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The problem of electroelasticity for piezoelectric materials is considered. For
axially symmetric states, three potentials are introduced, which determi-
ne displacements, electric potential, stresses, components of the electric field
vector and electric displacements in the piezoelectric body. These fundamen-
tal solutions are utilized to solve a smooth contact problem. Exact solutions
are obtained for elastic and electric fields in the contact problem. The nu-
merical results are presented graphically to show the influence of applied
mechanical and electrical loading on the analyzed quantities and to clarify
the effect of anisotropy of piezoelectric materials. It is also shown that the
influence of anisotropy of the materials on these fields is significant.
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1. Introduction

Mechanical durability and reliability of piezoelectric materials offer impor-
tant considerations in the design of ”smart” structures and devices. Actually,
over a hundred piezoelectric materials or composites are known. Piezoelec-
tric materials, particularly piezoelectric ceramics, have been widely used for
applications such as sensors, filters, ultrasonic generators and actuators. The
piezoelectric composite materials have also been used for hydrophone appli-
cation and transducers for medical imaging. The readers interested in this
problem are referred to the state of the art survey by Rao and Sunar (1994).
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The body of literature concerning the mechanics of piezoelectric materials is
enormous. We referred to a few fundamental works (Cady, 1946; Berlincourt
et al., 1964; Tiersten, 1969; Parton and Kudryatvsev, 1988).

In particular, the contact problem of electroelasticity is very interesting
from the point of view of application, since the contact is the direct way
of transmission of loading from one element to another. Fan et al. (1996)
considered the two-dimensional contact problem of a piezoelectric half-plane.
These authors by means of Stroh’s formalism formulated the nonslip and slip
conditions of contact on the half-plane. The three-dimensional contact problem
for piezoelectric materials was solved by Chen (2000), who used Fabrikant’s
potentials (1989) and the solution which was found by Ding et al. (1996). The
solutions related to elliptical contact problems and piezo-electro and magneto-
electro elastic bodies have been recently obtained in papers by Ding et al.
(1999) and Hou et al. (2003).

In this paper, three potential functions are introduced to simplify the basic
equations for piezoelectric materials with transversely isotropic electrical and
mechanical properties. Using the operator theory, we derive a general solu-
tion that is expressed in terms of the three potentials. These functions satisfy
differential equations of the second order and are quasi-harmonic functions.
Making use of these fundamental solutions, the punch problem is investigated.
The integral equations are derived from the corresponding mixed boundary-
value problems of a half space. The exact solutions are obtained. The formulae
in a closed form, describing elastic and electric fields in piezoelectric materials,
are obtained. Also relationships between the force, electric charge, indentation
depth of the punch and the potential on the boundary are derived. These
relationships are presented graphically.

2. Basic equations and their fundamental solution

As our point of departure, we take partial differential equations of equili-
brium of linear elasticity for a transversely isotropic piezoelectric material

c11B1ur + c44D2ur + (c13 + c44)D
∂uz
∂r
+ (e31 + e15)

∂φ

∂r
= 0

c44B0uz + c33D2uz + (c13 + c44)D
∂[rur]

r∂r
+ e15B0φ+ e33D2φ = 0 (2.1)

(e31 + e15)D
∂[rur ]

r∂r
+ e15B0uz + e33D2uz − ε11B0φ− ε33D2φ = 0
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where the following differential operators have been introduced

Bk =
∂2

∂r2
+
1

r

∂

∂r
− k
r2

k = 0, 1 D =
∂

∂z
(2.2)

In above equations: ur and uz are components of the displacement vector
in the radial and axial directions of the cylindrical coordinate system (r, θ, z),
φ is the electric potential and cij , ekl, εkl stand for the elastic, piezoelectric and
dielectric constants, respectively. The problem considered is axially symmetric
in which uθ ≡ 0 and physical quantities are independent on the θ-coordinate.
We apply Hankel’s transforms of the first order for equation (2.1)1 and the

zero order for equations (2.1)2,3, namely

ûr(ξ, z) = H1[ur(r, z); r → ξ] ≡
∞∫

0

ur(r, z)rJ1(rξ) dr

(2.3)
{
ûz(ξ, z), φ̂(ξ, z)

}
= H0[uz(r, z), φ(r, z); r → ξ] ≡

≡
∞∫

0

{
uz(r, z), φ(r, z)

}
rJ0(rξ) dξ

where J1(ξ) and J0(rξ) are the Bessel functions of the first kind and order one
or zero, respectively, and ξ is the transform parameter. We use the properties
of Hankel’s transforms

Hν [Bνf(r, z); r → ξ] = −ξ2f̂ν(ξ, z)

H1
[∂f(r, z)
∂r

; r → ξ
]
= −ξf̂0(ξ, z) (2.4)

H0
[∂[rf(r, z)]
r∂r

; r → ξ
]
= ξf̂1(ξ, z)

where the index ν = 0 or ν = 1 denotes the transforms of the zero or first
order, respectively.
From partial differential equations of equilibrium (2.1) three-coupled or-

dinary differential equations are then obtained, which may be written in the
form

D



ûr
ûz
φ̂


 =



0
0
0


 (2.5)

where D is the following operator matrix

D =



−c11ξ2 + c44D2 −ξ(c13 + c44)D −ξ(e31 + e15)D
ξ(c13 + c44)D −c44ξ2 + c33D2 −e15ξ2 + e33D2
ξ(e31 + e15)D −e15ξ2 + e33D2 ε11ξ

2 − ε33D2


 (2.6)
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We have
|D| = −a0(D2 − λ21ξ2)(D2 − λ22ξ2)(D2 − λ23ξ2) (2.7)

where λ2i (i = 1, 2, 3) are the roots of the following cubic algebraic equation
in λ2i

a0λ
6 + b0λ

4 + c0λ
2 + d0 = 0 (2.8)

with the coefficients defined by equations

a0 = c44(c33ε33 + e
2
33)

b0 = (e31 + e15)[2c13e33 − c33(e31 + e15)] + 2c44e33e31 − c11e233 +
− ε11c33c44 − ε33c2

c0 = 2e15[c11e33 − c13(e31 + e15)] + c44e231 + ε33c11c44 + ε11c2 (2.9)

d0 = −c11(c44ε11 + e215)
c2 = c11c33 − c13(c13 + 2c44)

By virtue of the operator theory, we obtain the following general solution
to equations (2.5)

ûr(ξ, z) = Ai1F̂ (ξ, z)

ûz(ξ, z) = Ai2F̂ (ξ, z) (2.10)

φ̂(ξ, z) = Ai3F̂ (ξ, z)

where Aij are the algebraic cominors of the matrix operator and F̂ (ξ, z) is the
zero order Hankel’s transform of the general solution F (r, z), which satisfies
the equations, respectively

|D|F̂ (ξ, z) = 0
(2.11)

(D2 + λ21∆)(D
2 + λ22∆)(D

2 + λ23∆)F (r, z) = 0

Here, ∆ = ∂2/∂r2 + r−1∂/∂r is the Laplacian and D2 = ∂2/∂z2.
Taking i = 3 and writing down the expressions for A3j, we obtain

ûr(ξ, z) = (a1D
2 + b1ξ

2)ξDF̂ (ξ, z)

ûz(ξ, z) = −(a2D4 + b2ξ2D2 + c2ξ4)F̂ (ξ, z) (2.12)

φ̂(ξ, z) = (a3D
4 + b3ξ

2D2 + c3ξ
4)F̂ (ξ, z)

where

a1 = c33(e31 + e15)− (c13 + c44)e33 b1 = c13e15 − c44e31
a2 = c44e33 b2 = (c13 + c44)e31 + c13e15 − c11e33
c2 = c11e15 a3 = c44c33
b3 = c

2
13 + 2c13c44 − c11c33 c3 = c11c44

(2.13)
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Note that in equations (2.12), ûr(ξ, z) is the first order Hankel’s transform
of the displacement ur(r, z), while ûz(ξ, z) and φ̂(ξ, z) are the zero order
Hankel’s transforms of the displacement uz(r, z) and electric potential , φ(r, z),
as well as F̂ (ξ, z) and F (r, z).

Applying the inverse Hankel’s transforms to equations (2.12), the oryginal
solution for the displacements and electric potential are obtained as follows

ur(r, z) = −(a1D2 − b1∆)
∂2F (r, z)

∂r∂z
uz(r, z) = −(a2D4 − b2∆D2 + c2∆2)F (r, z) (2.14)

φ(r, z) = (a3D
4 − b3∆D2 + c3∆2)F (r, z)

Using the generalized Almansi’s theorem, the function F (r, z), which sa-
tisfies equation (2.11)2, can be expressed in terms of three quasi-harmonic
functions

F =





F1 + F2 + F3 for distinct λi
F1 + F2 + zF3 for λ1 6= λ2 = λ3
F1 + zF2 + z

2F3 for λ1 = λ2 = λ3

(2.15)

where Fi(r, z) satisfies, respectively
(
∆+

1

λ2i
D2
)
Fi(r, z) = 0 i = 1, 2, 3 (2.16)

For the sake of simplicity, we proceed to consider the case of distinct roots
here and after. On the other hand, the special case of multiple roots can be
obtained from the general solution by appropriately limited calculation.

Using

∆Fi = −
1

λ2i
D2Fi (2.17)

and summing in equations (2.14), we obtain

ur(r, z) = −
3∑

i=1

αi1
∂4Fi
∂r∂z3

uz(r, z) = −
3∑

i=1

αi2
∂4Fi
∂z4

(2.18)

φ(r, z) =
3∑

i=1

αi3
∂4Fi
∂z4

The coefficients αij are

αij = aj +
bj
λ2i
+
cj
λ4i

(2.19)

where aj , bj and cj are defined by equations (2.13) and c1 ≡ 0.
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It is now assumed that

αi2
∂3Fi(r, z)

∂z3
= − 1
λi
ϕi(r, z) (2.20)

then equations (2.18) can be further simplified to

ur(r, z) =
3∑

i=1

ai1λi
∂ϕi
∂r

uz(r, z) =
3∑

i=1

1

λi

∂ϕi
∂z

(2.21)

φ(r, z) = −
3∑

i=1

ai3
λi

∂ϕi
∂z

where

ai1 =
αi1
αi2

1

λ2i
=

a1λ
2
i + b1

a2λ4i + b2λ
2
i + c2

ai3 =
αi3
αi2
=
a3λ
4
i + b3λ

2
i + c3

a2λ4i + b2λ
2
i + c2
(2.22)

and (
∆+

1

λ2i

∂2

∂z2

)
ϕi(r, z) = 0 (2.23)

It can be verified that

ai3 =
c13 + c44
e31 + e15

− c11 − c44λ
2
i

e31 + e15
ai1 =

−e15 + e33λ2i
ε11 − ε33λ2i

− (e31 + e15)λ
2
i

ε11 − ε33λ2i
ai1 (2.24)

The relationships between stress, displacement and electric potential for a
transversely isotropic piezoelectric medium, in the case of axial symmetry, are

σrr = c11
∂ur
∂r
+ c12

ur
r
+ c13

∂uz
∂z
+ e31

∂φ

∂z

σθθ = c12
∂ur
∂r
+ c11

ur
r
+ c13

∂uz
∂z
+ e31

∂φ

∂z (2.25)

σzz = c13
∂ur
∂r
+ c13

ur
r
+ c33

∂uz
∂z
+ e33

∂φ

∂z

σzr = c44
(∂ur
∂z
+
∂uz
∂r

)
+ e15

∂φ

∂r

Substituting equations (2.21) into equations (2.25), we obtain

σrr = −
3∑

i=1

ai4
λi

∂2ϕi
∂z2
− (c11 − c12)

ur
r

σzz =
3∑

i=1

ai4
λ3i

∂2ϕi
∂z2

σθθ = −
3∑

i=1

ai4
λ2i

∂2ϕi
∂z2
− (c11 − c12)

∂ur
∂r

σzr =
3∑

i=1

ai4
λi

∂2ϕi
∂r∂z

(2.26)
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where

ai4 =
e31c44λ

2
i + e15c11

e31 + e15
ai1 +

c44e31 − c13e15
e31 + e15

(2.27)

The components of the electric field vector Er and Ez are obtained from
relations

Er = −
∂φ

∂r
=
3∑

i=1

ai3
λi

∂2ϕi
∂r∂z

Ez = −
∂φ

∂z
=
3∑

i=1

ai3
λi

∂2ϕi
∂z2

(2.28)

The electric displacements are defined by equations

Dr = e15
(∂ur
∂z
+
∂uz
∂r

)
+ ε11Er

(2.29)

Dz = e31
(∂ur
∂r
+
ur
r

)
+ e33

∂uz
∂z
+ ε33Ez

and presented by potentials as follows

Dr =
3∑

i=1

ai5λi
∂2ϕi
∂r∂z

Dz =
3∑

i=1

ai5
λi

∂2ϕi
∂z2

(2.30)

where

ai5 =
e33ε11 − e15ε33
ε11 − ε33λ2i

− e31ε11 − e15ε33λ
2
i

ε11 − ε33λ2i
ai1 (2.31)

The form of the solution is very simple. It can be used to solve various
kinds of mixed boundary - value problems of electroelasticity of a piezoelectric
material, such as crack and punch problems.

It can be easily verified that:

Gauss’law (Parton and Kudryatvsev, 1988)

∂Dr
∂r
+
Dr
r
+
∂Dz
∂z
= 0 (2.32)

and equilibrium equations for stresses (Nowacki, 1973)

∂σrr
∂r
+
∂σrz
∂z
+
σrr − σθθ
r

= 0

(2.33)

∂σzr
∂r
+
∂σzz
∂z
+
σzr
r
= 0

are satisfied.
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In the vacuum, constitutive equations (2.29) and governing equations
(2.32) become

Dr = ε0Er Dz = ε0Ez
(2.34)

∂2φ

∂r2
+
1

r

∂φ

∂r
+
∂2φ

∂z2
= 0

where ε0 is the electric permittivity of the vacuum.

For axially symmetric problems, the very useful is Hankel transform me-
thod.

Assume the solutions to differential equations (2.23) in the form of Hankel’s
integrals as follows

ϕi(r, z) =

∞∫

0

Ai(ξ) exp(−λiξz)J0(rξ) dξ (2.35)

where Ai(ξ) (i = 1, 2, 3) are arbitrary functions of the transform parameter ξ,
which is to be determined from the boundary conditions and λi are the roots
of equations (2.8), which have positive real parts to ensure the regularity
conditions at z → ∞. Then we can easily obtain mechanical and electrical
quantities (2.21), (2.26), (2.28) and (2.30).

We have:

ur(r, z) = −
3∑

i=1

ai1λiIi1(r, z) uz(r, z) = −
3∑

i=1

Ii0(r, z)

φ(r, z) =
3∑

i=1

ai3Ii0(r, z)

σrr(r, z) = −
3∑

i=1

ai4λiJi0(r, z) − (c11 − c12)
ur
r

σθθ(r, z) = −
3∑

i=1

ai4λiJi0(r, z) − (c11 − c12)
∂ur
∂r

σzz(r, z) =
3∑

i=1

ai4
λi
Ji0(r, z) σzr(r, z) =

3∑

i=1

ai4Ji1(r, z)

Er(r, z) =
3∑

i=1

ai3Ji1(r, z) Ez(r, z) =
3∑

i=1

ai3λiJi0(r, z)

Dr(r, z) =
3∑

i=1

ai5λ
2
i Ji1(r, z) Dz(r, z) =

3∑

i=1

ai5λiJi0(r, z)

(2.36)
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where

Iiν =

∞∫

0

ξAi(ξ) exp(−λiξz)Jν(rξ) dξ
(2.37)

Jiν =

∞∫

0

ξ2Ai(ξ) exp(−λiξz)Jν(rξ) dξ ν = 0, 1

As an application of the obtained fundamental solution, the punch problem
will be considered in the next Section.

3. Punch problem

We assume that the circular punch is flat ended, maintained at a con-
stants electric potential and loaded centrally by a concentrated force. On the-
se assumptions, it is known that both the electric potential φ and the punch
penetration δ are constants inside the contact region (Fig. 1).

Fig. 1. Circular punch problem

In this case, we have the boundary conditions

(a) uz(r, 0) = δ 0 ¬ r ¬ a
(b) φ(r, 0) = φ0 0 ¬ r ¬ a
(c) σrz(r, 0) = 0 r ­ 0
(d) σzz(r, 0) = 0 r > a

(3.1)

As usual (Fan et al., 1996), the displacement and electric potential are
prescribed in the contact region as δ and ϕ0, respectively. For the sake of
practical convenience, the punch can be grounded and the electric potential
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will be zero. Introducing two new unknown functions D1(ξ) and D2(ξ) for
simplicity of the formulae for uz and φ and using boundary condition (3.1c),
we may obtain the following system of equations

A1(ξ) +A2(ξ) +A3(ξ) = D1(ξ)

a13A1(ξ) + a23A2(ξ) + a33A3(ξ) = D2(ξ) (3.2)

a14A1(ξ) + a24A2(ξ) + a34A3(ξ) = 0

The solution to this system of algebraic equations is

m2Ai(ξ) = diD1(ξ) + liD2(ξ) (3.3)

where

l1 = −a24 + a34 l2 = −a34 + a14 l3 = −a14 + a24
d1 = a24a33 − a34a23 d2 = a13a34 − a14a33

d3 = a14a23 − a13a24 m2 =
3∑

i=1

di

(3.4)

Boundary conditions (3.1a), (3.1b) and (3.1d) yield

−
∞∫

0

ξD1(ξ)J0(rξ) dξ = δ 0 ¬ r ¬ a

∞∫

0

ξD2(ξ)J0(rξ) dξ = φ0 0 ¬ r ¬ a (3.5)

m

m2

∞∫

0

ξ2D1(ξ)J0(rξ) dξ +
m6
m2

∞∫

0

ξ2D2(ξ)J0(rξ) dξ = 0 r > a

where m and m6 are defined by equations (3.14) and m2 by equations (3.4).
Dual integral equations (3.5) are converted to the Abel integral equation

by means of the following integral representation for ξDi(ξ) (Sneddon, 1972)

ξDi(ξ) =

√
2

π

a∫

0

Φi(x) cos(ξx) dx i = 1, 2 (3.6)

Using the integrals involving Bessel and trigonometric functions, we may
verify that equation (3.5)3 is satisfied identically, while equations (3.5)1,2 give

−
√
2

π

r∫

0

Φ1(x)√
r2 − x2

dx = δ

√
2

π

r∫

0

Φ2(x)√
r2 − x2

dx = φ0 (3.7)
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These equations are of Abel’s type and have the following solutions

Φ1(x) = −
√
2

π
δ Φ2(x) =

√
2

π
φ0 (3.8)

Substituting (3.8) into equation (3.6) and integrating, we obtain

ξD1(ξ) = −
2

π
δ
sin ξa

ξ
ξD2(ξ) =

2

π
φ0
sin ξa

ξ
(3.9)

The stress σzz and electric displacement Dz on the crack plane z = 0 are
obtained as (r < a)

σzz(r, 0) =
2

π

(
− m
m2
δ +
m6
m2
φ0
) 1√
a2 − r2

(3.10)

Dz(r, 0) =
2

π

(
−m5
m2
δ +
m7
m2
φ0
) 1√
a2 − r2

where m5 and m7 are defined by equations (3.14).

The condition of complete contact

σzz(r, 0) ¬ 0 0 ¬ r < a

requires
m

m2
δ ­ m6
m2
φ0

The total force P and the concentrated electric charge Q are obtained by
integrating equations (3.10) over a circle. We obtain

P = 4
( m
m2
δ − m6
m2
φ0)a Q = 4

(m5
m2
δ − m7
m2
φ0)a (3.11)

Using the above equations in (3.10), we obtain (r < a)

σzz(r, 0) = −
P

2πa

1√
a2 − r2

Dz(r, 0) = −
Q

2πa

1√
a2 − r2

(3.12)

On the other hand, solving (3.11) with respect to δ and φ0, we obtain

δ =
m2
4m̃a
(Pm7 −Qm6) φ0 =

m2
4m̃a
(Pm5 −Qm) (3.13)
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where m̃, m2, m6, m7, m5 are defined as follows

m =
3∑

i=1

ai4di
λi

m2 =
3∑

i=1

di

m5 =
3∑

i=1

ai5λidi m6 =
3∑

i=1

ai4li
λi

m7 =
3∑

i=1

ai5λili m̃ = mm7 −m5m6

(3.14)

It is seen that the stress singularity has identically the same form as that
for pure elasticity. In other words, the coupling effect of piezoelectric nature
has no effect on the contact stress. As regards to the penetration depth δ and
electric potential φ0, these quantities depend on the elastic, piezoelectric and
dielectric constants.

The displacement components ur and uz, electric potential φ, stress σzr,
σθθ, σrr and singular stress σzz, electric field intensities Er and Ez and electric
displacements Dr and Dz in the piezoelectric half space are obtained as

ur(r, z) =
2a

πrm2

3∑

i=1

ai1λi(δdi − φ0li)(1 − ηi)

uz(r, z) =
1

m2

3∑

i=1

(δdi − φ0li)
(
1− 2
π
tan−1 ξi

)

φ(r, z) = − 1
m2

3∑

i=1

ai3(δdi − φ0li)
(
1− 2
π
tan−1 ξi

)

σzr(r, z) = −
2

πrm2

3∑

i=1

ai4(δdi − φ0li)
ξi(1− η2i )
ξ2i + η

2
i

σzz(r, z) = −
2

πam2

3∑

i=1

ai4
λi
(δdi − φ0li)

ηi
ξ2i + η

2
i

σrr(r, z) =
2

πam2

3∑

i=1

ai4λi(δdi − φ0li)
ηi

ξ2i + η
2
i

− (c11 − c12)
ur
r
(3.15)

σθθ(r, z) =
2

πam2

3∑

i=1

ai4λi(δdi − φ0li)
ηi

ξ2i + η
2
i

− (c11 − c12)
∂ur
∂r

Er(r, z) = −
2

πrm2

3∑

i=1

ai3(δdi − φ0li)
ξi(1− η2i )
ξ2i + η

2
i
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Ez(r, z) = −
2

πam2

3∑

i=1

ai3λi(δdi − φ0li)
ηi

ξ2i + η
2
i

Dr(r, z) = −
2

πrm2

3∑

i=1

ai5λ
2
i (δdi − φ0li)

ξi(1− η2i )
ξ2i + η

2
i

Dz(r, z) = −
2

πam2

3∑

i=1

ai5λi(δdi − φ0li)
ηi

ξ2i + η
2
i

The closed form solutions for elastic and electric fields (3.15) are obtained
accordingly to the improper integrals presented analytically in Appendix. In
the above equations, three sets of oblate spherodial coordinates ξi, ηi are
defined by equations

r2 = a2(1 + ξ2i )(1− η2i ) λiz = aξiηi i = 1, 2, 3 (3.16)

and are related to r, λiz by equations

ξi(r, z, a, λi) =
1√
2a

√√
(r2 + λ2i z

2 − a2)2 + 4λ2i z2a2 + (r2 + λ2i z2 − a2)
(3.17)

ηi(r, z, a, λi) =
1√
2a

√√
(r2 + λ2i z

2 − a2)2 + 4λ2i z2a2 − (r2 + λ2i z2 − a2)

On the plane z = 0 we have

ur(r, 0) =
2a

πrm2
(m1δ −m∗1φ0)

[
1−
√

1− r
2

a2
H(a− r)

]

uz(r, 0) = δ
[
1−
(
1− 2
π
sin−1

a

r

)
H(r − a)

]

φ(r, 0) = φ0
[
1−
(
1− 2
π
sin−1

a

r

)
H(r − a)

]

σzr(r, 0) ≡ 0

σzz(r, 0) = −
P

2πa

H(a− r)√
a2 − r2

σrr(r, 0) =
2

πm2
(δm∗4 − φ0m∗∗4 )

H(a− r)√
a2 − r2

− (c11 − c12)
ur
r

(3.18)

σθθ(r, 0) =
2

πm2
(δm∗4 − φ0m∗∗4 )

H(a− r)√
a2 − r2

− (c11 − c12)
∂ur
∂r
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Er(r, 0) = −
2a

πrm2
(δm3 − φ0m2)

H(r − a)√
r2 − a2

=
2a

πr
φ0
H(r − a)√
r2 − a2

Ez(r, 0) = −
2

πm2
(δm∗3 − φ0m∗∗3 )

H(a − r)√
a2 − r2

Dr(r, 0) = −
2a

πrm2
(δm∗5 − φ0m∗7)

H(r − a)√
r2 − a2

Dz(r, 0) = −
Q

2πa

H(a− r)√
a2 − r2

where H(r − a) is the Heaviside function and

m1 =
3∑

i=1

ai1λidi m∗1 =
3∑

i=1

ai1λili m∗3 =
3∑

i=1

ai3λidi

m∗∗3 =
3∑

i=1

ai3λili m∗4 =
3∑

i=1

ai4λidi m∗∗4 =
3∑

i=1

ai4λili

m∗5 =
3∑

i=1

ai5λ
2
i di m∗7 =

3∑

i=1

ai5λ
2
i li

(3.19)

Note that

3∑

i=1

ai4di = 0
3∑

i=1

ai4li = 0
3∑

i=1

ai3li = m2

m3 =
3∑

i=1

ai3di = 0
3∑

i=1

li = 0

(3.20)

4. Numerical results

The piezoelectric material being considered is PZT-4 due to its popularity.
The non-zero constitutive coefficients of PZT-4 are (Park and Sun, 1995)

c11 = 13.90 c33 = 11.30 c44 = 2.56

c12 = 7.78 c13 = 7.43

}
(×1010, in N/m2)

e15 = 13.44 e31 = −6.98 e33 = 13.84 (in C/m2)

ε11 = 60.00 ε33 = 54.70 (×10−10, in C/Vm)
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Also two other piezoelectric ceramics PZT-5H and P-7 as the comparative
model materials for our numerical calculation are used. The properties of PZT-
5H are

c11 = 12.60 c33 = 11.70 c44 = 3.53

c12 = 5.50 c13 = 5.30

}
(×1010, in N/m2)

e15 = 17.00 e31 = −6.50 e33 = 23.30 (in C/m2)

ε11 = 151.00 ε33 = 130.00 (×10−10, in C/Vm)

and the properties of P-7 are

c11 = 13.00 c33 = 11.90 c44 = 2.50

c12 = 8.30 c13 = 8.30

}
(×1010, in N/m2)

e15 = 13.50 e31 = −10.30 e33 = 14.70 (in C/m2)

ε11 = 171.00 ε33 = 186.00 (×10−10, in C/Vm)

Fig. 2. Variation of the ratio of concentrated electric charge Q to total force P with
the ratio of boundary electric potential φ0 to depth of indentation of the punch δ

Figure 2 shows the dependence of Q/P [C/N] versus ϕ0/δ [V/m]. From
the condition of complete contact and equation (3.10)1, we conclude that
φ0/δ ­ −0.3938; −0.3583; −0.3240 for PZT-4, PZT-5H and P-7 piezoelectric
materials, respectively. In this figure we can notice that, firstly, the material
dissimilarity is more visible, secondly, these curves either increase for one ma-
terial or decreases for another with the increasing ratio φ0/δ. These curves
tend to some asymptotic values, which are positive or negative depending on
physical properties of the material. Note that the significant role in the pro-
blem under consideration plays the piezoelectric constant e33. This constant
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for PZT-5H piezoelectric material is significant larger from the ones for other
materials. Therefore, the behaviour of this material is opposite to the other
ones.

A. Appendix

The following integrals are used

∞∫

0

d

dξ

(sin ξa
ξ

)
e−ξλizJ0(rξ) dξ = aηi

[
1− ξi

(π
2
− tan−1 ξi

)]
(A.1)

∞∫

0

d

dξ

(sin ξa
ξ

)
e−ξλizJ1(rξ) dξ = −

r

2

(π
2
− tan−1 ξi −

ξi
1 + ξ2i

)
(A.2)

∞∫

0

ξ
d

dξ

(sin ξa
ξ

)
e−ξλizJ0(rξ) dξ = −

π

2
+ tan−1 ξi +

ξi
ξ2i + η

2
i

(A.3)

∞∫

0

ξ
d

dξ

(sin ξa
ξ

)
e−ξλizJ1(rξ) dξ =

r

a

ηi
(1 + ξ2i )(ξ

2
i + η

2
i )

(A.4)

where ξi and ηi are defined by equations (3.17) and λi are the roots of equation
(2.8), which have positive real parts.
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O zagadnieniu kontaktowym gładkiego stempla

w piezoelektrosprężystości

Streszczenie

Rozpatrzono osiowo symetryczne zagadnienie elektrosprężystości dla materiałów
piezoelektrycznych. Wprowadzono trzy potencjały opisujące przemieszczenia, naprę-
żenia, elektryczny potencjał, składowe wektora pola elektrycznego i elektrycznych
przemieszczeń. Znalezione fundamentalne rozwiązania wykorzystano do analizy za-
gadnienia kontaktowego gładkiego stempla. Znaleziono ścisłe rozwiązania opisujące
sprężyste i elektryczne pola w rozpatrywanym zagadnieniu kontaktowym. Wyniki
obliczeń przedstawiono na wykresie w celu pokazania wpływu mechanicznych i elek-
trycznych obciążeń na analizowane wielkości. Efekt anizotropii materiałów piezoelek-
trycznych w omawianym zagadnieniu jest znaczący.
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