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Numerical modeling of an unsteady flow of a viscous incompressible flu-
id inside a branched pipe system is considered. The mathematical for-
mulation is given with special emphasis on inlet/outlet conditions. The
equivalent weak form of the initial-boundary value problem is presented.
The numerical method based on solutions to particular Stokes problems
is proposed and described in some details. Finally, some general remarks
about the implementation issues within the framework of the spectral
element discretization are made.
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1. Introduction

Numerical simulations of time-dependent viscous flows inside complex duct
systems have recently become increasingly interesting for Computational Fluid
Dynamics (CFD) community. This interest seems also to be stimulated mo-
stly by medical applications. During the last decade, significant progress in
CFD techniques applied to biological flows has been achieved. Undoubtedly,
highly accurate numerical simulation of various types of motion of bio-fluids
is a serious challenge. Much effort has been done, for instance, to develop
computational models of the human cardiovascular system. These attempts
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are motivated mostly by medical needs – it is expected that future, reliable
computational models would be useful in the optimization of various cardio-
surgery procedures. The necessary condition for success in this respect is to
develop computational models and techniques which give realistic results by
taking into account all important features like pulsating character of motion,
complicated geometry and compliance of branched vessels, and, at least, non-
Newtonian rheology of blood.

In this work, we consider the problem of numerical simulation of an unste-
ady flow of a viscous incompressible fluid in a system of branched pipes. The
focus is on the proper mathematical formulation of the problem with spe-
cial emphasis on inlet/outlet conditions. These conditions are ”defective” in
a sense that they are based on averaged values of the pressure and/or the
volume flux. The presented formulation is a generalization of the approach
recently proposed by Formaggia et al. (2000). Some remarks on the numerical
implementation of the spectral element method are made, leaving detailed de-
scription of the solver and the presentation of obtained results to the second
part of the paper.

2. Mathematical formulation

We consider three-dimensional unsteady (pulsating) motion of a Newtonian
fluid in a branched pipe system with certain number of inlet/outlet (I/O)
sections (see Fig. 1).

The mathematical problem is to solve the Navier-Stokes and continuity
equations

∂tv +∇v · v = −
1

ρ
∇p+ ν∇2v ∇ · v = 0 (2.1)

subject to appropriate initial and boundary conditions. In the above, the sym-
bols v, p, ρ and ν denote velocity, pressure, mass density and kinematic visco-
sity, respectively. Since the mass density is a constant value, it is convenient
to choose ρ = 1.

The boundary conditions are defined as follows. At the impermeable (ma-
terial) part of the boundary Γ , the no-slip condition for the velocity is imposed,
i.e. v|Γ = 0. At the I/O sections Si (i = 1, ..., N), the following variants of
the boundary conditions are considered:
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Fig. 1. The computational domain

• variant Volume Flux (VF)

Φi(v) ≡

∫

Si

v · n ds = Fi(t) i = 1, ..., NV F (2.2)

Fi(t) – given,

• variant Average Pressure (AP)

1

|SNV F+i|

∫

SNV F+i

p ds = Pi(t) i = 1, ..., NAP (2.3)

Pi(t) – given.

At each I/O section either VF or AP variant of the boundary conditions is
imposed, and NV F +NAP = N . Time variations of the volume fluxes or the
averaged pressure are defined by the given functions Fi(t) (i = 1, ..., NV F ) or
Pi(t) (i = 1, ..., NAP ), respectively.
The integral boundary conditions formulated above are of much interest

because they are natural in most of practical situations. Indeed, the knowledge
of temporal variations of either the section-averaged pressure or the volume
flux can be usually assumed. In medical context, such data can be provided
by measurements or by the lumped-parameter models of the cardiovascular
system. On the other hand, the precise distributions of physical quantities
(like pressure or velocity) at I/O sections are usually not available – they have
to be evaluated in the solution process.
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The question arises whether such ”defective” boundary conditions can be
incorporated in a mathematically consistent way into an initial-boundary pro-
blem to equations (2.1). Surprisingly enough, this problem has been given a
rigorous mathematical treatment only recently. In their seminal paper, Hey-
wood et al. (1996) showed that the boundary conditions formulated above can
be accounted for in an appropriate variational formulation. Recently, Formag-
gia et al. (2000) have presented an improved variant of this approach. They
used the Lagrange multipliers technique to VF-type boundary conditions that
allowed for convenient simplification of the function spaces involved in the va-
riational formulation. This approach is a theoretical basis of the current work.
The novelty consists in admitting coexistence of the I/O sections with VF and
AP boundary conditions, not considered in previous works.
The new VF/AP variational formulation of the problem goes as follows:

Find

• the velocity field v ∈ V = {v ∈ [H1(Ω)]3 : v|Γ = 0}

• the pressure field p ∈ Q = L2(Ω)

• the (time-dependent) Lagrange multiplies λi ∈ R, i = 1, ..., NV F

such that

• for each v ∈ V :

(∂tv +∇v · v,v) + ν(∇v,∇v) +
NV F∑

i=1

λiΦi(v) +

+
NAP∑

i=1

Pi(t)ΦNV F+i(v)− (p,∇ · v) = 0

• for each q ∈ Q : (q,∇ · v) = 0

• Φi(v) = Fi(t), i = 1, ..., NV F

• v|t=t0 = v0 (the initial condition).

Heywood et al. (1996) showed that the smooth solutions to this variational
problem satisfy the following ”classical” boundary conditions

(p− ν∂nvn)
∣∣∣
Si
= λi i = 1, ..., NV F

(p− ν∂nvn)
∣∣∣
SNV F+i

= Pi(t) i = 1, ..., NAP

∂nvτ
∣∣∣
Si
= 0 i = 1, ..., N

(2.4)



Computations of an unsteady viscous flow... 25

In the above, we use the notation ∂nvn = (∇v·n)·n and ∂nvτ = (∇v·n)·τ ,
where (∇v)ij = ∂vi/∂xj .

It can be noticed that the corresponding boundary conditions do not have
any direct physical interpretation. In particular, they are not formulated in
terms of normal and tangent surface stress distributions. Indeed, the latter
would involve only the symmetric part of the tensor ∇ · v. The conditions
(2.4) are sometimes referred to as ”pseudo-traction” conditions.

tangent component of the surface stress vanishes identically and the di-
stributions of the normal component are uniform at each inlet/outlet section.
Moreover, the normal stress distributions at I/O sections of AP type are given
directly as the functions Pi(t) (i = 1, ..., NAP ), while at I/O sections of VF
type these distributions are unknown and have to be determined so that the
prescribed volume fluxes are achieved.

It should be emphasized that the boundary conditions implied by the va-
riational formulation at the AP inlets/outlets are not, in general, equivalent
to the condition for the averaged pressure (2.3). Instead, one has the following
equality ∫

Si

[p− ν(∇v · n) · n] dS = Pi(t)|Si| (2.5)

However, it can be shown that conditions (2.5) and (2.3) are equivalent if
only the surface of the inlet/outlet section is flat, i.e. when it is obtained by a
plane cut of the pipe. Indeed, in such a case, the following equality holds

∫

Si

(∇v · n) · n dS = 0 (2.6)

In order to prove (2.6), we choose the coordinate system so that the first
axis is perpendicular to the (flat) surface section Si. Then the normal vector
at each point of Si is defined as n = [1, 0, 0], and the surface integral can be
calculated as follows

∫

Si

(∇v · n) · n dS =

∫

Si

∂v1
∂x1
dS = −

∫

Si

(∂v2
∂x2
+
∂v3
∂x3

)
dS =

= −

∮

∂Si

(v2η2 + v3η3) dℓ = 0

In the above, we have used the continuity equation and the Green The-
orem of the plane in order to transform the surface integral to the contour
integral along ∂Si. The unitary vector η = [η2, η3] lies in the plane of the
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pipe section Si, and it is normal to the contour line ∂Si. Since the velocity
vanishes identically at the pipe wall, the contour integral is equal to zero.

Using (2.5) and (2.6), one finally concludes that

Pi(t) =
1

|Si|

∫

Si

p dS (2.7)

Note again that, for the above proof to work, one has to assume sufficient
regularity of the solution to ensure the existence of the velocity derivatives
and the pressure at the inlet/outlet surfaces (in the sense of traces).

In the end, the following comment should be made. If NAP > 0, i.e. at
least one I/O section has been equipped with AP boundary conditions then the
pressure field is uniquely defined. On the other hand, one may like to impose
I/O conditions of the VF type exclusively. If NV F = N then the functions
Fi(t), i = 1, ..., N , must obey the following constraint

∑N
i=1 Fi(t) ≡ 0, implied

by the volume (or mass) conservation. Moreover, the pressure field is defined
up to an additive constant. It is actually more reasonable (and convenient)
to set NV F = N − 1 so that NAP = 1, and choose P1(t) ≡ 0. The volume
will be conserved (within achievable numerical accuracy) due to the continuity
equation, and pressure ambiguity will not occur.

3. Time integration schemes and semi-discrete forms of the

variational problem

In order to solve an unsteady flow problem various time discretization sche-
mes can be applied. The popular choice is the explicit/implicit approach, i.e.
the use of an implicit integration scheme for the linear part and an explicit
scheme for the nonlinear part of the Navier-Stokes equation. The advantage
of this approach is that symmetric and positive definite linear problems have
to be solved at each time step. In contrast, methods using the implicit (or
semi-implicit) time discretization to the nonlinear terms lead to large nonli-
near problems or, at least, to linear but usually not symmetric and indefinite
problems which are much more difficult to solve efficiently. On the other hand,
the explicit treatment of the nonlinear terms suffers from limitations due to
stability requirements. This is why it is essential to use integration schemes
with favorable stability properties. Such a family of stiff-stable multi-step sche-
mes has been proposed by Karniadakis et al. (1991). Consider, for presentation
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purposes, the model evolutionary equation with linear and nonlinear opera-
tors, denoted by L and N , respectively

z′(t) = L(t, z(t)) +N(t, z(t)) (3.1)

The mixed multi-step method is obtained by using the backward differentia-
tion scheme (implicit) for the linear operator, and the linear extrapolation
(explicit) scheme for the nonlinear operator. The general formula for the K-
step method is

1

∆t

K∑

k=0

βkz
(n+1−k) = L(n+1) +

K∑

k=1

αkN
(n+1−k) (3.2)

As usual, the upper index in the brackets indicates a time instant each term
is evaluated at.
The values of the coefficients {αk, k = 1, ...,K} and {βk, k = 0, ...,K}

can be found by Karniadakis et al. (1991). As an example, we give the explicit
formula for the 3rd order method

1

∆t

(11
6
z(n+1) − 3z(n) +

3

2
z(n−1) −

1

3
z(n−2)

)
=

(3.3)

= L(n+1) + 3N (n) − 3N (n−1) +N (n−2)

More details on other schemes of this sort and their stability characteristics
can be found in the cited paper.
When the multistep method, see (3.2), is used, variational problem (Pro-

blem 2.1) takes the following semi-discretized form

β0
∆t

(
v(m+1),v

)
+ ν
(
∇v(m+1),∇v

)
−
(
p(m+1),∇ · v

)
+
NV F∑

i=1

Φi(v)λ
(m+1)
i =

= −
1

∆t

K∑

k=1

βk
(
v(m+1−k),v

)
−
1

∆t

K∑

k=1

αk
(
∇v(m+1−k) · v(m+1−k),v

)
−

−
NAP∑

i=1

P
(m+1)
i ΦNV F+i(v) (3.4)

(
q,∇ · v(m+1)

)
= 0 Φi

(
v(m+1)

)
= Fi(t) i = 1, ..., NV F

A different mixed explicit/implicit integration scheme has been proposed
by Maday et al. (1990). It consists in splitting the integration of nonlinear
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(advective) and linear parts of the Navier-Stokes equation, i.e. these parts are
treated separately. Formally, the method is based on the construction of the
operator integration factor for the advective part. However, it can be shown
that this operator does not need to be constructed explicitly.
In the sequel, we will provide short and informal derivation of the operator-

integration-factor splitting (OIFS) method. The reader should refer to the
original paper (Maday et al., 1990) for a more rigorous and detailed exposition.
Consider model equation (3.1) with the assumption that the nonlinear

part is autonomous, i.e. it does not depend explicitly on time. Let u(t) be
an arbitrary function satisfying the differential equation du(t)/dt = N(u(t)).
Then, we assume the existence of the operator integration factor Q(τ, t) such
that Q(τ, τ) = Id, τ ­ t and d[Q(τ, t)u(t)]/dt = 0. Assume also that the time
instant t = t̃ has been fixed, and consider the following initial value problem

d

dt
u(t) = N(u(t)) t ∈ (t̃, τ)

(3.5)

u(t̃) = z(t̃)

Note that the function z(t) satisfies original equation (3.1), i.e. the equation
with both linear and nonlinear terms.
In view of the postulated properties of the integration factor Q, the follo-

wing equality holds
Q(τ, t̃)z(t̃) = u(τ) (3.6)

It can be also shown that

d

dt
[Q(τ, t)z(t)] = Q(τ, t)L(z(t)) +

[ d
dt
Q(τ, t)

]
(z(t) − u(t)) +

(3.7)

+Q(τ, t)[N(z(t)) −N(u(t))]

Assuming the continuity of the nonlinear operator N , and taking into
account the initial condition u(t̃) = z(t̃), the following equality holds at t = t̃

d

dt
[Q(τ, t)z(t)]

∣∣∣
t=t̃
= Q(τ, t̃)L(z(t̃)) (3.8)

The two remaining components in the right-hand side of equation (3.7)
vanish identically at t = t̃. Moreover, it is reasonable to neglect these terms
also for t slightly larger than t̃ as they depend only on difference between the
values of the functions u and z. In other words, we assume that simplified
equation (3.8) is approximately valid over the short time interval (t̃ ≡ tn,
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τ = t̃+∆t ≡ tn+1). Now, we integrate this equation numerically, performing
one step with the implicit method based of the backward differentiation of
theKth order

1

∆t

K∑

k=0

βkQ(tn+1, tn+1−k)z(tn+1−k) = Q(tn+1, tn+1)L(z(tn+1)) (3.9)

With the use of equality (3.6), one can get rid of any explicit reference to the
operator Q in (3.9) and finally obtain the following linear equation

β0
∆t
z(tn+1)− L(z(tn+1)) = −

1

∆t

K∑

k=1

βkuk(tn+1) (3.10)

In the above, the functions uk (k = 1, ...,K) are the solutions to the following
initial value problems

d

dt
uk(t) = N(uk(t)) t ∈ (tn+1−k, tn+1)

(3.11)

uk(tn+1−k) = z(tn+1−k)

Initial value problems (3.11) are solved using a suitable explicit integration
scheme. In hydrodynamic applications, where the nonlinearity is due to the
advective part of the fluid acceleration, the 4th order explicit Runge-Kutta
method is preferred. Usually, only a few steps are done to march over the
time interval ∆t. Note that the number of the evaluation of the operator N
becomes quite large when the number of sub-steps as well as the order of the
backward differentiation get larger. If, for instance, K = 3 and five RK4 sub-
steps are used per each time interval ∆t then the number of the evaluations
of the operator N is 120.
In the context of the flow problem considered in this study, the OIFS

method described above can be written as follows

β0
∆t

(
v(m+1),v

)
+ ν
(
∇v(m+1),∇v

)
−
(
p(m+1),∇ · v

)
+
NV F∑

i=1

Φi(v)λ
(m+1)
i =

= −
1

∆t

K∑

k=1

βk
(
v̂
(m+1)
k ,v

)
−
NAP∑

i=1

P
(m+1)
i ΦNV F+i(v) (3.12)

(
q,∇ · v(m+1)

)
= 0 Φi

(
v(m+1)

)
= Fi(t) i = 1, ..., NV F

In the above, the vector fields v̂
(m+1)
k are defined as v̂

(m+1)
k ≡ v̂k(tm+1)

where v̂k, k = 1, ...,K, are obtained as the approximate solutions to the
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following initial value problems

∂

∂t
v̂k = −∇v̂k · v̂k t ∈ (tm+1−k, tm+1)

(3.13)

v̂k(tm+1−k) = v(tm+1−k) ≡ v
(m+1−k)

Couzy (1995) tested systematically the OIFS method and compared then
the multi-step methods proposed by Karniadakis et al. (1991). The OIFS sche-
mes proved to be superior in terms of stability properties (except for cases of
low Reynolds numbers where the multi-step methods become unconditionally
stable). On the other hand, the multi-step methods are free from the splitting
error and usually provide better accuracy. Superior stability properties of the
OIFS schemes make them more suitable for computations of laminar flows
with larger Reynolds numbers, blood flows in large vessels being an example.

4. Space discretization

In order to obtain a tractable algebraic problem, one has to set up a space
discretization. The first step of this procedure is to define appropriate finite
dimensional function spaces. These spaces are spanned by a finite number of
basic functions. The velocity is approximated as a linear combination of the
3NV basic vector fields from the function space V (see the Section 2) defined
as

v1 = [w1, 0, 0] v2 = [w2, 0, 0] · · · vNV = [wNV , 0, 0]

vNV +1 = [0, w1, 0] vNV +2 = [0, w2, 0] · · · v2NV = [0, wNV , 0]

v2NV +1 = [0, 0, w1] v2NV +2 = [0, 0, w2] · · · v3NV = [0, 0, wNV ]
(4.1)

Analogously, the pressure field will be approximated within the finite dimen-
sional subspace of Q spanned by the basic (scalar) functions q1, q2, ..., qNP .
With the use of the discrete function spaces defined above, the unknown ve-
locity and pressure field can be expressed as

v(m+1) =
NV∑

j=1

(
u
(m+1)
1

)
j
vj +

NV∑

j=1

(
u
(m+1)
2

)
j
vNV +j +

NV∑

j=1

(
u
(m+1)
3

)
j
v2NV +j

(4.2)

p(m+1) =

NQ∑

j=1

(
π(m+1)

)
j
qj
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Let us define the following indexed structures:

(MV )ij = (wi, wj) ≡

∫

Ω

wiwj dx i, j = 1, ..., NV

(KV )ij = (∇wi,∇wj) ≡

∫

Ω

∇wi · ∇wj dx i, j = 1, ..., NV

A =
β0
∆t
MV + νKV

(4.3)

(ΛF1 )ij = Φi(vj) i = 1, ..., NV F , j = 1, ..., NV

(ΛP1 )ij = ΦNF+i(vj) i = 1, ..., NAP , j = 1, ..., NV

(ΛF2 )ij = Φi(vj) i = 1, ..., NV F , j = NV + 1, ..., 2NV

(ΛP2 )ij = ΦNF+i(vj) i = 1, ..., NAP , j = NV + 1, ..., 2NV

(ΛF3 )ij = Φi(vj) i = 1, ..., NV F , j = 2NV + 1, ..., 3NV

(ΛP3 )ij = ΦNF+i(vj) i = 1, ..., NAP , j = 2NV + 1, ..., 3NV

(Dα)ij = −(qi, ∂Xαwj) i = 1, ..., NQ, j = 1, ..., NV , α = 1, 2, 3

(P )i = Pi i = 1, ..., NAP

(F )i = Fi i = 1, ..., NV F

Now, the algebraic problem to be solved at each time step of the numerical
simulation can be written in the form of



A 0 0 (D1)
⊤ (ΛF1 )

⊤

0 A 0 (D2)
⊤ (ΛF2 )

⊤

0 0 A (D3)
⊤ (ΛF3 )

⊤

D1 D2 D3 0 0

ΛF1 Λ
F
2 Λ

F
3 0 0







u1

u2

u3

π

λ




(m+1)

=




r1 − (Λ
P
1 )
⊤P

r2 − (Λ
P
2 )
⊤P

r3 − (Λ
P
3 )
⊤P

0

F




(m+1)

(4.4)

The detailed structure of the right-hand side vector depends on the time
discretization scheme used. In the Kth order multi-step method, the vectors

r
(m+1)
(∗) are defined as

(
r
(m+1)
(∗)

)

i
= −

1

∆t

K∑

k=1

βk
((
v(m+1−k)

)
(∗)
, wi
)
+

(4.5)

−
K∑

k=1

αk
((
∇v(m+1−k) · v(m+1−k)

)
(∗)
, wi
)

i = 1, ..., NV
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while in the case of the OIFS scheme,

(
r
(m+1)
(∗)

)

i
= −

1

∆t

K∑

k=1

βk
((
v̂
(m+1)
k

)
(∗)
, wi
)

i = 1, ..., NV (4.6)

where v̂
(m+1)
k have been defined by (3.13).

In formulas (4.5) and (4.6), the subscript (∗) indicates the Cartesian com-
ponent, i.e. it stands for either 1, 2 or 3.

5. Construction of the solution at each time step

Assuming a fixed time step in the integration scheme, we propose the
following method of dealing with algebraic problem (4.4).
Consider the following linear systems of equations (k = 1, ..., NV F +NAP )




A 0 0 (D1)
⊤

0 A 0 (D2)
⊤

0 0 A (D3)
⊤

D1 D2 D3 0







u
{k}
1

u
{k}
2

u
{k}
3

π{k}



=




−(ΛF1 )
⊤λ{k}

−(ΛF2 )
⊤λ{k}

−(ΛF3 )
⊤λ{k}

0




(5.1)

where

λ
{k}
j =

{
0 if j 6= k

1 if j = k

The solutions to the above systems will be referred to as the particular
Stokes solutions. For each such solution, we introduce a vector containing
values of the volume flux through all inlets/outlets

f{k} =

[
ΛF1

ΛP1

]
u
{k}
1 +

[
ΛF2

ΛP2

]
u
{k}
2 +

[
ΛF3

ΛP3

]
u
{k}
3 k = 1, ..., NV F +NAP

(5.2)
If the geometry of the flow domain and the time step are fixed, all particular

solutions can be computed once and forever.
Next, we define an additional problem as follows




A 0 0 (D1)
⊤

0 A 0 (D2)
⊤

0 0 A (D3)
⊤

D1 D2 D3 0







u
{0}
1

u
{0}
2

u
{0}
3

π{0}



=




r1

r2

r3

0




(5.3)
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Again, the vector of the volume fluxes is computed as

f{0} =

[
ΛF1

ΛP1

]
u
{0}
1 +

[
ΛF2

ΛP2

]
u
{0}
2 +

[
ΛF3

ΛP3

]
u
{0}
3 (5.4)

Note that, in contrast to systems (5.1), the set of equations (5.3) has to
be solved at each time step of the flow simulation.

The solution to the full Stokes problem (4.4) can be now expressed as the
following superposition




u1

u2

u3

π



=




u
{0}
1

u
{0}
2

u
{0}
3

π{0}



+
NV F∑

k=1

λk




u
{k}
1

u
{k}
2

u
{k}
3

π{k}



+
NAP∑

k=1

Pk




u
{NV F+k}
1

u
{NV F+k}
2

u
{NV F+k}
3

π{NV F+k}




(5.5)

The last term in the right-hand side of expression (5.5) contains the given
values of the averaged pressures Pk (k = 1, ..., NAP ). The multipliers λk,
k = 1, ..., NV F , are evaluated at the given time step from the following linear
system

TFλ = F − f
{0}
V F −TPP (5.6)

where

TF =




f
{1}
1 · · · f

{NV F }
1

...
...

...

f
{1}
NV F

· · · f
{NV F }
NV F


 TP =




f
{NV F+1}
1 · · · f

{NV F+NAP }
1

...
...

...

f
{NV F+1}
NV F

· · · f
{NV F+NAP }
NV F




(5.7)

and f
{0}
V F ≡ f

{0}(1 : NV F ). Note that the matrix TF is nonsingular as long
as NV F < N .

Summarizing, at each time step we have to solve Stokes problem (5.3) in

order to get {[u
(0)
1 ,u

(0)
2 ,u

(0)
3 ],π

(0)}, and then solve small linear system (5.6)
to evaluate the Lagrange multipliers.

In the end, we briefly consider the particular case. Assume that NAP = N ,
which means that all inlet/outlet conditions are formulated in terms of the
average pressure. In such a case, the volume flux through each I/O section
follows uniquely from prescribed inlet/outlet pressures driving the flow, and
the Lagrange multipliers do not appear in the mathematical formulation. The
method based on the superposition described above still works, but this time
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the solution can be obtained directly by solving the following Stokes problem




A 0 0 (D1)
⊤

0 A 0 (D2)
⊤

0 0 A (D3)
⊤

D1 D2 D3 0







u1

u2

u3

π



=




r1 − (Λ
P
1 )
⊤P

r2 − (Λ
P
2 )
⊤P

r3 − (Λ
P
3 )
⊤P

0




(5.8)

In the above, the vector P is defined as P = [P
(m+1)
1 , P

(m+1)
2 , ..., P

(m+1)
N ],

i.e. it contains the values of the assumed averaged pressure at all inlets/outlets,
at the time instant t = tm+1.
If all inlet/outlets conditions are formulated exclusively in terms of the

volume fluxes one has to proceed as explained at the end of Section 2.

6. Solution to the Stokes problem

In this Section, the solution method for the algebraic Stokes problem

Auα +D
⊤
α = bα α = 1, 2, 3

(6.1)
3∑

α=1

Dαuα = 0

is considered. First, let us remind that system of equations (6.1) can be so-
lved using the following triple-step procedure (Schur-complement method, see
Formaggia et al., 2000)

(1) Aũα = bα α = 1, 2, 3

(2) π
3∑

α=1

DαA
−1
D
⊤
α =

3∑

α=1

Dαũα (6.2)

(3) Auα = −D
⊤
απ + bα α = 1, 2, 3

At each step in (6.2), a symmetric and positive-definite (SPD) algebraic
problem is to be solved. In most practical situations, the preconditioned con-
jugate gradient method (PCGM) would be a solver of the first choice. The
efficient preconditioning of the second (pressure) step is crucial. A number of
sophisticated preconditioners have been proposed during the last decade, see,
for instance, Maday et al. (1993) or Couzy and Deville (1994) and references
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therein. The linear systems with the Helmholtz matrix A have to be solved
during the first and third step. Since the Helmholtz matrix A is usually stron-
gly diagonally dominant, the numerical solution can be efficiently computed
using PCGM even with simple preconditioners (like a diagonal one).
In numerical simulations of nonstationary flows with higher Reynolds num-

bers and small time steps, the computational time of steps (1) and (3) is almost
negligible with respect to step (2). In order to reduce computational cost of
the pressure evaluation, various approximate inversion methods for the ma-
trix A have been proposed. We will focus on the method proposed recently by
Quarteroni et al. (1999). In order to avoid expensive inversion of the matrix

A =
β0
∆t
MV + νKV

the following approximation of A−1 based on the truncated Neumann series
can be used

A
−1 =

∆t

β0

(
I−
ν∆t

β0
M
−1
V KV

)−1
M
−1
V ≈

(6.3)

≈
∆t

β0
M
−1
V − ν

(∆t
β0

)2
M
−1
V KVM

−1
V + ν

2
(∆t
β0

)3
M
−1
V (KVM

−1
V )
2 ≡ H

Approximation (6.3) is computationally efficient providing that the veloci-
ty mass matrix is easily invertible. In particular, pseudo-spectral (or spectral
collocation) discretization leads to purely diagonal mass matrices for both ve-
locity and pressure. The matrix H is always positive definite as long as the
number of terms in the truncated Neumann series is odd.
Another useful modification of original algorithm (6.2) is its reformula-

tion into an incremental variant. In the course of numerical simulation of an
unsteady flow, the solver will usually carry out tiny time steps, and the in-
stantaneous pressure distributions obtained in two subsequent steps will not
be much different. In other words, it is reasonable to expect that the solution in
the current time step will serve as a good starting point for the iterations in the
next time step. Therefore, we assume that the pressure vector is expressed as

π = π∗ + π
′ (6.4)

where π∗ denotes an available approximation of the unknown vector π (the
pressure vector from the previous time step is a natural candidate), while π′

is the correction to be evaluated. Following these lines, we introduce also the
velocity corrections u′1, u

′
2 and u

′
3 defined by the following expressions

uα = ũα + u
′
α α = 1, 2, 3 (6.5)
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Now, the incremental version of the algorithm using approximation (6.3)
can be summarized as follows

(1) Aũα = bα −D
⊤
απ∗ α = 1, 2, 3

(2) π′
3∑

α=1

DαHD
⊤
α =

3∑

α=1

Dαũα (6.6)

(3) Au′α = −D
⊤
απ
′ α = 1, 2, 3

Having the corrections of the velocity components and pressure field com-
puted, formulas (6.4) and (6.5) are used to obtain the complete solution.
It is worth mentioning that approximation (6.4) can be interpreted in terms

of artificial compressibility. Indeed, the continuity equation corresponding to
the approximated inverse is no longer homogeneous; instead, the following
form can be derived

3∑

α=1

Dαuα = π
3∑

α=1

Dα(H− A
−1)D⊤α (6.7)

It can be seen that, accordingly to (6.3), the error of incompressibility
incurred by the approximated inverse is ∼ O(∆t3).
It spite of the apparently complicated structure of inverse formulae (6.3),

the product Hr (here r denotes an arbitrary vector) can be computed in a
simple way, namely

w(1) =
∆t

β0
M
−1r (6.8)

for j = 1, ...,m − 1 repeat

w(j+1) =
∆t

β0
M
−1(− νKw(j) + r

)
(6.9)

In the above, the integer m denotes the order of the approximation or, equ-
ivalently, the number of terms of the truncated Neumann expansion. As it has
already been mentioned, it is recommended to choose m as an odd number,
otherwise the matrix H may not be positive definite. Note that for formula
(6.3) we have m = 3.

7. General remarks on numerical implementation

In order to numerically simulate complicated flows in the cardiovascular
system, a numerical method should provide a high level of spatial resolution.
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It is also necessary for the method to be capable of accurate prediction of
flow characteristics which are calculated from the velocity field by means of
differentiation (e.g. shear stress). Therefore, the spatial representation of the
velocity and pressure fields should be sufficiently regular. The spectral element
discretization seems to be an appropriate choice as it combines geometric flexi-
bility with the ability to provide sufficient spatial accuracy with a reasonable
number of unknowns. Within this approach, a wide spectrum of particular
techniques exists.
Here we briefly characterize an approach used in the current work. The me-

thod of our choice is the ”classical” spectral collocation (or pseudo-spectral)
method using the hexahedral Lagrangian elements. It means that the local ba-
sic functions are the Lagrangian interpolating polynomials defined for the Jaco-
bi/Legendre grid nodes inside each element. The differentiation with respect to
space variables is carried out with the use of (pseudo-spectral) differentiating
matrices. The volume integrals are evaluated by means of the Gauss-Legendre
quadratures defined with the use of the same sets of the nodes as the basic
functions. The detailed description of this ”numerical technology” can be fo-
und in the monographs by Canuto et al. (1988) and Karniadakis and Sherwin
(1999).
As it has already been mentioned, the fundamental blocks of the numerical

method are the Helmholtz problem (if approximated inverse (6.6) is used, this
problem is solved exactly six times at each time step) and pressure problem
(6.5). Both problems lead, after the spatial discretization, to the symmetric
and positive definite linear algebraic systems. The pressure problem is much
more difficult to solve since it requires an appropriate preconditioning method.
A large amount of theoretical work in the last fifteen years has been devoted
to the development of efficient and robust preconditioning techniques for al-
gebraic problems arising from hydrodynamic equations. One of the essential
conclusions is that the matrix

P
−1 = νM−1P +

β0
∆t

3∑

α=1

(DαM
−1
V D

⊤
α )
−1 (7.1)

is spectrally close to the inverse of the matrix of the pressure problem (step
(2) in (6.2)). In the above, MP denotes the pressure mass matrix. The use of
this preconditioner is not an easy task, though. The matrix inside the brackets

E =
3∑

α=1

DαM
−1
V D

⊤
α (7.2)

is itself very poorly conditioned (see Maday etal, 1993). Thus, the linear sys-
tem with the matrix E cannot be solved efficiently without another low-level
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preconditioner. In the case of hexahedral grids, the block preconditioner based
on the local Fast Diagonalization Method (FDM) proved to be effective, as de-
scribed by Couzy (1995), Couzy and Deville (1994). The complete description
of this technique and its implementation in the current work will be given in
the second part of the paper.
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Wyznaczanie nieustalonych przepływów cieczy lepkiej

w trójwymiarowym układzie przewodów. Część I: Sformułowanie

problemu i opis metody numerycznej

Streszczenie

W pracy rozważono problem numerycznego wyznaczania nieustalonego przepływu
cieczy lepkiej w układzie trójwymiarowych przewodów. Podano sformułowanie waria-
cyjne zagadnienia uwzględniające uogólnione warunki brzegowe na wlotach/wylotach
do obszaru ruchu. Opisano metodę obliczeniową, opartą na zastosowaniu wskaźników
Lagrange’a i superpozycji szczególnych problemów Stokesa w każdym kroku czaso-
wym.
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