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In the paper, the problem of active stabilisation of a rotating shaft made of a
three-phase Functionally Graded Material (FGM) with piezoelectric fraction
is presented. Due to internal friction, at a certain critical rotation speed, the
shaft loses its stability and starts to vibrate in a self-excited manner. In
the paper, a method protecting the system from such a phenomenon by
making use of a FGM controlled by electrodes bonded and embedded in the
structure of the shaft is discussed in detail. The critical threshold is found
by examination of the eigenvalues corresponding to linear formulas derived
via uni-modal Galerkin’s discretisation of partial differential equations of
motion. The main goal of the paper is determination of such a distribution
of the volume fraction of the active phase within the shaft, which makes
the system possibly most resistant to self-excitation on the one hand, and
still attractive in terms of strength properties on the other. The results are
presented in the form of diagrams depicting the critical rotation speed vs.
exponents describing volume distribution of the active phase as well as gain
factors applied in the control system.
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1. Introduction

Rotating shafts, even when perfectly balanced, exhibit self-excited vibra-
tion brought about by internal dissipation due to damping in the material,
structural friction in articulated joints, supports, etc. The instability occurs
due to exceeding the critical rotation speed (over the first eigenfrequency corre-
sponding to flexural vibration of the given shaft as a beam), and is manifested
by sudden growth in the amplitude of transverse vibration for a slight change
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of the rotation speed. It is to be emphasised that the mentioned critical speed
is definitely different from that classically understood and being related to the
resonance of rotors undergoing excitation by unbalanced inertia, see Kurnik
(1992).

The last several years have been characterized by animated interest of
scientific researchers and engineers in the so-called smart materials and struc-
tures which, in contradistinction to the classical ones, can adapt their proper-
ties to varying operating conditions according to the given algorithm. Smart
systems combine mechanical properties with non-mechanical ones, most often
with electric, magnetic, thermal, or sometimes, optical fields of interaction.
The most popular smart structures employ elements controllable by easy-to-
transduce electric signals. Predominantly, piezoelectric elements made of lead
zirconate titanate (PZT) or polyvinylidene fluoride (PVDF) are applied.

Despite good electromechanical properties of piezoelectric ceramics, the
surface-bonded actuators are brittle, heavy, non-flexible and non-conformable
elements. Their alternatives, PVDF copolymers are, admittedly, flexible and
conformable to any shape but they exhibit high electrical losses, are difficult
to pole and their properties are sensitive to temperature variation. Instead of
looking for an entirely new class of piezoelectric materials without the above-
mentioned drawbacks, a concept of piezoelectric composites came into being
(Newnham et al., 1980). First patterns of diphasic materials and several dif-
ferent piezocomposites were fabricated at the Pennsylvania State University.
Properties of ceramic/polymer composites can be tailored by changing con-
nectivity of the phases, volume fraction of the active component and spatial
distribution of the ceramic phase. Piezocomposites exhibit excellent electro-
mechanical properties and limit the detrimental characteristics of monoliths
at the same time. In literature, one can come across various techniques used to
form a variety of novel piezoceramic/polymer composites. Among them, the
Solid Freeform Fabrication (SFF) containing Fused Deposition of Ceramics
(FDC) and Sanders Prototype (SP) are most popular. The FDC or the lost
mould endows piezocomposites with particularly good electromechanical pro-
perties. That way, Volume Fraction Gradients (VGFs), staggered rods, radial
tubes, curved transducers and many other composite structures are fabricated
(Safari, 1999).

The concept of piezoelectric stabilization of rotating shafts was described
by Przybyłowicz (2002a), who investigated the efficiency of using piezoelectric
actuators glued around the perimeter of the shaft. Recent developments in
the field of smart structures and the coming of active composites into being
have opened new possibilities to the control of rotating shafts. Composite ro-
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tors, due to low specific weight, anisotropic properties and excellent torsional
stiffness became competitive materials as compared to their traditional steel
counterparts. The application of active piezoelectric fibers made them compe-
titive even more. Efficient use of PFCs in rotating structures was confirmed
by Kurnik and Przybyłowicz (2003).

The latest advances in material science have led to the emergence of a new
class of smart materials, called functionally graded materials (FGMs). Their
main feature, i.e. spatial variation of the microstructure endows such structu-
res with optimal mechanical, electrical and thermal properties. In particular,
FGMs are an answer to the electro- elastic mismatch between a passive host
structure and piezoelectric actuator attached to its surface (Tylikowski, 2001).
It is achieved through continuous gradation of volume fraction of constituent
phases. FGMs are superior to the conventional smart materials because of lack
of internal stress concentrations and interfacial debonding, which makes them
have improved lifetime and reliability with respect to traditional structures,
Liew et al. (2003).

This paper is concerned with active flutter suppression of a rotating shaft,
i.e. stabilization and reduction of transverse vibration by making use of an
active, functionally graded material containing three phases: two structural
phases (traditional passive materials - carrying layer of aluminium and insu-
lating layer of a polymer) and an active one (piezoceramic). The three consti-
tuents are a mixture of continuously varying volume fraction, see Fig. 1. The
active phase is able to produce mechanical stress and strain under an electric
field, which stabilizes operation of the rotating shaft if properly controlled.
It occurs that the application of only three actuating electrodes around the
shaft circumference is enough to generate a constant counter-bending moment
despite rotary motion of the entire structure, see Przybylowicz (2002b). Such
a moment opposes the internal interactions in the shaft that lead directly to
self-excitation while exceeding the critical angular velocity.

A quite detailed discussion on rotating shafts was given by Librescu et al.
(2005) who studied spinning thin-walled beams made of FGMs. They thoro-
ughly examined the influence of a temperature field as well as an axial force on
stability and evolution of the first natural frequency of circular cylindrical sha-
fts. Their systems remained passive, however. In this work, the author’s effort
is focused on ”active” aspects of such systems if manufactured with ”smart”
components integrally immersed in the entire FGM structure.

In the paper, the effect of radial distribution of components constituting
the internal structure of a rotating shaft on the critical rotation speed is in-
vestigated. The shaft consists of three components, among which one of them
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(the inner surface) comprises active piezoceramic (PZT) fraction. The stabi-
lity is examined in terms of eigenvalues corresponding to equations of motion
linearized around the trivial equilibrium position. The governing equations
include terms describing internal friction in the shaft material as well as the
control strategy based on the velocity feedback. Results of numerical simu-
lations on the formulated model indicate considerable growth of the rotation
speed at which the structure loses its stability.

Fig. 1. A shaft made of a three-phase functionally graded material

2. Properties of the three-phase FGM structure

Consider a slender shaft rotating with a constant angular velocity ω aro-
und the vertical axis. The shaft is entirely made of a three-phase functionally
graded material being a composition of an active constituent, which is a pie-
zoceramic PZT, and two passive ones metallic (carrying) and polymeric (in-
sulating). These components are mixed through the shaft thickness and their
fraction in a certain point along the radius varies exponentially according to
the following rules

ξ1pol =
( r − r1
r2 − r1

)n
ξ2pol =

( r3 − r
r3 − r2

)n
(2.1)

where n is the assumed exponent of the applied distribution, ξ1pol denotes
volume fraction of the polymeric constituent within the inner part of the shaft
cross-section, i.e. between pure piezoceramic and pure polymer: r ∈ (r1, r2),
see also Fig. 1. Obviously, ξ2pol is the volume fraction in the outer part, between
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the polymer and aluminium: r ∈ (r2, r3). Accordingly, the effective Young’s
modulus, effective coefficient of internal friction (the damping described by the
Kelvin-Voigt rheological model) as well as effective constant of electromecha-
nical coupling in the piezoceramic-polymer phase are given by the following
formulas and corresponding figures (Fig. 2 and Fig. 3)

Yef =





YPZT(1− ξ1pol) + Ypolξ1pol for r1 < r < r2

YAl(1− ξ2pol) + Ypolξ2pol for r2 < r < r3
(2.2)

Fig. 2. Effective Young’s modulus vs. radial coordinate of the shaft and some
selected exponents n describing the function type of volume fraction

βef =




βPZT(1− ξ1pol) + βpolξ1pol for r1 < r < r2

βAl(1− ξ2pol) + βpolξ2pol for r2 < r < r3
(2.3)

Fig. 3. Effective internal damping
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def31 =

{
d31(1− ξ1pol) for r1 < r < r2

0 for r2 < r < r3
(2.4)

Fig. 4. Effective electromechanical coupling

3. Equations of motion of the shaft

In this Section, equations of motion of a rotating shaft made of a Func-
tionally Graded Material exhibiting some features describing internal friction
within the material will be derived. Assuming Kirchhoff’s simplification and
the fact that the deflection of the geometric axis remains plane, consider now
the balance of internal forces and moments shown in Fig. 5 in order to find
equations of dynamic equilibrium in both transverse directions (y and z) of
the analysed shaft.

These equations are

ρA
∂2y

∂t2
= −∂Ty
∂x

ρA
∂2z

∂t2
= −∂Tz
∂x

(3.1)

provided that the shaft is treated as a beam undergoing pure bending. In
(3.1) ρ denotes the mass density of the FGM structure averaged over the
cross-section area A, furthermore: y, z are transverse coordinates and Ty, Tz
– components of the shear force. By balancing the moments, one concludes

[
Ty
Tz

]
=
∂

∂x

[
Mz
My

]
(3.2)
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Fig. 5. Bending moments and transverse forces acting on an infinitesimal element of
the shaft

Naturally, the bending moments are normal stresses multiplied by respective
coordinates and integrated over the entire cross-section of the shaft

Mz =

∫

A

σy dA My =

∫

A

σz dA (3.3)

The stress itself obeys Hooke’s law, here completed with terms describing the
presence of internal damping expressed by the Kelvin-Voigt rheological model

σ = Yef
(
1 + βef

∂

∂t

)
(κyy + κzz) =

(3.4)

= Yef (κyy + κzz) + Yefβef (κ̇yy + κy ẏ + κ̇zz + κz ż)

where κy and κz are curvatures in the xy and xz plane, respectively. Knowing
that components of circumferential velocity of a given point in the cross-section
of the shaft v = ω × r, i.e.



ẋ
ẏ
ż


 =

∣∣∣∣∣∣∣

i j k

ω 0 0
x y z

∣∣∣∣∣∣∣
⇒ ẏ = −ωz and ż = ωy (3.5)

Substituting the above formulas into integrals (3.3), one obtains

Mz = κy

∫

A

Yefy
2 dA+ (κ̇y + ωκz)

∫

A

βefYefy
2 dA

(3.6)

My = κz

∫

A

Yefz
2 dA+ (κ̇z − ωκy)

∫

A

βefYefz
2 dA
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Denote, for convenience, the purely elastic stiffness of the FGM structure
by ∆ and the term corresponding to viscous effects by B

∆ =

∫

A

Yefy
2 dA =

∫

A

Yefz
2 dA

(3.7)

B =

∫

A

βefYefy
2 dA =

∫

A

βefYefz
2 dA

The integration range includes both zones filled with piezoceramic-polymer
and polymer-aluminium phases. Thus, the integrals in (3.7) desintegrate into
two components each

∆ =
( r2∫

r1

Yef1(r)r
3 dr +

r3∫

r2

Yef2(r)r
3 dr
) 2π∫

0

sin2 ϕ dϕ

(3.8)

B =
( r2∫

r1

Yef1(r)βef1(r)r
3 dr +

r3∫

r2

Yef2(r)βef2(r)r
3 dr
) 2π∫

0

sin2 ϕ dϕ

Knowing that the curvatures κy and κz are (in the linear approximation)
second derivatives of the transverse displacement of the shaft: κy = ∂

2y/∂x2,
κz = ∂

2z/∂x2, substituting (3.6) and (3.8) into the equilibrium equations, one
arrives at the following equations of motion

ρA
∂2y

∂t2
+∆
∂4y

∂x4
+B
( ∂5y
∂x4∂t

+ ω
∂4z

∂x4

)
= 0

(3.9)

ρA
∂2z

∂t2
+∆
∂4z

∂x4
+B
( ∂5z
∂x4∂t

− ω∂
4y

∂x4

)
= 0

or in a dimensionless form

∂2ỹ

∂t̃2
+
∂4ỹ

∂x̃4
+ Γ
( ∂5ỹ
∂x̃4∂t̃

+Ω
∂4z̃

∂x̃4

)
= 0

(3.10)

∂2z̃

∂t̃2
+
∂4z̃

∂x̃4
+ Γ
( ∂5z̃
∂x̃4∂t̃

−Ω∂
4ỹ

∂x̃4

)
= 0

where

x̃ =
x

l
ỹ =
y

l
z̃ =
z

l
t̃ =
t

kt

Ω = ωkt kt = l
2

√
ρA

∆
Γ =

B

l2
√
∆ρA

(3.11)
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These are, of course, governing equations of the passive FGM system (control
disabled) since it lacks the terms describing the performance of actuators. It
will be done in forthcoming examinations.

4. Sensor considerations

Consider, in general, a single PVDF ring-shaped thin layer having the
anisotropy axes oriented as shown in Fig. 6.

Fig. 6. Sensor layer attached to a shell-like structure

The piezoelectric effect is described by the following constitutive equation
(in principal anisotropy axes)

Di = dijσj + εijEj (4.1)

where Di is the dielectric displacement, dij – coefficients of the electromecha-
nical coupling, σj – mechanical stress, εij – dielectric permittivity coefficients,
Ej – electric field vector. Assuming the pure direct mechanical-to-electrical
conversion effect (excluding presence of any additional electric fields, the so-
called eigenfields, see Vasques and Rodrigues, 2005): E = 0 one writes down

Di = dijσj (4.2)

In a more explicit form the shape of the electromechanical coupling matrix
can be observed. The lack of natural shear coefficients is worth mentioning



D1
D2
D3


 =



0 0 0 0 0 0
0 0 0 0 0 0
d31 d32 d33 0 0 0







σ1
σ2
σ3
σ4
σ5
σ6




(4.3)
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For a thin layer (in-plane stress-strain state: σ3, σ4, σ5 = 0)



D1
D2
D3


 =



0 0 0
0 0 0
d31 d32 0






σ1
σ2
σ3


 D = dσ (4.4)

Transform now the co-ordinate system (1, 2, 3) into (x, y, z) by rotation aro-
und the third axis 3 ≡ z by θ

D = dσ σ = [σx, σy, τxy]
> (4.5)

where the overbars are relative to the rotated co-ordinate system:

d = TdT
−1

(4.6)

where T is the transformation matrix

T =




cos2 θ sin2 θ sin 2θ
sin2 θ cos2 θ − sin 2θ
−1
2
sin 2θ

1

2
sin 2θ cos 2θ




Moreover

σ = Qε⇒ D = dQε ε =
[
εx, εy,

1

2
γxy
]>

(4.7)

where Q = TQT−1, which entails D = TdT−1TQT−1ε = TdQT−1ε. Since
PVDFs are poled in the 3-rd direction, the electrodes must be attached to
the normal surfaces. Therefore, the dielectric displacement (and the resulting
charge) is of the greatest interest

D3 = D3 = Dz = {TdQT−1}3ε = [∆1,∆2,∆3] ·
[
εx, εy ,

1

2
γxy
]>

(4.8)

A single PVDF sensor patch is glued to the surface of each structure shown
in Fig. 7.

The structure can be subject to a combination of the following vibration
modes: transverse vibration due to radial motion (pure swelling in the radial
direction), transverse vibration due to bending, and torsional vibration (twi-
sting). Find now, how effective can be the PVDF sensor in measuring each of
the indicated vibration types.
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Fig. 7. Polarisation of a PVDF film

Let the sensor be a small rectangular patch bonded to the host structure
as shown in Fig. 8. This time (pure bending) the strain vector assumes the
form: ε = [εx, 0, 0], and the dielectric displacement in the 3-rd (z) axis is

D3 = [∆1,∆2,∆3]



εx
0
0


 = ∆1εx (4.9)

Fig. 8. Model of the sensors for measuring bending modes

The electric charge and the resulting voltage on the ith sensor patch will be

q3i =

∫

A

D3 dAi = ∆1r
2

xs+
ls
2∫

xs−
ls
2

κ(x) dx

ϕi+
χ

2∫

ϕi−
χ

2

sinϕ dϕ

(4.10)

USi =
q3i
C
=
∆1hsr

εsχls

xs+
ls
2∫

xs−
ls
2

κ(x) dx
[
cos
(
ϕi −

χ

2

)
− cos

(
ϕi +

χ

2

)]
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where κ denotes the curvature: κ = ∂2w/∂x2, the substitution of which entails

USi =
∆1hsr

εsχls

[∂w
(
xs +

ls
2

)

∂x
−
∂w
(
xs − ls2

)

∂x

]
2 sinϕi sin

χ

2
(4.11)

As it can be seen, the produced voltage is directly proportional to the difference
between the slopes at the beginning and ending points of the sensor patch.
For very small sensor elements (both in the radial and longitudinal directions),
equation (4.11) can be rewritten as follows

USi = lim
ls→0

χ→0

US(ls, χ) =
∆1hsr

εs

∂2w(xs)

∂x2
sinϕi (4.12)

Again, the term ∆1 strongly depends on the geometric configuration of the
attached sensor. This dependence is shown in Fig. 9.

Fig. 9. Efficiency of voltage generation for bending vibration modes vs. orientation
of the PVDF sensing patch

As it can be seen, the most favourable geometric orientation of the PVDF
sensing patches is for θ = 0◦. Then

USi =
∆1(0

◦)hsr

εs

∂2w(xs)

∂x2
sinϕi (4.13)

or briefly

USi = γS
∂2w(xs)

∂x2
sinϕi (4.14)

5. Control of the rotating FGM structure

Consider now the problem of control of transverse vibration of a rotating
shaft made of a Functionally Graded Material comprising an active piezoce-
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ramic (PZT) fraction. Let us analyse a single electrode covering a part of the
shaft circumference as shown in Fig. 10.

Fig. 10. Electrode patch controlling a sector of piezoceramic structure

According to the converse law of piezoelectricity (Nye, 1985), the stress
generated within a piezoelectric gradient structure is

σ = Yef (ε− def31E3) (5.1)

where Yef denotes the effective Young’s modulus, ε – strain, d
ef
31 – effective

electromechanical coupling constant, E3 – applied electric field. Integrating
the terms of stress purely related to def31 one can write down (see also Fig. 5)

MAi = −
∫

A

PS · Yefdef31E3i dA (5.2)

It is a bending moment produced by the ith electrode, contributing to the
entire moment controlling the shaft. Putting it down more explicitly, one finds:

MAi = −E3i
r2∫

r1

Yef1(r)d
ef
31(r)r

2 dr

ϕi+
α
2∫

ϕi−
α
2

sinϕ dϕ = −E3iΞ sinϕi (5.3)

where the introduced constant is

Ξ = 2 sin
α

2

r2∫

r1

Yef1(r)d
ef
31(r)r

2 dr (5.4)

and the electric field results from the applied voltage and the distance between
the electrodes, see Fig. 1

E3i =
UAi
r2 − r1

(5.5)
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It is here assumed that the electric field is constant through the shaft thick-
ness, which is only a simplification of real electrical conditions. Admittedly,
the electric field intensity does not behave as a constant quantity since the
dielectric permittivity varies with radius due to the gradual change of contac-
ting component (having, naturally, different values of εi), see Tylikowski and
Przybyłowicz (2004).

Obviously, the voltage itself follows the incorporated control law, which is
here based on a differential regulator. Hence

UAi = kd
dUSi
dt

(5.6)

where kd is the gain factor. Substituting the equation describing the voltage
generated in the ith single sensor supplying signals to the ith electrode via the
control unit, see Eqs (4.13) and (4.14), one obtains

E3i =
kd
r2 − r1

d

dt

(
γS
∂w(xS)

∂x2
sinϕi

)
=

(5.7)

=
kd
r2 − r1

γS
(∂ẇ(xS)
∂x2

sinϕi + ω
∂w(xS)

∂x2
cosϕi

)

And the ith bending moment

MAi =
kd
r2 − r1

γSΞ
(∂ẇ(xS)
∂x2

sin2 ϕi + ω
∂w(xS)

∂x2
sinϕi cosϕi

)
(5.8)

Decomposing the thus determined moment into two directions y and z, one
reads




M zAi

MyAi



 = γd(n)









∂3y(xS)

∂x2∂t

∂3z(xS)

∂x2∂t


 sin

2 ϕi +
ω

2




∂2y(xS)

∂x2

∂2z(xS)

∂x2


 sin 2ϕi





(5.9)

where γd stands for the general coefficient shortly expressing the multiplier
kdγSΞ/(r2 − r1). It is here underlined that this factor depends on the applied
function of volume distribution of the active piezoceramic fraction in the FGM
structure, described by the exponent n: γd = γd(n).

The resultant controlling moment will be

M
(z,y)
A =

N∑

i=1

M
(z,y)
Ai (5.10)
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where N is the number of electrodes placed around the shaft perimeter. No-
te, that the angular distance between the jth and (j + 1)th electrode is
ϕj+1 − ϕj = 2π/n. Denoting the position of the first pair of electrodes by
ϕ1 = ϕ, one finds locations of the subsequent electrodes

ϕk = ϕ+
2πk

N
(5.11)

Now analyse the sums involving expressions of the angular position ϕj in
(5.10). According to (5.9), there are two such sums

N∑

k=1

sin2 ϕk =
N∑

k=1

sin2
(
ϕk + k

2π

N

)
=






sin2 ϕ for N = 1

2 sin2 ϕ for N = 2

N

2
for N ­ 3

(5.12)

N∑

k=1

sinϕk cosϕk =
1

2

N∑

k=1

sin 2
(
ϕj + k

2π

N

)
=






1

2
sin 2ϕ for N = 1

sin 2ϕ for N = 2

0 for N ­ 3

It is clearly seen that application of 3 or more electrode patches ensures gene-
ration of a constant bending moment (non-oscillating), which is a very desired
and advantageous effect making the control of the rotating structure quite
convenient.
Finally, the vector of actuating moment assumes the form

MA = γd(n)
N

2




∂3y(xS)

∂x2∂t

∂3z(xS)

∂x2∂t


 {H(x) −H(x− l)} (5.13)

The presence of Heaviside’s step functions H(·) results from the fact that the
electrodes may not necessarily cover the entire length of the shaft, but only a
part of it, e.g. between x = x1 and x = x2. Here it is assumed that x1 = 0
and x2 = l. The second derivative of MA present in the equations of motion
becomes

∂2MA
∂x2

= cd(n)




∂3y(xS)

∂x2∂t

∂3z(xS)

∂x2∂t



{∂δ(x)
∂x
− ∂δ(x− l)

∂x

}
(5.14)

where cd = γdN/2 and δ(·) is the Dirac Delta function.
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6. Stability investigations

Having derived the resultant bending moment generated within the active
piezoelectric fraction, see (5.14), one substitutes it into equations of motion
(3.10), which leads to (in a dimensionless form)

∂2ỹ

∂t̃2
+
∂4ỹ

∂x̃4
+ Γ
( ∂5ỹ
∂x̃4∂t̃

+Ω
∂4z̃

∂x̃4

)
− c̃d(n)

∂3ỹ(x̃S)

∂x̃2∂t̃

(∂δ(x̃)
∂x̃
− ∂δ(x̃ − 1)

∂x̃

)
= 0

(6.1)

∂2z̃

∂t̃2
+
∂4z̃

∂x̃4
+ Γ
( ∂5z̃
∂x̃4∂t̃

−Ω∂
4ỹ

∂x̃4

)
− c̃d(n)

∂3z̃(x̃S)

∂x̃2∂t̃

(∂δ(x̃)
∂x̃
− ∂δ(x̃ − 1)

∂x̃

)
= 0

In order to examine dynamic stability of the analysed system, equations of
motion (6.1) will be transformed into a set of ordinary differential equations
by making use of a unimodal Galerkin’s discretisation based on the first eigen-
form corresponding to a simply supported beam. Let (6.1) be represented in
the form of differential operators =i[ỹ(x̃, t̃), z̃(x̃, t̃)], i = 1, 2. Let the solution
to (6.1) be predicted as ỹ(x̃, t̃) = T1(t̃)F (x̃) and z̃(x̃, t̃) = T2(t̃)F (x̃) where
F (x̃) = sin(x̃) and T1(t̃), T2(t̃) are arbitrary time functions. The Galerkin
discretisation implies

1∫

0

=i
{
ỹ[(F (x̃)T1(t̃)], z̃[(F (x̃)T2(t̃)]

}
F (x̃) dx̃ = 0 i = 1, 2 (6.2)

which leads to a set of two second-order ordinary differential equations with
respect to T1 and T2

T̈1

1∫

0

F 2 dx̃+ [T1 + Γ (Ṫ1 +ΩT2)]

1∫

0

FF IV dx̃+

−c̃dṪ1
1∫

0

F II(x̃S)[δ
I (x̃)− δI(x̃− 1)]F dx̃ = 0

(6.3)

T̈2

1∫

0

F 2 dx̃+ [T2 + Γ (Ṫ2 −ΩT1)]
1∫

0

FF IV dx̃+

−c̃dṪ2
1∫

0

F II(x̃S)[δ
I (x̃)− δI(x̃− 1)]F dx̃ = 0
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Taking into account fundamental properties of the eigenfunction F (x̃), i.e.
knowing that

1∫

0

F 2(x̃) dx̃ =
1

2

1∫

0

F (x̃)F IV (x̃) dx =
π4

2
(6.4)

and making use of the fact that for any function f(x) the following holds

1∫

0

f(x)
dδ(x − xS)
dx

dx = −df(xS)
dx

if 0 < xS < 1 (6.5)

one arrives at the final form of the discretised equations of motion

T̈1 + π
4[T1 + Γ (Ṫ1 +ΩT2)− cdṪ1] = 0

(6.6)

T̈2 + π
4[T2 + Γ (Ṫ2 −ΩT1)− cdṪ2] = 0

where the tilde over gain cd has been omitted for convenience. Transforming
(6.6) into four differential equations of the first order by substituting new
variables: u1 = T1, u2 = Ṫ1, u3 = T2, u4 = Ṫ2, a newly obtained form of
governing formulas is




u̇1
u̇2
u̇3
u̇4


 =




0 1 0 0
−π4 −π4Γ + cd −ΓΩπ4 0
0 0 0 1
ΓΩπ4 0 −π4 −π4Γ + cd







u1
u2
u3
u4


 (6.7)

or shortly

u̇ = A(cd)u

Proceed now with the stability analysis. The system remains stable as long
as real parts of all eigenvalues corresponding to the matrix A(cd) are negative.
Find then the eigenvalues by formulating the eigenproblem

det{A(cd)− sI} = 0 (6.8)

which yields two conjugate pairs of complex eigenvalues

s1 = ζ1 + iη1 s2 = r1 = ζ1 − iη1
s3 = ζ2 + iη2 s4 = r3 = ζ2 − iη2

(6.9)
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Concentrate now on the eigenvalue having the greatest real part. It is the
decisive eigenvalue, and let it be denoted by s1. Then the system is said to be
stable if Re{s1} < 0.

Some exemplary trajectories of the decisive eigenvalue are presented in
Fig. 11 for growing rotation speed of the shaft and for selected gain factors
in the control unit. The eigenvalue moves rightwards with increasing rotation
speed. It starts from the area where Re{s1} < 0, then it intersects the imagi-
nary axis, and finally its real part becomes positive. This exactly entails the
loss of stability and initiates a self-excited flutter-type vibration. The ordinate,
i.e. imaginary part, corresponds to the initial frequency of such vibration. As
at can be seen, the enabled control (cd 6= 0) moves the trajectories leftwards,
i.e. stabilises the system.

Fig. 11. Trajectories of the decisive eigenvalue for some gain factors

A clearer view on the stabilising effect is presented in Fig. 12. The increase
of the critical rotation speed with growing cd is easily visible there for a few
chosen exponents n describing the type of volume distribution of active and
passive constituents of the FGM structure.

Growing number n means, of course, faster transition between two mixing
phases in favour the active PZT fraction. Thus, the lines Ωcr = Ωcr(n) in
Fig. 12 get steeper for higher n. Admittedly, n cannot be freely lifted up since
it would inevitably lead to disappearance of gradual change of electromechani-
cal properties within the employed FGM and to a considerable concentration
of stress.
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Fig. 12. Real part of the decisive eigenvalue for different gain factors and
exponential functions describing the volume distribution of the active PZT fraction

Fig. 13. Critical rotation speed vs. gain for selected exponents of the PZT-volume
distribution function

7. Concluding remarks

In this paper, fundamentals of active stabilisation of transverse vibration
of a rotating shaft have been presented. The applied method of stabilisation,
based on making use of a functionally graded material that involves an ac-
tive piezoceramic fraction, proves to be an efficient solution to the analysed
problem. An FGM shaft remains both stiff thanks to the passive metallic com-
ponent and controllable owing to the active PZT phase. Moreover, it occurs
that the application of only three actuating electrodes around the shaft peri-
meter is enough to produce a constant counter-bending moment despite rotary
motion of the entire structure. Such a moment opposes internal interactions
due to internal friction that lead to self-excitation while exceeding the critical
angular velocity.
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It is to be emphasized that distributions of the volume share of the active
component (described by various numbers of the exponent n) highly affect
the mentioned efficiency. One can observe evident growth of the critical rota-
tion speed with n. Still interesting, regardless of the fact whether the system
is controlled or not, the initial self-excitation frequency remains the same:
Im{s1(cd)} = const . Great values of the exponents, however, such as n = 10
and more, make the FGM shaft structure no longer graded but a three-layer
laminate-like with distinctly separated phases. That would directly lead to ra-
pid stress concentrations near the contact areas between these phases, which is
obviously in pure opposition to the concept of a functionally graded structure.
Distributions with n ≈ 5 seem to be the most reasonable compromise, see
Fig. 14.

Fig. 14. A reasonable choice of effective Young’s modulus, internal damping and
electromechanical coupling constant (broken lines) distributed throughout the

graded structure
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Stateczność wirującego wału wykonanego z materiału gradientowego

Streszczenie

W pracy przedstawiono zagadnienie aktywnej stabilizacji wirującego wału wyko-
nanego z trójfazowego materiału gradientowego (FGM) zawierającego składnik piezo-
elektryczny. Niezależnie od zastosowanego materiału, obecność tarcia wewnętrznego
powoduje utratę stateczności wału i powstanie drgań samowzbudnych przy pewnej
krytycznej prędkości wirowania. W artykule przedyskutowano sposób zapobiegania
takiemu zjawisku oparty na zastosowaniu materiału gradientowego FGM sterowanego
napięciem elektrod przyklejonych i zatopionych w strukturze wału. Wartość krytycz-
nej prędkości wirowania znaleziono poprzez badanie wartości własnych równań ruchu
zlinearyzowanych po jednomodalnej dyskretyzacji Galerkina równań różniczkowych
cząstkowych. Głównym celem analizy jest określenie optymalnego rozkładu funkcji
opisującej objętościowy udział aktywnej frakcji piezoelektrycznej w użytym materiale
FGM, który zapewnia możliwie najlepszy efekt stabilizacyjny i równocześnie utrzy-
muje dobre właściwości wytrzymałościowe wału. Rezultaty badań przedstawiono na
wykresach pokazujących krytyczną prędkość wirowania w funkcji wykładnika opisują-
cego rozkład udziału objętościowego fazy aktywnej oraz współczynników wzmocnienia
zastosowanych w układzie sterowania.
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