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This paper presents solutions to the problem of behaviour of thrée-layered
annular plates loaded by compressive stress quickly increasing in time acting
on the inner plate edge. The finite difference method and finite clement me-
thod have been used for solving the problem. An axially-symimetrical form
of loss of dynamic stability of the plate with clamped inner and outer edges
and with a symmetrical transverse structure of layers composed of thin fa-
cings and a thicker foam core has been analysed. Using the finite difference
method, the basic system of differential equations enabling numerical cal-
culation of plate deflections was formulated. In the finite element method
the computational model of an annular sector of the plate fulfilling condi-
tions of the sandwich plate with a soft core has been built. The results of
dynamic numerical calculations have been presented in the form of time hi-
stories of plate maximum deflection and velocity of deflection. Calculation
results of examplary plates differing in thickness and stiffness of the foam
core enable qualitative observations of the critical and supercritical plate
behaviours with the quantitative evaluation of values of critical parameters:
time, deflection and load determined using the criterion presented by Volmir
(1972).
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1. Introduction

Stress-strain analyses of statically or dynamically loaded annular plates ha-
ve been undertaken in numerous works. Among them, works concerning plates
under plane loads and considering static and dynamic stability problems of ho-
mogeneous, elastic or viscoelastic plates could be indicated, see for example
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works by Trombski (1972), Wojciech (1978, 1979), Trombski and Wojciech
(1981), Dumir and Shingal (1985), Tylikowski (1989), Pawlus (2000).

The wide range of various applications of light, strong and stiff sandwich
structures more than once replacing the homogeneous element structure for-
ces one to formulate and solve the deformation problem of sandwich, annular
plates, particularly plates under lateral loads. This subject could be a certa-
in complement in the range of rather rarely considered solutions to annular
plates with laminar structures. Here, the work concerning moderately thick
laminated annular plates subjected to transverse loads presented by Dumir et
al. (2001) could be specified.

In this paper, solutions to a three-layered annular plate loaded on its sur-
face will be presented. The finite difference method and finite element method
are used for solution to the formulated plate problem. Examplary results of
calculations enable observation of the critical and supercritical behaviour of
plates differing in thickness and stiffness of the foam plate core.

2. Problem formulation

A sandwich annular plate under loading acting on its surface is the subject
of consideration. The cross-section structure of the analysed plate is symme-
tric, composed of three layers: two thin steel facings and one foam, soft, thicker
core. The outer loading acts on the edges of plate facings. It is uniformly di-
stributed on plate perimeter.

The loading is linear, quickly increasing, expressed by formula

p=st (2.1)
where
p — compressive stress
s — rate of plate loading growth
t - time.

The scheme of such a plate model is presented in Fig. 1.

The plate subjected to this kind of loading loses its dynamic stability. As
the criterion of loss of plate stability, the criterion presented by Volmir (1972)
was adopted. According to this criterion, the loss of plate stability occurs at the
moment when the speed of the point of maximum deflection reaches the first
maximum value. This accepted criterion of loss of plate stability, concerning
the evaluation of values of dynamic critical loads in the region of significant
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Fig. 1. Scheme of the plate

growth in plate deflections corresponds to the Budiansky-Roth criterion used
in analysis of static and dynamic buckling of laminated shells, presented by
Tanov and Tabiei (1998) and by Tanov (2000).

The analysed computational example of the plate is for the case of an
axially-symmetrical rotational form of the loss stability under compressive
stress acting on the inner perimeter of the plate with clamped edges. Calcu-
lation results of critical static loads of sandwich plates (Pawlus, 2003b) and
critical static and dynamic loads of homogeneous plates (Wojciech, 1978) in-
dicate that the values of critical loads in that case of the axially-symmetrical
plate model are minimal.

3. Problem solution

Two solutions of the dynamic stability problem formulated for an axially
symmetrical plate will be presented in this paper:

¢ a solution leading to an expression of the basic system of differential
equations describing plate deflections with the use of the approximation
finite difference method

e a solution to the calculating model built of finite elements and deter-
mination of time histories of plate deflections using the finite element
method.

3.1. System of differential equations of three-layered plate

The solution for the analysed model of the three-layered plate is based on
the assumption of classical theory of sandwich plate using the broken line hy-
pothesis (Volmir, 1967). The deformation of plate outer layers is described by
nonlinear Karman'’s plate equations. The thicknesses and material parameters
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such as Young’s modulus, Poisson’s ratio and mass density of plate facings
are the same. They are denoted as follows: hy = hy = b/, Ey = E3 = E,
vy = vy = v, p = g = W, respectively. Equal values of preliminary and
additional deflections of each plate layer are assumed. The material of each
layer is represented by linear physical relations of Hooke’s law.

The presented solution required:

formulation of dynamic equilibrium equations for each plate layer

description of core deformation taking into account preliminary deflec-
tion of the plate

description of physical relations of plate layers

determination of relations between sectional forces and moments with
stresses for plate facings

determination of resultant transverse @, (Q, = Q,, + Qr, + Q;,), ra-
dial N, (N, = N,, + N,,), and circumferential Ny (Np = Np, + Np,)
forces, which are expressed by the following formulas, respectively

2D 2D _Ii’

Qr = —2Dw,,,,, — —wd,,, + —5 Wa, + G2(d + H'wg,,)
r r ho
(3.1)
N, = 2h’%¢,,~ No =20 ®,,.,
where

D — flexural rigidity of the outer layer of the plate,
D = ER3/[12(1 - v?)]

E v ~  Young’s modulus and Poisson’s ratio of the facing
material, respectively

r - plate radius

K, hy — facing and core thicknesses, respectively,
(.H"r =h'+ ha, h = 2h' + hg)

wy ~ additional deflection

G —  Kirchhoff’s modulus of the core material

) — difference of radial displacements of middle surfa-
ces of the plate outer layers, which is the resultant
of cross-sectional plate structure deformation, pre-
sented in Fig.2, (§ = uz — )

Qry (s Qrs — transverse forces per unit length of the plate outer
layers and core layer, respectively

N,»I(S),Ng;, @ normal radial and circumferential forces per unit

length of the outer plate layers, respectively
] ~  stresses function
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e determination of initial boundary and loading boundary conditions,
which are respectively presented by the following expressions

wdh:n =0 (wd):t !t=0 =0
w|1"=1“(](1“"‘) - O w)f‘ |1"=1“(](1‘|'} = 0 (3.2)
6'?‘:1“()(1‘{) - 0 6!1" }r:r[;(r,-] = 0
01'|T=Ti = _p(t)dl afITZTtl = _p(t)d’/l
where
o — radial stress
di,dy — quantities, which determine the loading of the inner
or/and outer plate perimeter — their values are equal:

Oor1l

e assumption of the form of predeflection wy according to the formula
presented by Wojciech (1978)

o(p) = €(p" + A1p? + Agp*Inp+ Aglnp + Ay) (3.3)
where
13 - calibrating number
Co,p -~ dimensionless quantities of predeflection and plate radius,
respectively, (o = wo/h, p=71/70
A; -~ quantities fulfilling the conditions of clamped edges,
i=1,2,3,4.

The basic system of differential equations of the plate is as follows

2k k k H™? 1H™?
klwd I --l W, e —;wd‘,,, + —é'wd — Gy—wy I G-z——-wd +
T T T ho r ho (3 1)
1H' H" Qh’
—Gy——0 — G2 (w:r Dy +D, Wy ) — Wy, 44 M
T ho T ’
1 1 Oown 2
TP rr + Py ';@:r +§E(E) =0 (3.5)
/ / /
'i"?'ﬁ_ﬁréwr +1Eh 2511‘ - lEh 2 15 B %GQ& o %:GzH!wd,r +
-V -V bl 2l 2 (36)
K G G WG K G
tyr = 2 By + Wy = B Z2Es+ Wy 7By =0

2 Ty 9y 2 W 2 s
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M = QhI;L + hopto

mass density of the outer layers material and core mate-
rial, respectively

total deflection, w = wy + wy

expressions of the parameter § and geometric parameters

and plate initial and additional deflections

expressions of geometric parameters and plate initial and
additional deflections.

uy

\E

WoI

wy

~Y

Fig. 2. Cross-sectional geometry of the sandwich plate

was presented by Pawlus (2003a).

mensionless quantities and parameters:

Equation (3.4) is a result of the sum of terms of equilibrium equations of
projections in the z-axis direction of forces loading the plate layers. Equation
(3.5) is an equation of inseparability of deformations. Equation (3.6) is an ad-
ditional equation which enables calculation of quantity d existing in equation
(3.4). In formulation of equation (3.6), the difference of terms of equilibrium
equations of projections in the z-directions of forces loading the facings was

A detailed description of the process of solving the analysed plate problem

Equations (3.4)-(3.6) were transformed after introducing the following di-
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— dimensionless plate radius

p=

— dimensionless quantities of absolute, additional and preliminary deflections,
respectively

_w _ Wd _ %
¢ = . C1 > o h (3.7)
— dimensionless time
t* = tK; (3.8)

where K7 = s/per, and pg, is the critical static stress calculated solving the
eigenproblem after neglecting inertial components and initial deflection in equ-
ation (3.4), neglecting nonlinear terms and assuming that the stresses function
& is a solution to the disk state in equation (3.5), see Pawlus (2002a, 2003a).

Replacing the derivatives with respect to p by central finite differences in
the discrete points, a system of equations has been obtained

PU+ Q= KU F.Y =Uw ZD=Vw (3.9)
where

K - parameter (b-length of the interval in the finite difference
method), K = birohoshMK?/(Goh')

U,Y - vectorsof additional deflections and components of the stress
function, respectively

P - matrix with elements composed of geometric and material
plate parameters and the quantity b

Q ~ vector of expressions composed of the initial and additional

deflections, geometric and material parameters, components
of stress function, quantity b and coefficient &

Fe — matrix with elements described by the ratio a; = b/p;

vector of expressions of the initial and additional deflections,

ratio a; and quantity b

Z - matrix of components of plate geometry and plate material
parameters, expressions of the initial and additional deflec-
tions and quantity b

D - vector of the coefficient

Vw - vector of components of plate geometry and plate material
parameters, expressions of the initial and additional deflec-
tions and quantity b.

-
=
|

The system of Eqs (3.9) was solved using Runge-Kutta’s integration me-
thod for the initial state of the plate in solution to the differential equation
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with respect to time (3.9);, calculating ecarlier the stress function elements
of the vector Y from equation (3.9)2 and the coefficient § elements of the
vector D from equation (3.9)3.

3.2. Calculational model in finite element method

Finite element method calculations were carried out for an annular sector
(1/8 part) of the plate formulating proper symmetry conditions.

The selection of grid elements of the plate layers: facings and core was
differentiated to assure suitable participation of the plate layers in carrying
the basic stresses: normal by the facings and shearing by the core. The remarks
presented by Kluesener and Drake (1982) were used. The facings are built of
9-nodes 3D shell elements but the core mesh is built of 27-nodes 3D solid
elements, which are arranged in single or double core layers [1]. Schemes of
the plate annular sector are presented in Fig. 3.

The grids of outer layers elements are tied with the grid of core elements
using the surface contact interaction. The boundary conditions with limitation
on the possibility of radial relative displacements in the plate clamped edges
are imposed on the outer and inner plate edges. The deformation of individual
layers is not limited by a condition of equal deflections of each layer. The
form and values of preliminary deflections of the plate layers correspond to
the values of plates solved using the method presented above.

The calculations were carried out at the Academic Computer Center
CYFRONET-CRACOW (KBN/C3840/CD/034/1996) using the ABAQUS

system version 6.3.

(a b
! shell elements )

shell elements

Fig. 3. A model of MES annular sector of plate with core mesh built of single
layer (a) and double layer (b) solid elements
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4. Examples of numerical calculations

Exemplary numerical calculations were carried out for a plate with the
following geometrical dimensions: inner radius r; = 0.2m, outer radius
ro = 0.5m, facing thickness h’ = 0.001 m, core thickness hy = 0.005m, 0.02m
or 0.06m. A steel with parameters: Young’s modulus £ = 2.1 - 10° MPa,
Poisson’s ratio v = 0.3, mass density p = 7.85 - 103kg/m® is the facing
material. Polyurethane foam is the core material. The accepted material pa-
rameters, Kirchhoff’s modulus and mass density, for two kinds of foams pre-
sented in works by Romanéw (1995) and Majewski and Mackowski (1975)
are equal, respectively: Gy = 5MPa ps = 64kg/m?, Gy = 15.82MPa
pe = 93.6kg/m?; according to the standard specification PN-84/B- 03230
the value of Poisson’s ratio is equal v = 0.3; calculated Young’s modu-
li treating the foam material as isotropic are, respectively: Ey = 13 MPa,
E, = 41.13 MPa.

Rapidly increasing loading acting on the edge is expressed by equation
(2.1). The rate of plate loading growth s is equal in each numerical case of the
analysed plate. The value of the rate s is the result of the following equation:
s = K7per (3.8). The value of the parameter K7 is accepted as K7 = 20.
Solving the eigenproblem, the value of the critical stress is p., = 217.3 MPa
when calculated for the plate with the facing thickness A’ = 0.001m, core
thickness hs = 0.01 m and core Kirchhoff’s modulus G5 = 15.82 MPa.

4.1. Results of calculations using finite difference method

Time histories of maximum plate deflections are results of exemplary plate
calculations. The marked point in the diagram determines the critical time
and critical deflection at the moment of loss of plate stability according to
the accepted criterion. The results in the form of curves (imaez = f(t*) are
presented in Fig.4.

The calculations were carried out for the number N of discrete points in
the finite difference method equal to 14. This value fulfils the accuracy up
to 5% of technical error for the critical time tJ. of the loss of plate dynamic
stability. Table 1 shows exemplary values of the critical time t7, for different
numbers of discrete points: N = 11,14,17,21,26. The geometrical, material
and loading parameters of the analysed plate are described above in Section 4.
The considered plates differ in geometry and material of their cores. They are
characterised by the quantities hg and Gy shown in Fig.4 and given in Table 1
and Table 2.



394 D. PawLus

3.5 = hy=0.005m, G;=5.0MPa

m—j1;=0.02m, G:=5.0MPa
3.0F | o—b,=0.06m, G:=5.0MPa
====h:=0.005m, G:=15.82MPa
cwsmoenss iy = 0,02m,  Go=15.82MPa
2.5k ®  the loss of plate stability

é‘lmax

2.0F
1.5k
1.0F

0.5k

0

0.5 1.0 1.5 2.0 2.5 3.0

Fig. 4. Time histories of plates with different values of the core thickness hs and
Kirchhoff’s modulus G2

Table 1. Values of the critical time ¢, for different numbers N

ter
N | Parameters of the plate core
hy [m]/G3 [MPa]

0.02/15.82 0.06/5.0
11 1.525 1.393
14 1.595 1.469
17 1.615 1.481
21 1.621 1.479
26 1.627 1.473

Table 2. Values of the critical time t.., deflection wg. and dynamic
loading perdyn for analysed plate examples

Parameters of the plate core tor 5] Weer Derdyn
ho [m]/G2 [MPa] e b [m] [MPa]
0.005/5.0 0.023 | 3.92-107° | 99.97

0.02/5.0 0.037 | 3.77-1073 | 160.82

0.06/5.0 0.074 | 5.21-107° | 321.65
0.005/15.82 0.038 | 3.87-107° | 165.17
0.02/15.82 0.08 |4.25-107° | 347.73
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Values of the critical time #.. and critical additional deflection wgy., de-
termined by making use of equations (3.7) and (3.8) and the critical dynamic

loading expressed by the following formula: perdyn = st. are presented in
Table 2.

4.2. Results of calculations using finite element method

The calculations results are presented in Fig. 5- Fig. 9 in the form of follo-
wing curves:

e time history of the plate maximum deflection,

e time history of plate velocity of deflection with a magnified area of time
histories of the plate deflection and velocity of deflection in the critical
region of plate operation for hy = 0.005m and G9 = 5 MPa.

These detailed diagrams enable one to readout the critical values: time tg,
and deflection wger.

@ (®)
<103
—15.0 T " T
= 1.0
E 23] i Y = 1
E 10.0 : 0.5 A
g 75 /\ =
V] o
g 5.0 3 0
a | > U J U
7 25 1
A 0*/ , -0.5L. LS
0.02 0.04 0.06 0.08 0 0.02 0.04 0.06 0.08
Time [s] Time [s)
Fople
- b, —1.0 ~
) 5.5 / E
E 5.0F / :013_ A
= 4.0 T 0
& 3 5| // >
2 30/ 103 .05 107
18 20 22 0 20 40
Time [s] Time [s]

Fig. 5. Time history of deflection (a) and deflection velocity (b) for he = 0.005m
and G2 = 5.0MPa
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Fig. 6. Time history of deflection (a) and deflection velocity (b) for hy = 0.02m and

G2 = 5.0MPa
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Fig. 7. Time history of deflection (a) and deflection velocity (b) for hy = 0.06 m and
Gz = 5.0 MPa
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Fig. 8. Time history of deflection (a) and deflection velocity (b) for hy = 0.005m
and G = 15.82MPa
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Fig. 9. Time history of deflection (a) and deflection velocity (b) for h; = 0.02m and
G2 = 15.82MPa

Table 3 presents detailed results of the critical time ¢, and deflection wg;.

Table 3. Values of the critical time t.. and critical deflection wy,., for the
analysed examples of plates

Parameters of the plate core tor Is] Weler
hy [m]/G2 [MPa] . [m]
0.005/5.0 0.02 | 4.38-107°
0.02/5.0 0.034 | 3.56-107°
0.06/5.0 0.069 | 4.8-1073°
0.005/15.82 0.031 | 4.31-107°
0.02/15.82 0.075 | 3.88-1077

Examplary forms of axially symmetrical deformations of the plate with
core thickness hy = 0.005m and he = 0.06 m are shown in Fig. 10.

(b)
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The critical time and deflections for plates with the core mesh built of two
solid element layers (Fig.3b) do not differ essentially for most of the results.
They are presented in Table 4. The major difference is only observed for the
critical time and deflection of the plate with a thick core (hy = 0.06 m). These
values are about 5% and 10% less than the critical time and deflection obtained
for the plate with the single element layer of the core mesh.

Table 4. Values of the critical time t.. and deflection wy,., for plates with
double element layers of the core mesh

Parameters of the plate core ter ] Wer
hy [m]/Go [MPa] er [m]
0.005/5.0 0.02 |4.38-1073
0.02/5.0 0.034 | 3.57-107°
0.06/5.0 0.067 | 4.42-107°
0.005/15.82 0.031 | 4.31-10°
0.02/15.82 0.075 | 3.9-1072

Exemplary time histories of deflection and velocity of deflection of the plate
with the core mesh built of the double element layers are shown in Fig. 11. The
core thickness is hg = 0.005 m and Kirchhoff’s modulus of the core material
is Gy = 5MPa.

(a) )
<1073
E 12.5 3 B Rianan
= 10.0 E.O.S
g /]
g 75 = ) )
8 3 0.
0 S ATATAN
73 0
w 2.5 =
5 NI
07"0.02"0.04 0.06 A BT 5
Time {s] Time [s]

Fig. 11. Time history of deflection (a) and deflection velocity (b) for the plate with
the double element layers of the core mesh

Calculations made with the help of the Finite Element Method enable eva-
luation of distribution of maximum stresses in plate layers. Examplary distri-
bution of von Mises equivalent stresses in the plate facing and core shearing
stresses in the zz plane (Fig.1), calculated at the centroid of the element,
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are presented in Fig.12 and Fig. 13, respectively. The obtained results are
for a plate with core thickness hg = 0.005m and core Kirchhoff’s modulus
G = 5.0MPa.

Fig. 12. Distribution of von Mises equivalent stresses in the facing

s 1{15‘-”5"!%*4&
VRN R “ AL Q00 N
IR

\4

Fig. 13. Distribution of core shearing stresses in the xz plane

5. Results discussion

The obtained results concerning plates of different core thicknesses and
core materials for both calculation methods indicate the increase in the critical
time t.. up to the loss of plate dynamic stability and obvious increase in the
critical dynamic loading perdyn with the increase in both core thickness and
Kirchhoff’s modulus of the core material.
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In the supercritical region of plate loading, an increase in the core stiffness
entails decay of vibrations initiated by the increasing loading.

The values of critical maximum deflections wg. are in the range from
0.0033 m to 0.0052 m. The critical time ¢, calculated by both methods are
comparable. The percentage relative differences in the critical time ¢.. and
connected with them values of the critical, dynamic loading are in a range
10% lower for plates with a thicker core (hy = 0.06 m) and higher for plates
with a thinner core (hz = 0.005m).

The modification of the finite element model of the plate from the single
layer of core elements to double layers does not influence on calculation results,
indeed. For plates with thinner (hg = 0.005m) and medium (ke = 0.02m)
cores the values of critical times are identical and the maximum plate deflection
differs insignificantly. Plates with a thick core (hgz = 0.06 m) lose their dynamic
stability slightly earlier; the value of the critical maximum deflection is lower.
The compatibility of obtained results could confirm the correctness of the
calculation model structure in Finite Element Method.

In stress state analysis, the calculation results could complete the analysis
of plates solved a finite difference method. Using equation (2.1) and the critical
time t., the dynamic loads were calculated (presented in Table 2), which
determine the radial membrane stresses of the inner plate edge. The values of
membrane stresses are in the range from 100 MPa for thin and soft plate cores
(hg = 0.005m, G = 5MPa) to a rather significant value of 350 MPa for a
plate with thicker and stiffer cores (he = 0.02m, G = 15.82 MPa).

A complete stress state analysis with von Mises equivalent stresses in the
plate facing and core shearing stresses in the zz plane (Fig. 1) determined at
the moment of loss of dynamic stability is presented by results obtained by
means of the finite element method. They are shown for an exemplary plate
in Fig.12 and Fig. 13. The values of critical von Mises stresses in the outer
layer are in the range of 600 MPa in the area of the loading plate edge. In the
buckling area of plate deformation, the stress is about 170 MPa. The critical
maximum core shearing stress is rather significant, too. Its value is about
0.39 MPa.

6. Conclusions

Presented in this paper results of calculations carried out for a three-layered
annular plate with a soft elastic core enable evaluation of the critical and su-
percritical behaviour of the plate subjected to a linear rapidly growing lateral
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loading. In terms of qualitative and quantitative analysis, the results obtained
as solutions to presented computational models of plates are comparable. Cer-
tain participation of normal stresses carried by the core and no connection
with the condition of equal deflections between the plate layers in the model
built in the finite elements method are the basic differences between the consi-
dered calculations. It seems, however, that the mentioned differences in model
structures do not essentially influence on the final results. Therefore, the in-
dicated calculation methods could complement each other in the analysis of
the considered dynamic stability problem of a sandwich plate with an elastic
core. The obtained examplary results enable one to know the plate behaviour
and evaluate important values of critical parameters.

The presented analysis refers to examples of plates with elastic cores. At
this stage of analysis, rheological properties of the polyurethane foam core
material has not been taken into consideration. Therefore, the obtained results
concern solutions to the cases of plates subjected to instantaneous loadings.
The observed in preliminary analysis influence of rheological properties of
the core material on time histories of plate deflections appears for a loading
increasing in an adequately long time with considerably lower speed than it is
assumed in the present work. The solution to the problem including rheological
properties of the core material could be a subject of future analysis, initially
indicated by Pawlus (2002b, 2003c).
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Streszczenie

W pracy przedstawione zostaly rozwiazania wykorzystujace metode réznic skon-
czonych oraz metode elementéw skoficzonych trojwarstwowych plyt pierscieniowych
obciazonych szybko narastajacym w czasie ci$nieniem dzialajacym na wewnetrzny
brzeg plyty. Rozwiazania plyt wraz z przykladowymi wynikami obliczen przedstawio-
no dla przypadku osiowosymetrycznej postaci utraty statecznosci plyty dwustronnie
utwierdzonej przesuwnie o symetrycznym ukladzie warstw poprzecznych: zewnetrz-
nych cienkich okladzinach i piankowym, migkkim, grubszym rdzeniu. Wykorzystujac
metode réznic skonczonych wyprowadzono podstawowy uklad réwnan rézniczkowych
analizowane] plyty umozliwiajacy wyznaczanie jej postepujacych ugie¢ w czasie ob-
ciazania. W metodzie elementéow skonczonych zbudowano model obliczeniowy pier-
Scieniowego wycinka plyty zapewniajacy warunki pracy plyty tréjwarstwowej z rdze-
niem migkkim. Wyniki obliczenn dynamicznych przedstawiono w postaci charaktery-
styk maksymalnych ugiec i ich predkosci. Wyniki obliczen przykladowych plyt réz-
niacych si¢ gruboscia i sztywnoscia piankowego rdzenia umozliwiaja obserwacje kry-
tycznych i pokrytycznych zachowan plyt wraz z iloSciowa oceng wartosci parametrow
krytycznych: czasu, ugigcia i obciazenia dynamicznego wyznaczonych wykorzystujac
kryterium podane w pracy Volmira (1972).
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