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Rigid kinematics is re-examined applying the material, spatial and mixed
description without use of any coordinate system. Some tensor represen-
tations for the displacement gradient, velocity gradient, and acceleration
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1. Introduction

The most part of applied mechanics is study of deforming bodies. Neverthe-
less, rigid fields play a significant role in mechanics. Firstly, every homogeneous
deformation may be, in general, composed of stretch, translation, and rota-
tion, the last two of which being the evident parts of rigid deformation. Next,
an infinitesimal rigid displacement is involved in the fundamental theorem of
virtual work (cf. Gurtin, 1981). In theory of plasticity, the rigidplastic model
of materials is applied. Last but not least, a rigid body itself may be a satisfac-
tory idealization in many branches of mechanics, e.g., in celestial mechanics,
in theory of machines, mechanisms and devices (position analysis, collapse), in
robotics (cf. Nwokah and Hurmuzlu, 2002). The notion of rigidity is exploited
within both classical kinematics as well as theory of microstructure bodies.
”The assumption of rigidity was the key step...” (cf. Uicker et al., 2003).

1See also: Material and spatial description of rigid fields, XIII Conference on ”Theoretical

Foundations of Civil Engineering”, Dnepropetrovsk-Warsaw, June 2005, Polish-Ukrainian

Transactions, 571-578
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The material and spatial description are two well-known basic approaches
applied in continuum mechanics. However, the simultaneous use of both of
them is not frequent. Typically, as far as rigid continua are concerned, the
spatial description is used (cf., e.g., Gurtin and Williams, 1976; Wang, 1979).
Some authors employ a vector (indicial) notation without any use of tensors
(cf. Easthope, 1964).
The main purpose of this work is to provide a refreshing comparison of

the material and spatial description by an example of the simplest material.
We carry out both descriptions parallel one to another. Appropriate mixed
relations are also provided. In order to simplify the notations, we do not use
any coordinate system in the physical space. Although the indicial notation
”kills two birds with one stone”, i.e., coordinate generality and specificity (cf.
Papastavridis, 1998), at the same time can overshadow to some extent the
subject being considered. The paper is entirely confined to ”kinematics which
unencumbered by physical restrictions can provide the preliminary light” (see
Truesdell and Toupin, 1960), however, no doubt, some theoretical aspects of
rigid body dynamics are still worthy of attention (cf. Sławianowski, 2004).

2. Deformation

A rigid deformation on any set of points can be extended to form a global
rigid deformation on all of the physical space. Thus, consider an orientation-
preserving isometry χ : E → E , where E is an oriented three-dimensional
Euclidean point space called a physical space endowed with the translation
space V. The deformation gradient is then a constant mapping gradχ : E →
→ L(E ,V ⊗ V), where at every point gradχ is a proper orthogonal tensor.
The vector-valued displacement field is defined by

um(A) = χ(A)−A = us(χ(A))
(2.1)

us(A) = A− χ−1(A) = um(χ−1(A))

where A is a general point of the physical space, and superscripts m and s

indicate the material and spatial description, respectively. By virtue of (2.1),
the corresponding displacement gradients are

gradum = R− 1 gradus = 1− R> (2.2)

where 1 ∈ V ⊗ V stands for the identity tensor.
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Given any point P , so-called base point (cf. Easthope, 1964), we can de-
compose the mapping χ as follows

χ = κP ◦ ϑP (2.3)

where ϑP : E → E is rotation with P fixed, while κP : E → E is translation
with the translation vector equal to the translation vector of point P , i.e.,

ϑP (P ) = P κP (P ) = χ(P ) (2.4)

Precisely, for every A ∈ E

ϑP (A) = P + R[A− P ] κP (A) = A+wP (2.5)

where
wP = u

m(P ) R = gradχ(A) = gradϑP (A) (2.6)

Generally, it takes six coordinates to characterize a particular χ, namely three
ones to characterize wP and next three to characterize R. Making use of (2.5)
and (2.6), we replace (2.3) by

χ(A) = P +wP + R[A− P ] = ϑP (A) + u
m(P ) = ϑP (A) + κP (A)−A (2.7)

Hence
um(A) = um(A;ϑP ) + u

m(A;κP ) (2.8)

where the first term in the right hand side of (2.8) represents the displacement
due to rotation ϑP , whereas the second term represents the displacement due
to translation κP , i.e.

um(A;ϑP ) = ϑP (A) −A um(A;κP ) = κP (A)−A (2.9)

The inverse of (2.3) is

χ−1 = (κP ◦ ϑP )
−1 = (ϑP )

−1 ◦ (κP )
−1 (2.10)

where

(κP )
−1(A) = A−wP (ϑP )

−1(A) = P + R>[A− P ] (2.11)

After obvious transformations, we obtain (cf. (2.7))

χ−1(A) = P + R>[A− P −wP ] = P −R
>wP + R

>[A− P ] =
(2.12)

= (ϑP )
−1(A) + R>[(κP )

−1(A)−A]
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Hence

us(A) = A−(ϑP )
−1(A)+R>[A−(κP )

−1(A)] = (1−R>)[A−P ]+R>wP (2.13)

On comparing (2.8) and (2.13), and taking (2.5) into account, both forms of
the displacement are related with each other by

us = R>um um = Rus (2.14)

whereas the corresponding displacement gradients transform to each other by

gradum = −( gradus)> = R gradus = ( gradus)R
(2.15)

gradus = −( gradum)> = R> gradum = ( gradum)R>

We observe that the symmetric parts of (2.15)1 and (2.15)2 are opposite, whe-
reas the skew parts coincide, i.e.

sym gradum + sym gradus = 0
(2.16)

skw gradum = skw gradus

3. Motion

Let T = [a, b) ⊂ R be a set of real numbers which correspond to time in-
stants. Rigid motion during the time interval T is a mapping χ : E ×T → E ,
where χ(A, t) is a position of a point A at the time t. Analogously, the displa-
cements as well as other resulting fields are functions of two arguments. The
mapping χ when restricted to a given time t constitutes global deformation
at the time t, and when restricted to a given point A describes motion of the
point A.
In the subsequent analysis, the rotation tensor is a key quantity. Following

the orthogonality of R and taking into account that the time differentiating
commutes with the transpose operation, we have

∂tR
> = −R>(∂tR)R

>

(3.1)

∂2t R
> = R>

(

2(∂tR)R
>(∂tR)R

> − (∂2t R)R
>
)

where ∂t means time differentiation.



On the material and spatial description... 829

Material description

The velocity vm and the acceleration am are determined by

vm = ∂tu
m am = ∂tv

m = ∂2t u
m (3.2)

Knowing that the partial time differentiation commutes with the gradient
operation, the corresponding velocity gradients are

gradvm = ∂t gradu
m = ∂tR

(3.3)

gradam = ∂t gradv
m = ∂2t gradu

m = ∂2t R

Note that the moving centrode in planar motion consists of points for which
vm = 0.

Spatial description

Unlike in the material description, the velocity vs and the acceleration as

are defined with the use of appropriate field gradients, i.e.,

vs = ∂tu
s + ( gradus)vs as = ∂tv

s + ( gradvs)vs (3.4)

where ∂t means time differentiation with the point fixed. Taking the gradient
of (3.4), results in

gradvs = ∂t gradu
s + ( gradus) gradvs

(3.5)

gradas = ∂t gradv
s + ( gradvs) gradvs

Making use of (3.1), the first and the second time rates of the displacement
gradient are

∂t gradu
s = R>(∂tR)R

>

(3.6)

∂2t gradu
s = R>

(

(∂2t R)R
> − 2(∂tR)R

>(∂tR)R
>
)

Rearranging (3.4)1, and next carrying the gradient operation, after the use of
(3.6)1, we simplify (3.4)1 and (3.5)1 to

vs = R∂tu
s gradvs = R∂t gradu

s = (∂tR)R
> (3.7)

Introducing (3.7)1 into (3.4)2, and (3.7)2 into (3.5)2 we find

as = R∂2t u
s + 2(∂tR)∂tu

s

(3.8)

gradas = R∂2t gradu
s + 2(∂tR)∂t gradu

s = (∂2t R)R
>



830 M.Rudnicki

With the aid of (3.1), the velocity gradient and the acceleration gradient can
be easily decomposed into the symmetric and skew-symmetric parts, i.e.,

sym gradvs = 0 skw gradvs = (∂tR)R
>

sym gradas = ( gradvs) gradvs = (∂tR)∂t gradu
s = (∂tR)R

>(∂tR)R
>

(3.9)

skw gradas = ∂t gradv
s = R∂2t gradu

s + (∂tR)∂t gradu
s =

= (∂2t R− (∂tR)R
>(∂tR))R

>

In a consequence of (3.9)1, the following identities are satisfied

( gradvs)vs = −
1

2
grad(vs • vs)

(3.10)

tr [( gradvs) gradvs] = − gradvs • gradvs

where the symbol ”•” denotes the inner product of two vectors or two tensors
(cf. Gurtin 1981).
Note that the fixed centrode in planar motion consists of points for which

vs = 0.

Mixed relations

The ”cross” formulas relating velocity and displacement, i.e., the velocity
in the material form and the displacement in the spatial form or vice versa,
after using (2.14), can be written down as follows

vm = R∂tu
s + ( gradvm)us vs = ∂tu

m − ( gradvs)um

am = R∂2t u
s + 2( gradvm)∂tu

s + ( gradam)us (3.11)

as = ∂2t u
m − ( gradas)um

The gradients of the material and spatial forms of the velocity and accele-
ration are related by, respectively

gradvm = ( gradvs)R gradvs = ( gradvm)R>
(3.12)

gradam = ( gradas)R gradas = ( gradam)R>

Subtraction of the material and spatial form of the velocity and the acce-
leration yields, respectively

vm − vs = ( gradvm)us = ( gradvs)um
(3.13)

am − as = ( gradam)us = ( gradas)um
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4. Representations

4.1. Vector-valued fields

The spatial dependence of kinematical fields has the form (the second
argument t is omitted)

um(A) = um(P ) + (R−1)(A−P ) us(A) = us(P ) + (1− R>)(A −P )

vm(A) = vm(P ) + ∂tR(A− P ) vs(A) = vs(P ) + ∂tRR
>(A− P )

am(A) = am(P ) + ∂2tR(A− P ) as(A) = as(P ) + ∂2t RR
>(A− P )

(4.1)
whilst the constant terms in (4.1) are equal to (cf. (2.14)), respectively

um(P ) = w = Rws us(P ) = ws = R>w

vm(P ) = ∂tw = ∂tRw
s + R∂tw

s

vs(P ) = R∂tw
s = ∂tw − ∂tRR

>w (4.2)

am(P ) = ∂2tw = R∂
2
tw
s + 2∂tR∂tw

s + ∂2t Rw
s

as(P ) = R∂2tw
s + 2∂tR∂tw

s = ∂2tw − ∂
2
t RR

>w

Appropriate representations for the tensors involved in (4.1) are derived in the
sequel.

4.2. Rotation-related tensors

The most general rotation

If ϕ is an angle of rotation, and i is a unit vector parallel to the axis of
rotation, then the rotation tensor admits the following representation

R = exp(Φ) Φ = −Eϕ ϕ = −
1

2
tr (2,4)(3,5)(E⊗Φ)

ϕ = ϕi i • i = 1

(4.3)

where E means an alternating third-order tensor (the Ricci tensor), tr (2,4)(3,5)
indicates the appropriate double contraction operation. Thus, Φ is a skew
tensor the axial vector of which, named the rotation vector, is ϕ. In a result

symR = 1+(cosϕ−1)(1− i⊗ i)
1

2
tr (2,4)(3,5)(E⊗R) = − sinϕi (4.4)

The vector presented by (4.4)2 is the axial vector corresponding to the skew
part of the rotation tensor. Once the representation of R is established, the
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related tensors can be put in the analogous formulas. However, before doing
that we disclose some useful identities. Namely, constancy of the magnitude
of the i implies the following conditions

i • ∂ti = 0 i • ∂2t i+ ∂ti • ∂ti = 0 (4.5)

which allow for

(Ei)(Ei) = i⊗ i− 1 (E∂ti)(Ei) = i⊗ ∂ti
(4.6)

(E∂2t i)(Ei) = i⊗ ∂
2
t i+ (∂ti • ∂ti)1

and

skw
(

(E∂ti)i⊗ i
)

=
1

2
E∂ti skw ((Ei)∂ti⊗ ∂ti) =

1

2
(∂ti • ∂ti)Ei

(4.7)

skw ((E∂2t i)i⊗ i) =
1

2
(E∂2t i+ (∂ti • ∂ti)Ei)

Successive differentiation of (4.4) yields

sym ∂tR = ∂tϕ sinϕ(i⊗ i− 1) + 2(1− cosϕ)sym (i⊗ ∂ti)
(4.8)

1

2
tr (2,4)(3,5)(E⊗ skw ∂tR) = −∂tϕ cosϕi− sinϕ∂ti

and

sym ∂2t R = (∂
2
t ϕ sinϕ+ (∂tϕ)

2 cosϕ)(i⊗ i− 1) +

+ 2(1− cosϕ)sym (∂ti⊗ ∂ti) +

+ 4∂tϕ sinϕsym (i⊗ ∂ti) + 2(1 − cosϕ)sym (i⊗ ∂
2
t i)

(4.9)

1

2
tr (2,4)(3,5)(E⊗ ∂

2
t R) =

= (−∂2t ϕ cosϕ+ (∂tϕ)
2 sinϕ)i− 2∂tϕ cosϕ∂ti− sinϕ∂

2
t i

The axial vector ω, called the angular velocity, corresponding to the skew
tensor (∂tR)R

> is equal to

ω = −
1

2
tr (2,4)(3,5)(E⊗((∂tR)R

>)) = ∂tϕi+sinϕ∂ti+(1−cosϕ)i×∂ti (4.10)
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The symmetrical part, and the axial vector γ, called the angular acceleration,
corresponding to the skew part of the tensor ∂2tRR

> take the form

sym(∂2t RR
>) = (Eω)(Eω) = ω ⊗ ω − (ω • ω)1 =

= (i⊗ i− 1)
(

(∂tϕ)
2 + (∂ti • ∂ti) sin

2 ϕ
)

+ 2(∂tϕ) sinϕsym (i⊗ ∂ti) +

+ 2(1 − cosϕ)
(

sym (i× ∂ti)⊗ (∂tϕi+ sinϕ∂ti) + cosϕ(∂ti⊗ ∂ti) +

− (∂ti • ∂ti)i⊗ i
)

(4.11)

γ = ∂tω = −
1

2
tr (2,4)(3,5)(E⊗ ((∂

2
t R)R

>)) = ∂2t ϕi+

+ ∂tϕ(1 + cosϕ)∂ti+ sinϕ∂
2
t i+ ∂tϕ sinϕi× ∂ti+ (1− cosϕ)i× ∂

2
t i

The advantage of the spatial description consists in the skewity of the
velocity gradient as well as in the dependence of the symmetrical part of the
acceleration gradient on the skew tensor, i.e., Eω (cf. (4.11)1). Thereby, every
non-constant component of both the velocity and acceleration representations
(4.1)4,6 can be expressed entirely with the use of the vector product of two
vectors instead of the tensor product of a tensor and a vector. Explicitly

(∂tR)R
>(A− P ) = ω × (A− P )

(4.12)

(∂2t R)R
>(A− P ) = ω × (ω × (A− P )) + γ × (A− P )

Rotation about nearly fixed axis

Let (i1, i2, i3) be a fixed orthonormal basis in V. Assume that

i = i3 +ψ ψ = ψ1i1 + ψ2i2 (4.13)

where ψ is a time-dependent small vector. Hence

∂ti = ∂tψ ∂2t i = ∂
2
tψ (4.14)

Now that, (4.3)5 and (4.5) change to

ψ • ψ = 0 ψ • ∂tψ = 0
(4.15)

ψ • ∂2tψ + ∂tψ • ∂tψ = 0

Thus, retaining ψ and its time derivatives in the corresponding equations,
we make the errors of the order of O(ψ2), O(ψ∂tψ), and O(ψ∂

2
t ψ + ∂tψ∂tψ),
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where ψ = ‖ψ‖, respectively. By means of (4.13), the assertions (4.4) become

symR = 1+ (cosϕ− 1)
(

1− i3 ⊗ i3 − 2sym (ψ ⊗ i3) +O(ψ
2)
)

(4.16)

1

2
tr (2,4)(3,5)(E⊗ R) = − sinϕ(i3 +ψ)

Carrying out time differentiation twice over, we obtain

sym∂tR = ∂tϕ sinϕ
(

i3 ⊗ i3 − 1+ 2sym (ψ ⊗ i3) +O(ψ
2)
)

+

+ 2(1 − cosϕ)
(

sym (i3 ⊗ ∂tψ) +O(ψ∂tψ)
)

(4.17)

1

2
tr (2,4)(3,5)(E⊗ ∂tR) = ∂tϕ cosϕ(i3 +ψ) + sinϕ∂tψ

and next

sym∂2t R =
(

∂2t ϕ sinϕ+ (∂tϕ)
2 cosϕ

)(

i3 ⊗ i3 −1+ sym(ψ ⊗ i3) +O(ψ
2)
)

+

+ 4∂tϕ sinϕ
(

sym (∂tψ ⊗ i3) +O(ψ∂tψ)
)

+

+ 2(1− cosϕ)
(

sym(∂2t ψ ⊗ i3) +O(ψ∂
2
t ψ + ∂tψ∂tψ)

)

(4.18)

1

2
tr (2,4)(3,5)(E⊗ ∂

2
tR) =

(

∂2t ϕ cosϕ− (∂tϕ)
2 sinϕ

)

(i3 +ψ) +

+ 2∂tϕ cosϕ∂tψ + sinϕ∂
2
t ψ

The angular velocity has the form

ω = ∂tϕ(i3 +ψ) + sinϕ∂tψ + (1− cosϕ)
(

(i3 × ∂tψ) +O(ψ∂tψ)
)

(4.19)

At last, using (4.19), we find

(Eω)(Eω) =
(

i3 ⊗ i3 − 1+ 2sym (ψ ⊗ i3) +O(ψ
2)
)

(∂tϕ)
2 +

+ 2(∂tϕ) sinϕsym (∂tψ ⊗ i3) +

+ 2(1− cosϕ)(∂tϕ)sym
(

(i3 × ∂tψ)⊗ i3
)

+O(∂tψ∂tψ) + (∂tϕ)O(ψ∂tψ)
(4.20)

γ = ∂2t ϕ(i3 +ψ) + ∂tϕ(1 + cosϕ)∂tψ + sinϕ∂
2
t ψ +

+ ∂tϕ sinϕ
(

i3 × ∂tψ +O(ψ∂tψ)
)

+ (1− cosϕ)
(

i3 × ∂
2
tψ +O(ψ∂

2
t ψ)
)
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Rotation about fixed axis

Setting ψ = 0 as well as ∂tψ = 0 and ∂2tψ = 0 in the appropriate
equations inferred previously, in other words, assuming

i = i3 (4.21)

we can examine the case in which the axis of rotation is time-independent.
Particularly, now the rotation tensor is represented by

symR = cosϕ1+ (1− cosϕ)i3 ⊗ i3
(4.22)

1

2
tr (2,4)(3,5)(E⊗ R) = sinϕi3

Relations (4.17) simplify to

sym ∂tR = ∂tϕ sinϕ(i3 ⊗ i3 − 1)
(4.23)

1

2
tr (2,4)(3,5)(E⊗ ∂tR) = ∂tϕ cosϕi3

and (4.18) change to

sym∂2t R = (∂
2
t ϕ sinϕ+ (∂tϕ)

2 cosϕ)(i3 ⊗ i3 − 1)
(4.24)

1

2
tr (2,4)(3,5)(E⊗ ∂

2
t R) = (∂

2
t ϕ cosϕ− (∂tϕ)

2 sinϕ)i3

The angular velocity attains a simple form

ω = ∂tϕ = ∂tϕi3 (4.25)

Similarly, (4.20) can be written down as

(Eω)(Eω) = (i3 ⊗ i3 − 1)(∂tϕ)
2 γ = ∂2tϕ = ∂

2
t ϕi3 (4.26)

5. Simplifications due to zero-angle of rotation

When the angle of rotation ϕ at a certain time attains zero then the
rotation tensor is equal to the identity tensor at this time (cf. (4.4)), i.e.,

ϕ = 0 R = 1 (5.1)
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Thus, the deformation χ is purely a translation. Time rates of the deformation
tensor reduce to

∂tR = Eω ∂2tR = (∂tR)(∂tR) + Eγ (5.2)

where
ω = ∂tϕi γ = ∂2t ϕi+ 2∂tϕ∂ti (5.3)

In particular, assumptions (5.1) are satisfied when the current configuration
is taken to be the reference configuration, i.e., the deformation is the identity
transformation (cf. Wang, 1979).
An obvious consequence of (5.1) is that both the displacement fields are

constant and coincide at every point (cf. (2.14) and (2.15))

us = um ≡ u gradu = 0 (5.4)

The appropriate equations regarding the material description do not un-
dergo any change. However, the equations relating the spatial description of
the displacement, velocity and acceleration simplify to

vs = ∂tu
s ∂tv

s = ∂2t u
s + (∂tR)v

s

(5.5)

as = ∂tv
s + (∂tR)v

s = ∂2t u
s + 2(∂tR)v

s

Subtracting the material and spatial description of the velocity and acce-
leration, we find

vm − vs = ∂tu
m − ∂tu

s = (∂tR)u am − as = (∂2t R)u (5.6)

whereas

∂tv
m − ∂tv

s = (∂2t R)u+ (∂tR)v
s

(5.7)

∂2t u
m − ∂2t u

s = (∂2t R)u+ 2(∂tR)v
s

Taking the gradient of (5.6), it follows

gradvm = gradvs = grad∂tu
m = grad∂tu

s gradam = gradas

(5.8)
while, in turn, (5.7) leads to

grad∂tv
m − grad∂tv

s = (∂tR)(∂tR)
(5.9)

grad∂2t u
m − grad∂2t u

s = 2(∂tR)(∂tR)
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6. Motion assuming small rotation

Now assume that ϕ be small, i.e., turning back to deformation (2.3), ϑP be
small. Then R, being equal to gradϑP (in fact, independent of P ), reduces
as follows (cf. (4.4), (4.8), (4.9))

R = 1+Φ+O(ϕ2) = 1+O(ϕ) (6.1)

where Φ is a small skew tensor. Making use of (6.1), we find

R− 1 = Φ(1 +O(ϕ)) 1− R> = Φ(1 +O(ϕ))

∂tR = ∂tΦ(1 +O(ϕ)) ∂tRR
> = ∂tΦ(1 +O(ϕ))

∂2t R = ∂
2
tΦ(1 +O(ϕ)) ∂2t RR

> = ∂2t φ(1 +O(ϕ))

(6.2)

Similarly

ω = ∂tϕ(1 +O(ϕ)) γ = ∂tω(1 +O(ϕ)) (6.3)

With the aid of (6.1) and (6.2), relations (2.14) and (3.13) change to

us = um(1 +O(ϕ))

vm − vs = ∂tΦ(1 +O(ϕ))u
s = ∂tΦ(1 +O(ϕ))u

m (6.4)

am − as = ∂2tΦ(1 +O(ϕ))u
s = ∂2tΦ(1 +O(ϕ))u

m

It is seen that, to within an error of O(ϕ) as ϕ → 0, the displacement
field as well as the displacement, velocity, and acceleration gradients in the
material and spatial description coincide (cf. (6.4)1 and (6.2)). Moreover, all
the above-mentioned gradients are skew. However, in general, this is not the
case as far as the velocity and acceleration fields are concerned (cf. (6.4)2,3).

7. Relative motion of a particle

Let a C2-class function ξ : T → E be motion of a particle relative to
the physical space (or a smaller body) assuming the physical space is in rest.
Anyway, deformation of the physical space changes the position of the particle.
Thus, the resultant position of the particle is given by a function η : T → E
defined by

η(t) = χ(ξ(t), t) (7.1)
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The velocity of the particle is the time rate of (6.1). The chain rule leads to

∂tη = v
b + vp (7.2)

where

vb(t) = ∂tχ(ξ(t), t) = v
m(ξ(t), t) = vs(η(t), t)

(7.3)

vp(t) = R(t)∂tξ(t)

The symbol ∂t in (7.3)1 denotes partial time differentiation holding the point
ξ(t) fixed. The superscripts b and p are the first letters of the words: body and
particle. The acceleration of the particle is the time rate of (7.2). In view of

∂tv
b = ab + (∂tR)∂tξ ∂tv

p = ap + (∂tR)∂tξ (7.4)

where

ab(t) = ∂2t χ(ξ(t), t) = a
m(ξ(t), t) = as(η(t), t)

(7.5)

ap(t) = R(t)∂2t ξ(t)

we arrive at
∂2t η = a

b + ap + aC (7.6)

where the last term in (7.6) (named after Coriolis) is defined by

aC = 2(∂tR)∂tξ = 2ω × v
p (7.7)

8. Concluding remarks

As regards the comparison of kinematical fields in the material and spatial
description, it is obvious that both forms of the displacement at any point take
either zero or non-zero values (cf. (2.14)). Thus, if a given point at any time is
a fixed point of the deformation mapping, then the displacements at this point
at this time vanish, and otherwise. However, in general, this is not the case as
far as the velocity and acceleration fields are concerned. Nevertheless, a more
stringent condition can be formulated. Namely, if either form of the velocity
(acceleration), i.e., the material or spatial form, is zero, and, in addition, the
displacement is zero, then the other form of the velocity (acceleration) vani-
shes as well (cf. (3.13)). On the other hand, if a given point is a fixed point
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of the deformation mapping in any interval of time, then the velocities and
accelerations at this point vanish together with the displacements during that
interval of time.

Representation formulas (4.1) are composed of constant and variable
parts. Obviously, relations of four types are possible, i.e., ”material-material”,
”spatial-spatial”, ”material-spatial” and ”spatial-material”. The variable parts
are affected by rotation and unaffected by translation, whereas the constant
parts are influenced by translation, and, interestingly, most of them by rota-
tion too. Precisely, the rotation does not affect only the ”material-material”
constant parts, which are expressed entirely in terms of w (cf. (4.2)).

The material and spatial forms of the displacement, velocity and accele-
ration coincide at every point of the physical space if and only if the rota-
tion tensor is equal to the identity tensor. Moreover, all the above-mentioned
vector-valued fields are then constant.

Assuming that the rotation is small, the difference between the material
and spatial description proves to be immaterial so far as the displacement field
as well as the displacement, velocity and acceleration gradients are concerned.
In order to discard this difference in the case of the velocity and acceleration
the additional requirement about smallness of the translation as a part of the
deformation (cf. (2.3)) is necessary. For instance, small translations are arising
from motion in a small interval of time.

At last, both the material and spatial descriptions are necessary to define
the notion of both centrodes, i.e., the fixed and moving ones, in an elegant
manner.

Despite our consideration is carried out under the assertion that the defor-
mation transforms the physical space into itself, the results treated in a proper
way are in fact valid for any non-coplanar set of points (cf. e.g. Brinkman and
Klotz, 1971).

Unlike in many books on the subject, the presented paper does not use the
indicial notation excluding some representation formulas provided in Section 3.
In our hope, such an approach is better than that of the others as far as
some general concepts are concerned and could reduce the difficulties that
arise while studying mechanics (cf. Evans et al., 2004). Remembering that all
real materials are deformable, there is every reason to extend the presented
treatment on less stringent constrained materials.
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O materialnym i przestrzennym opisie ciał sztywnych

Streszczenie

Rozważono kinematykę ciała sztywnego w opisie materialnym, przestrzennym
i mieszanym bez wprowadzania układu współrzędnych. Przedstawiono reprezentacje
tensorowe gradientów pól przemieszczenia, prędkości i przyspieszenia. Wyodrębniono
przypadki szczególne obrotu wokół stałej oraz prawie stałej osi. Zbadano ruch przy
założeniu małego obrotu. Naszkicowano zagadnienie ruchu względnego cząstki.
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