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In a recent authors’ paper, the general expression of Stokes drag experienced by a deformed
sphere in both longitudinal and transverse flow situations was calculated in terms of the
deformation parameter up to the second order. In this paper, Oseen’s correction to the axial
Stokes drag on the deformed sphere is presented by using Brenner’s formula in general, first
and then applied to prolate and oblate the deformed spheroid up to the second order of the
deformation parameter. Numerical values of Oseen’s correction is obtained with respect to
the deformation parameter and Reynolds number. The corresponding variations are depicted
in figures. Some particular cases of a needle shaped body and flat circular disk are considered
and found to be in good agreement with those existing in the literature. The important
applications are also highlighted.
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1. Introduction

The problem of great importance in the hydrodynamics of low Reynolds number flows is the
drag or resistance experienced by a particle moving uniformly through an infinite fluid. Since the
appearance of Stokes’s approximate solution for the flow of a viscous fluid past a sphere (Stokes,
1851), very well known as Stokes law, numerous attempts have been made, both to generalize
the problem by changing the shape of the body, and to improve the calculation by including
the effect of inertia terms which were neglected in the original calculation. Oseen (1927) tackled
this type of problem involving a correction to Stokes drag extensively. Oseen provided solutions
for the flow past various bodies at a small Reynolds number Re. and calculated the force to
the first order in Re, one term more than would be given by the Stokes approximation. By the
inclusion of the effect of the inertia terms, Oseen improved the flow picture far from the body
where the Stokes approximation is inadequate, but near the body the difference between the
two solutions is of an order of smallness which is outside the accuracy of either approximation.
Oseen’s calculation for the force thus requires some further justification, for flow past a sphere, by
the work of Kaplun (1957), Kaplun and Lagerstrom (1957) and Proudman and Pearson (1957).
Oseen failed to calculate correctly the velocity field, his result for the drag on the sphere, namely

D = D0
(

1 +
3

8
Re
)

(1.1)

where D0 is the Stokes drag, is in fact valid because the correction to the velocity field makes
no contribution to the total force on the sphere. Almost a similar problem has been considered
by Chang (1960) for the axially symmetric Stokes flow of a conducting fluid past a body of
revolution in the presence of a uniform magnetic field. An equation identical to that cited
above, except for the dimensionless Hartmann number M appears in place of the Reynolds
number Re. Chang (1960) gave a formal proof of this relation as well as similar results by
Chang (1961) based on matching’ the fundamental solution of the Stokes equations to the
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fundamental solution of his magnetohydrodynamics differential equation. These fundamental
solutions correspond physically to the fields resulting from a point force concentrated at the
origin, and are termed the inner’ and outer’ solutions, respectively. The ideas used in these papers
were based on the work of Lagerstrom and Cole (1955) and Proudman and Pearson (1957). The
structure of Oseen’s equation and its fundamental solution are extremely similar to those for the
corresponding magnetohydrodynamics. They do, however, differ in one important respect. The
first-order Stokes (inner) equation (Proudman and Pearson, 1957, eq. 3.40), which eventually
gives rise to the drag term of O(Re), contains an inhomogeneous forcing term. This is lacking
in the analogous first-order inner equation of Chang (1960), equation (6b), which is the source
of the drag term of order O(M) in the magnetohydrodynamic problem. Moreover, Proudman
and Pearson (1957) have fully discussed the matching’ of the Oseen and Stokes equations for
the particular case of a spherical particle. Perhaps for these reasons, Brenner (1961) skipped
the proof of his own formula (given in eq. 2.7) regarding Oseen’s drag on axially symmetric
bodies. According to him, the combined work of Proudman and Pearson (1957) and Chang
(1960) assured the existence of a general relation of the form of equation 2.7. It is interesting
to note here that Chang’s (1960) result is restricted to axially symmetric flows because of the
requirement that there be sufficient symmetry to preclude the existence of an electric field. While,
on the other hand, Brenner’s (1961) result is limited only by the requirement that the Stokes drag
on the particle (and thus the Oseen drag) be parallel to its direction of motion. Krasovitskaya
et al. (1970) proposed a formula based on Oseen’s correction for calculating the settling of solid
particles of powdered materials with enhanced accuracy in carrying out sedimentation analysis.
Dyer and Ohkawa (1992) have used the Oseen drag in acoustic levitation. These two works are
the main practical applications of Oseen’s correction which was not possible with the Stokes
drag.

The main aim of the present investigation is to provide a general criterion for the use of
Oseen’s equations as an approximate representation of the full Navier-Stokes equations. For
the better understanding of the reader, the author’s previously well proved conjecture (Datta
and Srivastava, 1999) is described briefly first followed by Brenner’s method (Brenner, 1961) in
Section 2.

2. Method

Let us consider an axially symmetric body of characteristic length L placed along its axis
(x-axis, say) in a uniform stream U of a viscous fluid of density ρ1 and kinematic viscosity ν.
When the Reynolds number UL/ν is small, the steady motion of incompressible fluid is governed
by Stokes equations (Happel and Brenner, 1964)

0 = − 1
ρ1
gradp+ ν∇2u divu = 0 (2.1)

subject to the no-slip boundary condition.

We have taken up the class of those axially symmetric bodies which possess continuously
turning tangent, placed in the uniform stream U along the axis of symmetry (which is x-axis),
as well as constant radius b of maximum circular cross-section at the mid of the body. This
axi-symmetric body is obtained by the revolution of meridional plane curve (depicted in Fig. 1)
about axis of symmetry, which obeys the following limitations:

i. Tangents at the points A, on the x-axis , must be vertical,

ii. Tangents at the points B, on the y-axis , must be horizontal,

iii. The semi-transverse axis length b must be fixed.
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Fig. 1. Geometry of axially symmetric body

The point P on the curve may be represented by the Cartesian coordinates (x, y) or polar
coordinates (r, θ), respectively, PN and PM are the length of tangent and normal at the
point P . The symbol R stands for the intercepting length of the normal between the point on
the curve and the point on the axis of symmetry, and the symbol α is the slope of the normal
PM which can be vary from 0 to π.

2.1. Axial flow

The expression of the Stokes drag on such a type of axially symmetric bodies placed in an
axial flow (uniform flow parallel to the axis of symmetry) is given by Datta and Srivastava (1999)

Fx =
1

2

λb2

hx
where λ = 6πµU

hx =
3

8

π
∫

0

Re sin3 α dα

(2.2)

where the suffix x has been introduced to assert that the force is in the axial direction.
Brenner (1961) proposed a general expression of Oseen’s resistance of a particle of arbitrary

shape after having inspiration from the work of Oseen (1927), Proudman and Pearson (1957),
and Chang (1960) in terms of the general expression of the Stokes drag on the same body placed
under a uniform axial flow along the axis of symmetry. This expression is

F

Fx
= 1 +

Fx
16πµcU

Re +O(Re2) (2.3)

where c is any characteristic particle dimension, Re = ρUc/µ is the particle Reynolds number
and Fx is the Stokes drag. The author has already applied the D-S conjecture, given in equations
(2.2), to evaluate the Stokes drag on axially symmetric particles like sphere, spheroid (prolate and
oblate), deformed sphere, cycloidal body, cassini oval, hypocycloidal body, cylindrical capsule
with semi spherical ends and complicated egg-shaped body consisting of semi spherical and
semi spheroidal ends. These results are already published (please see for details, Datta and
Srivastava, 1999; Srivastava, 2000; Srivastava, 2012). Now, the author claims that by utilizing
the D-S conjecture, one can always improve the expression of the Stokes drag on an axially
symmetric body placed in a uniform axial flow parallel to the axis of symmetry with the help of
Brenner’s formula (2.3). The author also claims here that the improved form of the Stokes drag in
the light of Brenner’s formula must be the solution to steady Oseen’s equation in which the linear
term (U · grad )u appears on the left hand side in comparison to the Stokes equations, where
the non-linear inertia term (u · grad )u is absent. This argument may be checked experimentally,
which is out of scope of this paper.
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3. Formulation of the problem

Let us consider an axially symmetric arbitrary body of the characteristic length L placed along
its axis (x-axis, say) in a uniform stream U of a viscous fluid of density ρ1 and kinematic
viscosity ν. When the particle Reynolds number UL/ν is small, the steady motion of an incom-
pressible fluid around the axially symmetric body is governed by the Stokes equations (Happel
and Brenner, 1964)

0 =
1

ρ1
gradp+ ν∇2u divu = 0 (3.1)

subject to the no-slip boundary condition.

This equation is the reduced form of the complete Navier-Stokes equations neglecting the
inertia term (u · grad )u which is unimportant in the vicinity of the body where the viscous
term dominates (Stokes approximation). Solution to this equation (3.1), called the Stokes law,
6πµUa, for a slowly moving sphere having radius a is valid only in the vicinity of the body which
breaks down at a distance far away from the body. This break-down of the Stokes solution at a
far distance from the body is known as Whitehead’s paradox. It was Oseen in 1910, who pointed
out the origin of Whitehead’s paradox and suggest a scheme for its resolution (see Oseen, 1927).
In order to rectify the difficulty, Oseen went on to make the following additional observations.

In the limit, where the particle Reynolds number ρUa/µ → 0, the Stokes approximation
becomes invalid only when r/a → ∞. But at such enormous distances, the local velocity v
differs only imperceptibly from a uniform stream of the velocity U. Thus, Oseen was inspired
to suggest that the inertial term (u · grad )u could be uniformly approximated by the term
(U · grad )u. By such arguments, Oseen proposed that uniformly valid solutions of the problem
of steady streaming flow past a body at small particle Reynolds numbers could be obtained by
solving the linear equations

(U · grad )u = −1
ρ
gradp+ ν∇2u divu = 0 (3.2)

known as Oseen’s equation. Oseen obtained an approximated solution to his equations for flow
past a sphere, from which he obtained the Stokes drag formula (Happel and Brenner, p. 44,
eq. (2-6.5), 1964)

F = 6πµaU
(

1 +
3

8
NRe +O(N

2
Re)
)

(3.3)

where NRe = ρUa/µ is the body Reynolds number.
Now, we find the general solution to Oseen’s equations (3.2) for a deformed sphere under

no-slip boundary conditions by use of D-S conjecture (2.2) and corrected up to the first order of
Reynolds number Re by using Brenner’s formula (2.3). Later on, this expression is applied to
the perturbed prolate and oblate spheroid which falls under the class of deformed sphere having
polar equation (4.1). Some particular cases of a slender spheroid and a flat circular disk are also
discussed in the limiting situations.

4. Solution

We consider the axially symmetric body defined by

r = a

(

1 + ε
∞
∑

k=0

dkPk(µ)

)

µ = cos θ (4.1)
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where (r, θ) are spherical polar coordinates, ε is the small deformation parameter, dk are design
or shape factors and Pk(µ) are Legendre’s functions of the first kind. For small values of the
parameter ε, equation (4.1) represents the deformed sphere.
The expression for the axial Stokes drag, by D-S conjecture (Datta and Srivastava, 1999),

comes out to be (for details, see Srivastava et al., 2012)

Fx = 6πµUaC (4.2)

where

C =
{

1 + ε
(

d0 −
1

5
d2 +

3

8
d4 + . . .

)

+ ε2
[(

2d20 +
89

100
d22 +

9

64
d24 + . . .

)

+2d0
(

−21
10
d2 +

3

8
d4 + . . .

)

+ 2d2
(3

8
d4 + . . .

)

+ . . .
]

+O(ε3)
}

Now, the general expression of Oseen’s correction may be obtained for same deformed sphere
by substituting the value of Stokes drag (4.2) in Brenner’s formula (2.7) as

F

Fx
= 1 +

6πµUa

16πµUa
CR+O(Re2) = 1 + 3

8
CRe +O(Re2

)

(4.3)

where Re = ρUa/µ is the particle Reynolds number. This expression immediately reduces to the
case of sphere(Chester, 1962) in the limiting case as ε→ 0. Now, we use this general expression
over the prolate and oblate deformed spheroid to evaluate Oseen’s correction.

5. Flow past prolate spheroid

Fig. 2. Prolate spheroid in meridional two-dimensional plane (ρ, z)

We consider the prolate spheroid as it belongs to the class of axi-symmetric deformed sphere,
whose Cartesian equation is

x2 + y2

a2(1− ε)2 +
z2

a2
= 1 (5.1)

where the equatorial radius is a(1 − ε) and the polar radius is a, in which the deformation
parameter ε is positive and sufficiently small that squares and higher powers of it may be
neglected. Its polar equation, up to the order of O(ε), by using the transformation is

z = r cos θ ρ = r sin θ r = a(1− ε sin2 θ) (5.2)

It can be written in linear combination of Legendre’s functions of the first kind (Happel and
Brenner, 1964; Senchenko and Keh, 2006)

r = a
[

1 + ε
(

−2
3
P0(µ) +

2

3
P2(µ)

)]

µ = cos θ (5.3)
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On comparing this equation with the polar equation of deformed sphere (3.1), the appropriate
design factors for this prolate spheroid are

d0 = −
2

3
d1 = 0 d2 =

2

3
dk = 0 for k ­ 3 (5.4)

with

P0(µ) = 1 P1(µ) = µ P2(µ) =
3µ2 − 1
2

µ = cos θ (5.5)

Also, polar equation (5.2)3 of the prolate spheroid may be written in terms of Gegenbauer’s
functions of the first kind by using the following well known relation as

Ik(µ) =
Pk−2(µ)− Pk(µ)
2k − 1 k ­ 2, µ = cos θ

r = a[1− 2εI2(µ)] µ = cos θ

(5.6)

Now, we find the expression of the Stokes drag on this axi-symmetric prolate body placed in
both axial or longitudinal flow (in which uniform stream is parallel to the polar axis or axis of
symmetry) with the aid of general expression of Oseen’s drag (4.3).

5.1. Axial flow

With the aid of equations (5.3) and (5.4), the expression of the axial Stokes drag on the
prolate spheroid can be written with the help of (4.2), and comes out to be

Fz = 6πµUa
(

1− 4
5
ε+
709

225
ε2 + . . .

)

(5.7)

which matches with that given by Datta and Srivastava (1999) only up to the first order. By
using (5.7), Oseen’s correction may be obtained from Brenner’s formula (2.3) as

F

Fz
= 1 +

3

8

(

1− 4
5
ε+
709

225
ε2 + . . .

)

Re +O(Re2) (5.8)

where Re = ρ1Ua/µ is the particle Reynolds number.
The conjectured expression for the axial and transverse Stokes drag on axially symmetric

bodies proposed in Datta and Srivastava (1999) holds good for the spheroid and provide the
accurate closed form solution. For the convenience, we write both expressions of drag on the
prolate spheroid (Happel and Brenner, 1964; Chwang and Wu, 1975)

F‖ = 16πµU‖ae
3
[

(1 + e2) log
1 + e

1− e − 2e
]−1

F⊥ = 32πµU⊥ae
3
[

2e+ (3e2 − 1) log 1 + e
1− e

]−1
(5.9)

where e is the eccentricity of the prolate spheroid.
The expression of the Stokes drag in axial flow (5.8) on the prolate spheroid may also be

deduced from the exact expression of the axial Stokes drag (5.9)1 on the prolate spheroid for
flow parallel to its axis of revolution in terms of the deformation parameter ε up to the first
order.
For the considered prolate spheroid, the eccentricity is e =

√

1− (b/a)2, with b = a(1 − ε),
which further gives us the relation between the eccentricity e and deformation parameter ε as

e =
√

1− (1− ε)2 =
√

2ε− ε2 =
√
2ε (5.10)

(leaving the square term).
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The exact expression of the Stokes drag Fz, in second powers of the deformation parameter ε,
would be of the closed form from (5.9)1

Fz = 6πµUa
(

1− 4
5
ε+

2

175
ε2 + . . .

)

(5.11)

This expression is in good agreement to that presented by Chang and Keh (2009, page 205,
eq. 36a). The first two terms of this expression also confirm our result (5.8), up to the order of
O(ε), of the axial drag on the prolate spheroid lying in the class of the deformed sphere.

On considering the polar equation of the prolate spheroid as a deformed sphere with the
same eccentricity defined as above and related with the deformation parameter ε by (5.14) as

r = a
(

1− ε sin2 θ − 3
2
ε2 sin2 θ cos2 θ

)

(5.12)

the expression of the axial Stokes drag containing the second order terms in e and ε can be
achieved by independent application of D-S conjecture (Srivastava et al., 2012) as

Fz = 6πµUa
(

1− 2
5
e2 − 17
175
e4 + . . .

)

= 6πµUa
(

1− 4
5
ε+

2

175
ε2 + . . .

)

(5.13)

It is interesting to note that there is discrepancy at the third term in the expressions of the
Stokes drag (5.8) and last (5.13). The reason behind this discrepancy lies in the fact that polar
equation (4.1) contains terms only up to first order, while polar equation (5.15) contains terms
up to the second order in the deformation parameter.

On applying Brenner’s formula (2.3), by using Stokes drag (5.10), Oseen’s correction comes
out to be

F

Fz
−1 = 3

8

(

1− 2
5
e2− 17
175
e4+. . .

)

Re+O(Re2) =
3

8

(

1− 4
5
ε+
2

175
ε2+. . .

)

Re+O(Re2) (5.14)

5.2. Particular case

5.2.1. Slender elongated spheroid or needle shaped body

Last expression (5.14) is true not only for a small deformation parameter (near zero value) ε
but surprisingly provides good agreement in the limiting situation for e = ε = 1, which is the
cased of a needle shaped body.

On substituting ε = 1 in equation (5.14), Oseen’s correction comes out to be

F

Fz
− 1 = 0.079275Re (5.15)

for an elongated spheroid which is not far away from the zero value obtained from asymptotic
expressions given by Happel and Brenner (1964) and Chwang and Wu (part 4, 1975) for Reynolds
number Re≪ 1.

6. Flow past oblate spheroid

We consider the oblate spheroid as it belongs to the class of the axi-symmetric deformed sphere,
whose Cartesian equation is

x2 + y2

a2
+

z2

a2(1− ε′)2 = 1 (6.1)
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Fig. 3. Oblate spheroid in meridional two-dimensional plane (z, ρ)

where the equatorial radius is a and polar radius is a(1− ε), in which the deformation parame-
ter ε is positive and sufficiently small that squares and higher powers of it may be neglected.
Its polar equation (by using z = r cos θ, ρ = r sin θ, ρ =

√

x2 + y2, up to the order of o(ε)) is

r = a(1− ε′ cos2 θ) (6.2)

it can be written in linear combination of Legendre’s functions of the first kind (Happel and
Brenner, 1964; Senchensko and Keh, 2009)

r = a
[

1− ε′
(1

3
P0(µ) +

2

3
P2(µ)

)]

µ = cos θ (6.3)

On comparing this equation with polar equation of deformed sphere (3.1), the appropriate design
factors for this oblate spheroid are

d0 = −
1

3
d1 = 0 d2 = −

2

3
dk = 0 for k ­ 3 (6.4)

with

P0(µ) = 1 P1(µ) = µ P2(µ) =
3µ2 − 1
2

µ = cos θ (6.5)

Also, polar equation (6.3) of the oblate spheroid may be written in terms of Gegenbauer’s
functions of the first kind by using the following well known relation

Ik(µ) =
Pk−2(µ)− Pk(µ)
2k − 1 k ­ 2, µ = cos θ

r = a[1− ε′ + 2ε′I2(µ)] µ = cos θ

(6.6)

or, if we put d = a(1− ε′), we have

r = d[1 + 2ε′I2(µ)] (6.7)

Now, we find the expression for the Stokes drag on this axi-symmetric oblate body placed in both
axial flow (in which uniform stream is parallel to the polar axis or axis of symmetry) situations
with the aid of general expressions of Oseen’s drag (4.3).
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6.1. Axial flow

With the aid of equations (6.4) and (6.5), the expression of the axial Stokes drag can be
written up to the order of O(ε′) with the help of (4.2), and comes out to be

Fz = 6πµUa
(

1− ε
′

5
− 71
225
ε′
2
+ . . .

)

(6.8)

This matches with that given in the paper of Datta and Srivastava (1999) only up to the first
order. By using (6.8), Oseen’s correction may be obtained from Brenner’s formula (2.3) as

F

Fz
− 1 = 3

8

(

1− 1
5
ε′ − 71
225
ε′
2
+ . . .

)

Re +O(Re2) (6.9)

where Re = ρ1Ua/µ is the particle Reynolds number.
The conjectured expression for the axial and transverse Stokes drag on axially symmetric

bodies proposed by Datta and Srivastava (1999) holds good for the spheroid and provides the
accurate closed form solution. For the convenience, we write both expressions of drag on the
oblate spheroid (Happel and Brenner, 1964; Chwang and Wu, 1975)

F‖ = 8πµU‖ae
3
[

e
√

1− e2 − (1− 2e2) sin−1 e
]−1

F⊥ = 16πµU⊥ae
3
[

− e
√

1− e2 + (1 + 2e2) sin−1 e
]−1

(6.10)

where e is the eccentricity of the spheroid.
The expression of Stokes drag in axial flow (6.8) on the oblate spheroid may also be deduced

from the exact expression for axial Stokes drag (6.10)2 on a oblate spheroid for flow parallel
to its axis of revolution by utilizing the appropriate relation between the eccentricity e and
deformation parameter ε′.
For the considered oblate spheroid, the eccentricity is e =

√

1− (b/a)2, with b = a(1 − ε′),
which further gives us the relation between the eccentricity e and deformation parameter ε′ as

e =
√

1− (1− ε′)2 =
√

2ε′ − ε′2 =
√
2ε′ (6.11)

(leaving the square term).
The exact expression of the Stokes drag Fz, in second powers of the deformation parameter ε,

would be of the dosed form from solution (6.10)1

Fz = 6πµUa
(

1− 1
5
ε′ +

2

175
ε′
2
+ . . .

)

(6.12)

This expression is in good agreement to that presented by Chang and Keh (2009). The first two
terms of this expression also confirm our result (6.8), up to the order of O(ε), of the axial drag
on the oblate spheroid lying in the class of the deformed sphere.
On considering the polar equation of the oblate spheroid as a deformed sphere with the same

eccentricity defined as above and related with the deformation parameter ε′ as

r = a
(

1− ε′ cos2 θ − 3
2
ε′
2
sin2 θ cos2 θ

)

(6.13)

The expressions of the axial and transverse Stokes drag containing the second order terms in
e and ε′ can be achieved by independent application of equation (2.2) and (2.3) (Datta and
Srivastava, 1999) as

Fz = 6πµUa
(

1− 1
10
e2 − 31
1400
e4 +

9

1400
e6 + . . .

)

= 6πµUa
(

1− 1
5
ε′ +

2

175
ε′
2
+ . . .

)

(6.14)
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It is interesting to note that there is discrepancy at the third term in the expressions of the
Stokes drag (6.8) and last (6.14). The reason behind this discrepancy lies in the fact that polar
equation (4.1) contains terms only up to the first order, while polar equation (6.13) contains
terms up to the second order in the deformation parameter.
On applying Brenner’s formula (2.3), by using Stokes drag (6.14), Oseen’s correction comes

out to be

F

Fz
− 1 = 3

8

(

1− 1
10
e2 − 31
1400
e4 +

9

1400
e6 + . . .

)

Re +O(Re2)

=
3

8

(

1− 1
5
ε′ +

2

175
ε′
2
+ . . .

)

Re +O(Re2)

(6.15)

where Re = ρ1Ua/µ is particle Reynolds number.

6.2. Particular case

6.2.1. Flat circular disk

Las expression (6.15) is true not only for a small deformation parameter (near zero value) ε
but surprisingly provides good agreement in the limiting situation for e = ε = 1, which is the
cased of a flat circular disk (broad side on case).
On substituting ε = 1 in equation (6.15), Oseen’s correction reduces to the form

F

Fz
− 1 = 0.3042856Re (6.16)

for a flat circular disk which is not far away from the zero value obtained from asymptotic
expressions given by Happel and Brenner (1964) for Reynolds numbers Re≪ 1.

7. Numerical discussion

The numerical values of Oseen’s correction F/Fz − 1 for prolate and oblate deformed spheroids
with respect to the deformation parameter ε (0 to 1) for various values of the Reynolds num-
ber Re (0 to 100) are calculated and presented in Tables 1 and 2. According to both tables,
Oseen’s correction reduces to zero for Re = 0 confirming the Stokes drag on the corresponding
deformed body (see Chang and Keh, 2009). In every other possibility of the Reynolds num-
ber Re, Oseen’s correction decreases significantly with the increasing deformation parameter ε
for the prolate deformed spheroid. On the other hand, Oseen’s correction decreases very slowly
with the increasing deformation parameter ε for the oblate deformed spheroid. The reason for
this anomaly is due to the broader part of the oblate deformed spheroid facing the axial flow.
For specific values of the deformation parameter ve, Oseen’s correction increases with respect to
increasing values of the Reynolds number Re. The corresponding variation of Oseen’s correction
with respect to the deformation parameter ε for various values of the Reynolds number Re are
shown in Figs. 4 and 5.

8. Conclusion

The general expression of Oseen’s correction to the Stokes drag on a deformed sphere is provided
with the help of D-S conjecture (Datta and Srivastava, 1999) followed by Brenner’s formula
(Brenner, 1961). Later on, this expression is utilized to evaluate Oseen’s drag on a prolate and
oblate deformed spheroid and verified for the first two terms. It is also found that this correction
may be modified when we apply D-S conjecture independently of these perturbed bodies whose
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Table 1. Numerical values of Oseen’s correction F/Fz − 1 with respect to deformation para-
meter ε of deformed prolate spheroid calculated from Eq. (5.14) and depicted in Fig. 4

ε
Re

0 1 5 10 20 30 40 50 60 70 80 90 100

0 0 0.3750 1.8750 3.7500 7.5000 11.2500 15.0000 18.7500 22.5000 26.2500 30.0000 33.7500 37.5000
0.1 0 0.3450 1.7252 3.4504 6.9009 10.3513 13.8017 17.2521 20.7026 24.1530 27.6034 31.0539 34.5043
0.2 0 0.3152 1.5758 3.1517 6.3034 9.4551 12.6069 15.7586 18.9103 22.0620 25.2137 28.3654 31.5171
0.3 0 0.2854 1.4269 2.8539 5.7077 8.5616 11.4154 14.2693 17.1231 19.9770 22.8309 25.6847 28.5386
0.4 0 0.2557 1.2784 2.5568 5.1137 7.6706 10.2274 12.7843 15.3411 17.8980 20.4549 23.0117 25.5686
0.5 0 0.2261 1.1304 2.2607 4.5214 6.7821 9.0429 11.3036 13.5643 15.8250 18.0857 20.3464 22.6071
0.6 0 0.1965 0.9827 1.9654 3.9309 5.8963 7.8617 9.8271 11.7926 13.7580 15.7234 17.6889 19.6543
0.7 0 0.1671 0.8355 1.6710 3.3420 5.0130 6.6840 8.3550 10.0260 11.6970 13.3680 15.0390 16.7100
0.8 0 0.1377 0.6887 1.3774 2.7549 4.1323 5.5097 6.8871 8.2646 9.6420 11.0875 12.3969 13.7743
0.9 0 0.1085 0.5424 1.0847 2.1694 3.2541 4.3389 5.4236 6.5083 7.5930 8.6777 9.7624 10.8471
1.0 0 0.0793 0.3964 0.7928 1.5857 2.3786 3.1714 3.6071 4.7571 5.5500 6.3428 7.1357 7.9286

Table 2. Numerical values of Oseen’s correction F/Fz − 1 with respect to deformation para-
meter ε′ of deformed oblate spheroid calculated from Eq. (6.15) and depicted in Fig. 5

ε′
Re

0 1 5 10 20 30 40 50 60 70 80 90 100

0 0 0.3750 1.8750 3.7500 7.5000 11.2500 15.0000 18.7500 22.5000 26.2500 30.0000 32.7500 37.5000
0.1 0 0.3675 1.8377 3.6754 7.3508 11.0263 14.7017 18.3771 22.0526 25.7280 29.4034 32.0789 36.7543
0.2 0 0.3602 1.8008 3.6017 7.2034 10.8051 14.4069 18.0086 21.6103 25.2120 28.8137 31.4154 36.0171
0.3 0 0.3528 1.7644 3.5288 7.0577 10.5866 14.1154 17.6443 21.1731 24.7020 28.2309 30.7597 35.2886
0.4 0 0.3456 1.7284 3.4568 6.9137 10.3706 13.8274 17.2843 20.7411 24.1980 27.6549 30.1117 34.5686
0.5 0 0.3385 1.6928 3.3857 6.7714 10.1571 13.5429 16.9286 20.3143 23.7000 27.0857 29.4714 33.8571
0.6 0 0.3315 1.6577 3.3154 6.6308 9.9463 13.2617 16.5771 19.8926 23.2080 26.5234 28.8389 33.1543
0.7 0 0.3246 1.6230 3.2460 6.4920 9.7380 12.9840 16.2300 19.4760 22.7220 25.9680 28.2140 32.4600
0.8 0 0.3177 1.5887 3.1774 6.3548 9.5323 12.7097 15.8870 19.0646 22.2420 25.4194 27.5969 31.7743
0.9 0 0.3109 1.5548 3.1097 6.2194 9.3291 12.4389 15.5486 18.6583 21.7680 24.8777 26.9874 31.0971
1.0 0 0.3042 1.5214 3.0429 6.0857 9.1286 12.1714 15.2143 18.2571 21.3000 24.3429 26.3857 30.4286

Fig. 4. Variation of Oseen’s correction with respect to the deformation parameter ε for various values of
the Reynolds number Re = ρUA/mu for the deformed prolate spheroid
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Fig. 5. Variation of Oseen’s correction with respect to the deformation parameter ε′ for various values
of the Reynolds number Re = ρUA/mu for the deformed oblate spheroid

polar equations contain second order terms in the deformation parameter followed by Brenner’s
formula. The modified expressions for these bodies are given in equations (5.14) and (6.15) in
terms of the eccentricity e and deformation parameter ε both. The numerical values of drag
correction are presented in Tables 1 and 2, and the corresponding variations are shown in Figs. 4
and 5. It may be seen from the tables and figures that in the limiting cases for the needle shaped
body and the flat circular disk, the drag is in agreement with that known in literature, which may
further be checked experimentally. These values are useful in prediction of optimum drag profiles
in low Reynolds number flows. In the end, it is concluded that for a small deformation parameter,
Oseen’s correction increases with the increasing Reynolds number. Other important applications
of Oseen’s correction are in calculation of the settling of solid particles of powdered materials
with enhanced accuracy in carrying out sedimentation analysis and in acoustic levitation. These
two works are the main practical applications of Oseen’s correction, which was not possible with
the Stokes drag.
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