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A thin-walled spherical shell is pivoted at both ends. The upper edge of
the shell, loaded with a torque, may rotate around the shell axis. The
problem of the loss of stability of the shell is solved with an energetic
method. The change in the total energy of the shell while losing stabi-
lity is determined. This requires the forms of the deflection and force
functions to be assumed, according to actual boundary conditions. Co-
efficients of the force function are determined from the solution to the
inseparability equation with the Bubnov-Galerkin method. The stability
equation of the shell is formulated as a result of application of the Ritz
method to the total energy variation. It is an algebraic equation serving
for determination of the critical load. It is equal to the minimal value of
the load. The work ends with a numerical example.
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1. Introduction

A thin-walled spherical shell being a subject of the analysis is shown in
Fig. 1. Its bottom edge is fixed and pivoted. The upper edge is also pivoted
but may rotate around the vertical axis of the shell. The upper edge is loaded
with a torque. A non-linear problem of the loss of stability is considered. The
problem is solved with an energetic method. For the assumed modes of the
deflection and force function the Bubnov-Galerkin method is used in order to
solve the inseparability equation and, afterwards, the total energy is calculated.

1A part of this contribution was presented on the Xth Symposium ”Stability of Struc-

tures” in Zakopane, September 8-12, 2003.
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In order to formulate the stability equation the Ritz method is applied. The
final goal of the work consists in the determination of the critical load. This,
however, is possible only in the case of a numerical example, since the problem
is of high complexity.

Fig. 1. Scheme of the shell

2. Mathematical description of the problem

2.1. Total energy of the system

The total energy of the system while losing the stability amounts to

V = U1 + U2 − L (2.1)

where U1 is the energy of the membrane state, U2 – energy of the bending
state, L – work of external forces and
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A is the middle surface of the shell, w – deflection function upon the loss
stability, κ11, κ22, κ12 are variations in the main curvatures of the spherical
shell (Mushtari and Galimov, 1957), T1, T2, S are forces of the bending state,
Ψ denotes the force function and
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The force of the membrane state in (2.1) has the form

S =
M0

2πR2 sin2 θ
(2.2)

2.2. Inseparability equation

In order to determine the forces of the bending state, the force functions
must be known. This requires solving the equation of the inseparability of
displacements. The inseparability equation is of the form (Mushtari and Gali-
mov, 1957)

∇
2
∇
2Ψ −Eh(κ212 − κ11κ22 − κ11k22 − κ22k11) = 0 (2.3)

where

∇
2 =
1

R2

(

cot θ
∂
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+
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+
1
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∂2

∂ϕ2

)

and kii are main curvatures.

3. Boundary conditions

The following conditions should be met at the shell boundaries

θ = θ1 w = 0 Mθ = 0

S =
M0

2πR2 sin2 θ1
T1 = 0

(3.1)
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and

θ =
π

2
w = 0 Mθ = 0

S =
M0
2πR2

T1 = 0
(3.2)

4. Deflection and force functions

The following forms of the force and deflection functions were assumed

Ψ = [bϕ+ c sin(mϕ)] sin2 θ
(4.1)

w = a sin
2π(θ − θ1)

π − 2θ1
sin
[2π(θ − θ1)

π − 2θ1
+mϕ

]

sin2 θ

where a, b, c are constants, m – an integer number defining the mode of the
loss of stability.

The deflection function explicitly satisfies the first two conditions ((3.1)
and (3.2)), while the third one is satisfied in the integral sense. On the other
hand, the force function meets the third condition to a constant, without
satisfying the condition required for the normal force T1.

5. Solution to the equation of inseparability

Equation of inseparability (2.3) is solved with the Bubnov-Galerkin me-
thod. The ortogonalization conditions are of the following form

π

2
∫

θ1

2π
∫

0

F (θ, ϕ)ϕ sin3 θ dθdϕ = 0

(5.1)
π

2
∫

θ1

2π
∫

0

F (θ, ϕ) sin(mϕ) sin3 θ dθdϕ = 0

where F (θ, ϕ) denotes the left-hand side of equation (2.3), with force function
components (4.1)1 applied as ortogonalization factors.
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Once equations (5.1) and (5.2) are solved, the following expressions for
constants b and c are obtained

b = Eh(H1a
2 +G1aR) c = Eh(H2a

2 +G2aR) (5.2)

where Hi, Gi are constants.

The final form of the force function is as follows

Ψ = Eha2
[(

H1 +G1
R

a

)

ϕ+
(

H2 +G2
R

a

)

sin(mϕ)
]

sin2 θ (5.3)

6. Solution to the problem of the loss of stability

The deflection and force functions should be substituted into the equation
of total energy variation in order to calculate the variation itself. The total
energy is a function of a. While losing the stability, the variation of the total
energy takes the minimal value. According to the Ritz method, the condition
for the minimum of the total energy variation has the form

∂V

∂a
= 0 (6.1)

The implementation of the above expression leads to the formulation of an
equation of the dimensionless torque

M =
M0
Eh3
= C1

(a

h

)2

+ C2
R

h

a

h
+ C3

(R

h

)2

+ C4 (6.2)

where Ci are constants depending on θ1, the number m and Poisson’s ratio ν.

Equation (6.2) is an answer to the problem of the loss of stability. It sho-
uld serve for calculating the critical load. The critical load corresponds to the
minimal value of the dimensionless load parameter M . It is determined for
fixed dimensions of the shell, defined by the number m. For solving ortogo-
nalization conditions (5.1) and equation (6.1) the Derive software was used.
It includes procedures enabling transformations of algebraic expressions, dif-
ferentiating, and integrating, thus enabling all the operations required by the
above equations.
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7. Numerical example

The critical load can be found only with a numerical method. This is a
consequence of the complex structure of coefficients in equation (6.2). First of
all, the dimensions of the shell should be assumed in such a way so that to
allow for calculating the constants Ci corresponding to different values of the
number m. This was carried out with the Derive program. The critical load
was sought by means of a graphical method. The plots should be drawn in the
M −a/h coordinates for a series of the numbers m. The plots enabled finding
the minimal value of the load M , i.e. Mcr. The value m corresponding to the
minimal level of the load M is considered as the critical one mcr. The plots
were drawn with the help of the Derive for Windows software. Figure 2 shows
plots of the dimensionless torque M as a function of a/h for a shell with the
dimensions θ1 = π/6, R/h = 150, ν = 0.3 and different values of m. The
minimal value of the load M = Mcr is found for m = mcr = 8. It should be
noticed that for θ1 = π/10, and θ1 = 3π/14 the problem remains unsolved.
This is certainly a result of the assumed forms of the deflection and force
functions.

Fig. 2. Diagrams m-a/h

The critical loads of the shells of different dimensions are presented in
Table 1. Apart from the Mcr values, the numbers mcr are provided in brackets.
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The comparison of the critical moments, contained in Table 1, allows one
to come to an obvious conclusion that the growing ratio R/h decreases the
resistance of the shell to the loss of stability.

Table 1. Values of the critical moments

R/h
Mcr

θ1 = π/12 θ1 = π/6

100 115.6 (8) 104.4 (8)
150 98.4 (10) 98.1 (10)
200 20.0 (11) 47.8 (11)

The same problem was solved in the paper by Joniak (2003a) with the
Bubnov-Galerkin method. The solution, however, was unsatisfactory, being
valid only for delimited range of shell dimensions. On the other hand, the
solution shown in the present paper is free of this fault.
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Metoda energetyczna rozwiązania problemu stateczności powłoki

półkulistej obciążonej momentem obrotowym

Streszczenie

Cienkościenna powłoka półkulista jest podparta przegubowo na obu brzegach.
Górny brzeg powłoki ma możliwość obrotu wokół osi powłoki; do tego brzegu przy-
łożony jest moment obrotowy. Rozpatrywany jest problem utraty stateczności tej po-
włoki metodą energetyczną. Wyznacza się zmianę energii całkowitej powłoki podczas
utraty stateczności. Wymaga to przyjęcia postaci funkcji ugięcia po utracie statecz-
ności i funkcji sił odpowiednich do warunków brzegowych. Współczynniki funkcji sił
wyznacza się z rozwiązania równania nierozdzielności metodą Bubnowa-Galerkina.
Równanie utraty stateczności powstaje po zastosowaniu do całkowitej zmiany ener-
gii metody Ritza. Jest to równanie algebraiczne, z którego wyznacza się obciążenie
krytyczne; odpowiada ona minimalnej wartości parametru obciążenia.
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