z) + O(e) (2.3)
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Rougly speaking, increments of an arbitrary slowly varying function F in every
interval (—!/2+x3,1l/2+x3) can be neglected when compared to the maximum
value of |F(z3)|, z3 € (0, L). Obviously, functions f and F in (2.1)-(2.3) can
also depend on arguments z;, rz and t.

3. Model equations

Let 0 = (z,t), x € IT x (0, L) be a temperature field at time ¢. To be more
exact, 0 is interpreted as the temperature increment measured from a certain
constant absolute temperature. Function #(-) is assumed to be continuous
in IT x (0,L) together with its derivative 0,0(-,t) while derivative 936(-,t)
suffers jump discontinuities on the interfaces between adjacent laminae. In
every lamina temperature 6(-) has to satisfy the well-known linearized Fourier
heat transfer equation

c(w3)B(a, 1) — 0 (Kij(23)0:6(x, 1)) = 0 (3.1)

where c(-), Kij(-) are the known [-periodic functions introduced in Section 2.
On all interfaces between laminae we deal with the heat flux continuity con-
ditions

K303 0(z,t) = K305 0(x,t) (3.2)

where 8; , 03 stand for the right-hand side and left-hand side derivatives,
respectively, and Kjé, K5 are the values of Kj;3 in the pertinent adjacent la-
minae. Equations (3.1), (3.2) have to be satisfied together with the appropriate
initial and boundary conditions.

Bearing in mind the remarks mentioned in Introduction, we shall replace
equations (3.1), (3.2) by certain model equations which have constant coeffi-
cients. Following the approach applied in Wozniak and Wierzbicki (2000), we
restrict the class of temperature fields to that in which 6(-,¢) is described by
the formula

B(z, t) = I, t) + g(as)¥ (x, 1) (3.3)

with € ITx (0, L) and t > 0, where 9(-) and ¥(-) are differentiable functions
which are slowly varying in argument x3 € (0, L). Let us observe that

W, t) = (0)(x,t)
Q(x-?-)g/(wit) = 9($,t) - (9)(3730
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Hence 4 is the averaged temperature, and g¥ represents fluctuations of the
temperature field. This is why ¥ will be referred to as the temperature fluc-
tuation amplitude. Functions 9(-), ¥(-) are new unknowns interrelated with
temperature 6(-) by formula (3.3).

In order to derive the governing equations for ¥(-) and ¥(-) let us substi-
tute the right-hand side of (3.3) into the left-hand side of (3.1) and denote by
H the obtained expression. Let us apply the orthogonalization procedure by
assuming that

(H)(z,t) =0 (9H)(z,t) =0
for every @ € IT x (I/2,L — 1/2) and every t > 0. Bearing in mind (2.2),
(2.3) and introducing the tolerance averaging approximation by neglecting
terms O(e), cf. Wozniak and Wierzbicki (2000), after simple manipulations
we obtain finally the following system of equations
() — (Kap)0aOp¥ — (K33)03039 — [K33]03¥ = 0 (3.4)
() — 12(Kop)0aOpW¥ + {Ks3}W + [K33)059 = 0

with constant coefficients defined by formula (2.1)
! "
(f)zuff.’_l_vﬂfﬁ VII':% VH:%_
and by new definitions

[f] = 2V3(f" - f))
{f}=12( +§)

where f stands for K;;. We shall also assume that equations (3.4) have to
be satisfied in IT x (0,L) for every ¢t > 0. Boundary conditions for 9 are
formulated on (811 x (0, L))U(IT x{0})U(II x {L}), where OII is the boundary
of the plane region IT. Boundary conditions for ¥ have to be prescribed only
on OIT x (0, L) due to the form of equation (3.4),. In nonstationary problems
the initial conditions for ¥ and ¥ should be also known. Equations (3.4)
together with the aforementioned boundary and initial conditions represent
what is called a tolerance model of a periodically laminated rigid conductor. It
can be shown that the heat flux continuity conditions (3.2) on the interfaces
between laminae, which can be written in the form

{Ks33}¥ + [K33]030 = 0 (3.5)

by means of (3.4)y are satisfied with an approximation of order O(I2).
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The homogenized model can be treated as a special case of the tolerance
model by neglecting terms O(I?) in (3.4). In this case the second of equations
(3.4) reduces to the form (3.5). Hence ¥ can be eliminated from (3.4); and
after denotation

Kb K
o _ 334233
K= Urr ok, (36)
we obtain
()9 = (Kop) 0059 — K°830309 = 0 (3.7)

The above equation together with (3.5) and with the boundary and initial
conditions for 9 represent the homogenized model for the heat transfer in a
periodically laminated rigid conductor.

Both the tolerance and homogenized models have to be considered together
with formula (3.3) for temperature . Let us observe that tolerance models
describe the effect of period length on the heat conduction in contrast to the
homogenized models. At the same time, homogenized models satisfy the heat
flux continuity conditions in contrast to tolerance models which satisfy these
conditions only with approximation of order O(/?). It has to be remembered
that solutions to initial-boundary problems formulated in the framework of the
above models have a physical sense only if 9 and ¥ are slowly varying functions
of argument z3 € (0, L). For more detailed discussion of the aforementioned
model equations the reader is referred to Wozniak and Wierzbicki (2000).

4. Comparison of models

In order to compare the solutions related to both the tolerance and ho-
mogenized model equations we restrict considerations to problems depending
only on time and on zj3-coordinate. Setting 2z = x3 we look for functions
I(z,t), ¥(2,t), z € (0,L), t > 0, as the basic unknowns. Let us also define
k = K3s. Under these restrictions formula (3.3) reduces to the form

0(z,t) = I(z,t) + g(2)¥(z,1) (4.1)
The related tolerance model is governed by equations
(c)d — (k)" — [k]¥' =0

(4.2)
P(e)W + {k}& + [k]9 =0
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and the homogenized model is described by equations

(k)

(c)d — k°9" =0 v = e

9 (4.3)

where
k." krr
is the effective heat conduction modulus. Subsequently we shall also assume
that I’ = 1" and hence v/ =" =0.5.
Let us begin with the analysis of the tolerance model. To this end equations
(4.2) will be considered together with conditions

(]

. T2 Tz
9¥(z,0) = Asin T W(z,0) = Bcos T z € {0,L)
9(0,t) =9(L,t) =0 t>0
Define 1 )

where T is a certain time parameter. We look for solutions to (4.2) in the form

w2

9(2,t) = Jou(r)sin T

(4.4)

U (z,t) = %U(T) cos”—;

where 1, is the constant reference temperature and u(-), v(-) are dimensionless
functions. After denotations

a=SDT  s-5F =BT

(o) 2 e
we obtain from (4.2) the following system of the tolerance model equations for
the dimensionless time-dependent functions u(7), v(7)

u(r) + au(r) + Bu(r) =0
(4.5)

A0(7) +yv(7) + Bu(r) =0

Let the initial conditions will be assumed either in the form

u(0) =1 v(0) =0 (4.6)
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in which temperature fluctuations are equal to zero, or will be given by
u(0) =0 v(0) =1 (4.7)

where the averaged temperature is equal to zero.
Computations have been carried out for different values of A and those of
the inhomogeneity coefficient s defined by

kf
= }f_"’; -1
and under assumption
krr
m = const

The results of computations are shown in Fig. 3 and Fig. 4 for conditions (4.6),
and in Fig. 5 and Fig. 6 for conditions (4.7).

L0 — — tolerance averaged model
u(z) LR R At homogenized model

0.8 =1 —— Fourier model

0.6+
F gl
Pog  04f e
AV=12

0.2 =

O 1 1 1 1
10 20 30 40 r 50

Fig. 3. The dimensionless function u(7) describing the averaged part for initial
conditions defined by (4.6)

Passage to the homogenized model equations (4.3) can be realized by set-
ting A =0 in (4.5). Denoting
2
o’ =a- g—

v
we obtain the homogenized model equations

w(t) + u(t) =0 v(1) = —gu(r) (4.8)

with the initial condition
w(0) =1 (4.9)

The results of computations are shown in Fig. 3 and Fig. 4.
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v(7)
A,-”2=4

v(7)
/1-”3=8

v(7)
,,L-l.l"?.= 12

0 1 L L L
0.2 0.4 0.6 0.8 T 1.0

— — tolerance averaged model
------ homogenized model
—— Fourier model

Fig. 4. The dimensionless function »(7) describing the fluctuation part for initial
conditions defined by (4.6)
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<1073

u(r)

0.8 1.0

— — tolerance averaged model
—— Fourier model

Fig. 5. The dimensionless function u(7) describing the averaged part for initial
conditions defined by (4.7)
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0 0.2 0.4 0.6 0.8 1.0

0 0. ~ 0.4 0.6 08, 10
— — tolerance averaged model
Fourier model

Fig. 6. The dimensionless function v(7) describing the averaged part for initial
conditions defined by (4.7)
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5. Verification of the obtained results

In order to verify the results derived in Section 4 we have to solve initial-
boundary value problems similar to these investigated above but in the fra-
mework of the exact Fourier model. To this end we shall use equation (3.1)
which for temperature field 6(z,t), z € (0, L), t > 0 takes the form

c(2)0(z,t) — k(2)0"(z,t) = 0

which has to hold in every lamina. On the interfaces between the adjacent
laminae from (3.2) we obtain the heat flux continuity conditions

KL 0, (z,t) = KL 0 (1)

The above problem will be solved numerically using a finite difference method,
Crank (1975). To this end we shall approximate temperature field 6ppys by
(4.1), bearing in mind (4.4). The aforementioned approximation will be reali-
zed using the least square method. According to this method we shall look
for the values of dimensionless functions u(7), v(7) by minimizing the least

square error defined by
i

/(ﬁ'mm —0)? dz

0
where # is a temperature field in the form (4.1). The results of computations
are shown in Fig. 3 - Fig. 6.

6. Conclusions

In this contribution, two mathematical models of a rigid periodically la-
minated heat conductors have been verified by direct numerical solutions to
certain benchmark problems. It was shown that both, the homogenized and
tolerance averaged models exactly approximate the averaged part of a tem-
perature field. The quality of this approximation is not noticeable depending
on the ratio [/L, cf. Fig.3. A fluctuation of temperature in the homogenized
model depends on the averaged part only. Thus, the homogenized model do-
es not comply with initial condition of the fluctuation temperature field. It
follows that the homogenized model is useless in situations in which initial
conditions of the averaged part of temperature have to be taken into account.
The tolerance averaged model provides perfect coherence for both, the avera-
ged and fluctuation parts of the initial condition. Results of computations are
presented in Fig.4-Fig. 6. It is also shown that reciprocal impact of averaged
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and fluctuation fields is stronger in the tolerance averaging model than that
of the Fourier model.

Acknowledgement
The author would like to express his special thanks to Professor Cz. Wozniak for

his helpful discussion and criticism.

10.

11.

12.

13.

14.

References

. AcHENBACH J.D., SUN C.T., HERRMANN G., 1968, Continuum theory for a

laminated medium, J. Appl. Mech., 35, 467-475

BaknvaLov N.C., PANASENKO G.P., 1984, Averaging processes in periodic
media (in Russian), Nauka, Moscow

. BAroN E., 2003, On dynamic behaviour of medium-thickness plates with uni-

periodic structure, Arch. Appl. Mech., 73, 505-516

Baron E., Wozniak C., 1995, On microdynamics of composite plates, Arch.
Appl. Mech., 66, 126-133

BENsoussAN A., Lions J.L., PApANICOLAU G., 1978, Asymptotic Analysis for
Periodic Structures, North-Holland, Amsterdam

Boutin C., AuriauLT J.L., 1993, Raleigh scattering in elastic composite ma-
terials, Int. J. Engng Sci., 12, 1669-1689

CIELECKA 1., WoZNIaK C., WoZNIAK M., 2000, Elastodynamic behavior of
honeycomb cellular media, J. of Elasticity, 60, 1-17

CRANK J., 1975, The Mathematics of Difussion, Oxford University Press,
Oxford, England

DeLr’Isora F., Rosa L. Wozniak C., 1997, Dynamic of solids with micro-
periodic non connected fluid inclusion, Arch. Appl. Mech., 67, 215-228

DeLL'IsoLa F., Rosa L. Wozniak C., 1998, A micro-structural continuum
modelling compacting flunid-saturated grounds, Acta Mech., 127, 165-182

Fisu J., WEN-CHEN, 2001, Higher-order homogenization of initial/boundary-
value problem, J. Eng. Mech., 127, 1223-1230

TcAaNCzAK J., 1998, Saint-Venant type decay estimates for transient heat con-
duction in a composite rigid semispace, J. Therm. Stresses, 21, 185-204

IeNaczak J., 2003, Plane harmonic waves in a microperiodic layered infinite
thermoelastic solid, J. Therm. Stresses, 26, 1033-1054

IgNAczAK J., 2004, Plane harmonic waves in a microperiodic thermoelastic
solid revisited, J. Therm. Stresses, 27, 779-793



382

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

L. LAciNsKI

IeNAczAK J., BAczyYNsKI Z.F., 1997, On a refined heat-conduction theory of
micro-periodic layered solids, J. Therm. Stresses, 20, 749-771

JEDRYSIAK J., 1999, Dynamics of thin periodic plates resting on a periodically
inhomogencous Winkler foundations, Arch. Appl. Mech., 69, 345-356

JEDRYSIAK J., 2000, On the stability of thin periodic plates, Eur. .J. Mech.
A/Solids, 19, 487-502

JEDRYSIAK J., 2003, Free vibrations of thin periodic plates interacting with an
clastic periodic foundations, Int. J. Mech. Sci., 45, 1411-1423

Jikov V.V., KozLov C.M., OLEINIK O.A., 1994, Homogenization of Diffe-
rential Operators and Integral Functionals, Springer Verlag, Berlin-Heidelberg

KACzZYNSKI A., MATYSIAK S.J., 1988, On the complex potentials of the linear
thermoclasticity with microlocal parameters, Acta Mech., T2, 245-259

Kaczynskl A., MATYSIAK S.J., 1989a, A system of interfaces cracks in a
periodically layered elastic composites, Engng Fracture Mech., 32, 745-756

KACzyYNsKI A., MATYSIAK S.J., 1989b, Thermal stresses in a laminate com-
posite with a row of interface cracks, Int. J. Engng Sci., 27, 131-141

KACZYNSKI A., MATYSIAK S.J., 1994, Analysis of stress intensity factors in
crack problems of periodic two-layered eclastic composites, Acta Mech., 107,
1-16

KaczynNskl A., MATYSIAK S.J., 2003, On the three-dimensional problem of
an interface crack under uniform heat flow in a bimaterial periodically-layered
space, Int. J. Facture, 123, 127-138

KULCZYCKI-ZYHAJLO R., MATYSIAK S.J., 2004a, On heat conduction problem
in a semi-infinite periodically laminated layer, Int. Comm. in Heat and Mass
Transfer, in press

KuLczycKI-ZYHAJLO R., MATYSIAK S.J., 2004b, On some heat conduction
problem in a periodically two-layered body. Comparative results, Int. Comm.
in Heat and Mass Transfer, in press

MATYSIAK S.J., 1989, Thermal stresses in a periodic two-layered composite
weakened by an interface crack, Acta Mech., 78, 95-108

MATYSIAK S.J., 1991, On certain problems of heat conductions in periodic
composites, ZAMM, T1, 524-528

MaTyYSIAK S.J., 1992, On the homogenized model of periodic stratified fluid-
saturated porous solids, Int. J. Fngng Sci., 30, 729-737

Matysiak S.J., Mieszkowskl R., 1999, On homogenization of diffusion pro-
cesses in microperiodic stratified bodies, Int. Comm. Heat Mass Transfer, 26,
539-547



31.

32.

33.

34.

36.

37.

38.

39.

40.

41.

42.

43.

44.

45.

46.

47.

NUMERICAL VERIFICATION OF TWO MATHEMATICAL MODELS... 383

MATYSIAK S.J., MIESzKOwSKI R., 2001, On modelling of diffusion processes
in periodically stratified elastic solids, Int. J. Fngng Sei., 39, 491-501

MaTtysiak S.J., Pauk V.J., 1995, Plane contact problem for periodic lamina-
ted composite involving frictional heating, Arch. Appl. Mech., 66, 82-89

MATYSIAK S.J., PAUK V.J., YEVTUSHENKO A.A., 1998, On applications of
the microlocal parameter method in modelling of temperature distributions in
composite cylinders, Arch. Appl. Mech., 68, 297-307

MATYSIAK S.J., UKHANSKA O.N., 1997a, On two-dimensional heat conduction
problem of a periodic stratified convective half-space with a moving heat source,
Int. Comm. Heat Mass Transfer, 24, 129-138

. MaTysiAK S.J., UKHANSKA O.N., 1997b, On heat conduction problem in

periodic composites, Int. Comm. Heal Mass Transfer, 24, 827-834

Mazur-Sniapy K., Wozniak C., WIErzBICKI E., 2004, On the modelling
of dynamic problems for plates with a periodic structure, Arch. Appl. Mech.,
74, 179-190

MIcHALAK B., 1998, Stability of elastic slightly wrinkled plates, Acta Mech.,
130, 111-119

MIcHALAK B., 2000, Vibration of plates with initial geometrical imperfections
interacting with a periodic elastic foundation, Arch. Appl. Mech., 70, 508-518

MICHALAK B., WoZNIAK C., WOZNIAK M., 1995, The dynamic modelling of
clastic wavy plates, Arch. Appl. Mech., 66, 103-111

SANCHEZ-PALENCIA E., 1980, Non-homogeneous media and vibration theory,
Lecture Notes in Physics, 127, Springer-Verlag, Berlin

WAGROWSKA M., 1998, On the homogenization of elastic-plastic composites
by the micro-local parameter approach, Acta Mech., 73, 45-65

Wacrowska M., WoZniak C., 1996, On the modelling of dynamic problem
for visco-elastic composites, Int. J. Engng Sei., 35, 923-932

WigerzBickI E., WoZniak C., 2000a, On the dynamic behaviour of honeycomb
based composites solids, Acta Mech., 141, 161-172

WierzBickl E., Wozniak C., 2000b, On the dynamic of combined plane
periodic structures, Arch. Appl. Mech., 70, 387-398

Wierzsickr E., Wozniak C., 2002, Continuum modelling and the internal
instability of certain periodic structures, Arch. Appl. Mech., T2, 451-457

WiERZBICKI E., WoZNIAK C., WOZNIAK M., 1996, The thermal stresses in
elastodynamics of composite materials, Int. J. Engng Sci., 35, 187-196

WiERZBICKI E., WoZNIAK C., WOZNIAK M., 2001a, A macroscopic model for
the heat propagation in the micro-periodic composite solids, J. Therm. Stresses,
25, 69-79



384

48

49,

50.

53.

54.

55.

56.

b. LACINSKI

. WiErzBICKI E., WozZNiaK C., Wo0ZNIAK M., 2001b, On the modelling of
transient micro-motions and ncar-boundary phenomena in a stratified elastic
layer, Int. J. Engng Sci., 39, 1429-1441

WIERZBICKI E., WOZNIAK C., WOZNIAK M., 2002a, A macroscopic model for

the heat propagation in the micro-periodic composite solid, J. Therm. Stresses,
25, 283-293

WIERZBICKI E.; WozZNIAK C., WOZNIAK M., 2002b, A macroscopic model of

the diffusion and heat transfer processes in a periodically micro-stratified layer,
Acta Mech., 157, 175-185

. Woiniak C., 1987, A nonstandard method of modelling of thermo-elastic pe-
riodic composites, Int. J. Engng Sci., 25, 489-498

. Wozniak C., 2002, Macroscopic modelling of multi-periodic composites,
Comptes Rendus de L’Academia des Sciences, Mechanique, 330, 267-272

Wozniak C., WIERrzBICKI E., 2000, Averaging Techniques in Thermomecha-
nics of Composite Solids. Tolerance Averaging versus Homogenization, Czesto-
chowa Technological University Press, Czestochowa, Poland

WozNIAK C., WoZNIAK M., 1994, On the effect of interface micro-cracks on
interactions in stratified media, Int. J. Fracture, 66, 165-172

WOoZNIAK M., 1995, On the dynamic behaviour of micro-damaged stratified
media, Int. J. Fracture, 73, 223-232

WoZNIAK M., WIERZBICKI E., WoZNiAK C., 2004, Macroscopic modelling of
prestressed microperiodic elastic media, Acta Mech., 173, 107-117

Numeryczna weryfikacja dwéch modeli matematycznych przeplywu

ciepla dla kompozytéow warstwowych

Streszezenie

Do rozwigzywania zagadnien przeplywu ciepla w kompozytach o gestej struk-
turze periodycznej stosuje si¢ zazwyczaj pewne usrednione (makroskopowe) modele
matematyczne. Najbardziej znanymi modelami o$rodkéw periodycznych sg modele
asymptotyczne. Alternatywne heurystyczne modele uwzgledniaja wplyw periodyki na
makroskopowe zachowanic osrodka. Celem artykulu jest poréwnanie wspomnianych
modeli i weryfikacja uzyskanych rozwigzan numerycznych dla pewnego zagadnienia
brzegowo-poczatkowego.
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