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This contribution deals with stability of certain composite plates with
a deterministic material structure which is not periodic but can be ap-
proximately regarded as periodic in small regions of a plate. The for-
mulation of an approximate mathematical model of these plates, based
on a tolerance averaging method, was discussed in Woźniak and Wierz-
bicki (2000), where the plates under consideration were referred to as
heteroperiodic.
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1. Introduction

The main objects of considerations in the paper are thin composite annular
plates made of two families of elastic beams with axes intersecting under the
right angle. A homogeneous elastic matrix fulfils regions situated between the
beams (Fig. 1).

Buckling of annular homogeneous plates was investigated, for example, by
Waszczyszyn (1976). Eigenvalues of circular plates resting on elastic founda-
tions were determined by Gomuliński (1967). Woźniak and Zieliński (1967)
investigated some stability problems of circular perforated plates.

The aim of this contribution is to propose and apply a mathematical model
of heteroperiodic plates. In order to apply the general modelling procedure
given in Woźniak, Wierzbicki (2000) we have to solve a whole family of the
periodic variational cell problems, where every such problem is related to a

1The research was presented on the Xth Symposium ”Stability of Structures” in Zakopane,

September 8-12, 2003.
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Fig. 1. A scheme of the analysed plate

small region in which the plate, with a sufficient tolerance, can be treated as
periodic.

In this contribution, a certain approximate solution to the periodic cell
problems for the composite plates under consideration are proposed. The-
se solutions are based on some heuristic assumptions and lead to a system
of equations with functional but slowly-varying coefficients for the averaged
displacement vector field. The derived equations are dependent on the mi-
crostructure size in contrast to the equations obtained by the method of no-
nuniform homogenization, Bensoussan et al. (1978). Following Woźniak and
Wierzbicki (2000) we can observe that the mathematical modelling of media
which are periodic and related to a certain curvilinear coordinate system, see
Lewiński and Telega (2000), is not able to describe composite plates under
consideration with a constant cross section of the beams.

2. Preliminaries

Introduce a polar coordinate system in a physical space denoted by
Oξ1ξ2ξ3. Throughout the paper the indices α, β, ... run over 1, 2 and a verti-
cal line before the subscripts stands for the covariant derivative in the polar
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coordinate system. The summation convention holds for all aforementioned
indices. Setting x ≡ (ξ1, ξ2) and z ≡ ξ3 it is assumed that the undeformed
plate occupies the region Ω ≡ {(x, z) : −h/2 ¬ z ¬ h/2, x ∈ Π}, where
Π is the plate midplane and h is the plate thickness. The orthogonal Carte-
sian coordinate system Oy1y2, with the vector basis eα (α = 1, 2), is a local
coordinate system in an arbitrary cell ∆(x) (Fig. 2).

Fig. 2. An arbitrary cell ∆(x) of the plate

The considerations are based on the well-known second order non-linear
theory for thin plates (Woźniak et al., 2001):
— strain-displacement relations

εαβ = u(α|β) καβ = −w|αβ (2.1)

— constitutive equations

nαβ = DHαβγδεγδ mαβ = BHαβγδκγδ (2.2)

where

Hαβγδ =
1

2
[gαδgβγ + gαγgβδ + ν(εαγεβδ + εαδεβγ)]

D ≡ Eh

1− ν2 B ≡ Eh3

12(1 − ν2)

— equilibrium equations

nαβ|α + p
β = 0 mαβ|αβ + (n

αβw|β)|α + p = 0 (2.3)
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The displacement vector field of the plate midplane is denoted by

u(ξα, t) = uβ(ξα, t)gβ +w(ξ
α, t)g3 ξα ∈ Π (2.4)

and the external surface loading by

p(ξα, t) = pβ(ξα, t)gβ + p(ξ
α, t)g3 ξα ∈ Π (2.5)

Setting the external surface loading pβ = p = 0, we obtain equilibrium equ-
ations (2.3) in the form

mαβ|αβ + n
αβw|βα = 0 (2.6)

This direct description leads to plate equations with highly-oscillating coeffi-
cients, which are too complicated to be used in the analysis of stability pro-
blems and numerical calculations.

3. Modelling procedure

By a heteroperiodic plate we shall mean a microheterogeneous plate which
in subregions of Π, much smaller than Π, can be approximately regarded as
periodic. The characteristic feature of every periodic plate is that there exists
a representative cell ∆. The edge length dimensions of the cell ∆ are equal
to the periods of the heterogeneous material structure of this plate. Now we
define

∆(x) :=
{
y = x+ ηαlα(x), η ∈

(
−1
2
,
1

2

)}
x ∈ Π∆ (3.1)

where lα = |lα| are the cell length dimensions, Π∆ := {x ∈ Π : ∆(x) ⊂ Π}.
Denoting by l(x) the diameter of ∆(x) and define l = sup l(x) as a meso-
structure parameter, we assume that l is sufficiently small compared to the
smallest characteristic length dimension LΠ of Π (l � LΠ) and sufficiently
large compared to the plate thickness h (h � l) (Fig. 2). In this case, every
∆(x) defined by Eq. (3.1) will be called a cell with the center at x.

Now we assume that a certain cell distribution ∆(·) has been assigned
to Π. The averaging formula can be now generalized to the form

〈ϕ〉(x) = 1

|∆(x)|

∫

∆(x)

ϕ(y) dy x ∈ Π∆ (3.2)
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In order to derive an averaged mathematical model for the plate under consi-
deration we will adapt the tolerance averaging method developed by Woźniak
and Wierzbicki (2000). In the framework of the method for periodic plates,
we introduce the concept of a slowly varying and periodic-like function for the
tolerance system T = (F, ε(·)). The continuous function Φ(·) ∈ F , defined on
the periodic plate region Π, will be called slowly varying if

∀x,y ∈ Π ‖x− y‖ ¬ l ⇒ |Φ(x)− Φ(y)| ¬ εΦ (3.3)

The continuous function f(·) defined on Π will be called a periodic-like func-
tion if for every x ∈ Π∆ there exists a ∆-periodic function fx(·) such that
for every y ∈ Π∆

‖x− y‖ ¬ l ⇒ |f(x)− fx(y)| ¬ εf (3.4)

We shall write Φ(·) ∈ SV∆(T ) if Φ(·) and all its derivatives are slowly-varying
functions, and f(·) ∈ PL∆(T ) if f(·) and all its derivatives are periodic-like
functions. The periodic-like function f(·) will be called an oscillating periodic-
like function if the condition 〈cf〉(x) ∼= 0 holds for every x ∈ Π∆, where c(·)
is a positive value ∆-periodic function.
Now definitions (3.3), (3.4) can be generalized, and after interpreting the

symbol ∆ as a cell distribution ∆(·), the definition of slowly varying and
periodic-like functions will be given by

Φ(·) ∈ SV∆(T ) ⇔ {∀x ∈ Π∆ : Φ|P (x)(·) ∈ SV∆(x)(T )}
(3.5)

f(·) ∈ PL∆(T ) ⇔ {∀x ∈ Π∆ : f|P (x)(·) ∈ PL∆(x)(T )}

for a certain region P (x) such that ∆(x) ⊂ P (x) ⊂ Π; the symbol f|P (x)(·)
denotes here the restriction on the function f(·) to P (x).
Let f(·) be an integrable function defined on Π such that 〈f〉(·) is a slowly

varying function, 〈f〉 ∈ SV∆(x)(T ). We assume that averaged values 〈f〉(x),
x ∈ Π∆ have to be calculated with some tolerance determined by a certain
tolerance parameter ε〈f〉. The function f(·) will be called a ∆-heteroperiodic
function if for every x ∈ Π∆ there exists a ∆(x)-periodic function fx(·) such
that

∀x ∈ Π∆ 〈|f − fx|〉(x) ¬ ε〈f〉 (3.6)

A heterogeneous plate will be called heteroperiodic if all material properties of
this plate can be described by heteroperiodic functions. Otherwise, by a hete-
roperiodic plate we mean a plate which in small regions (small neighbourhoods
of ∆(x)) can be approximately regarded as a periodic one.
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4. Averaged description

The tolerance averaging applied to the plate under consideration is based
on two additional modelling assumptions. The assumption of macromodelling
states that every cell ∆(x) (Fig. 2), within a certain tolerance, can be treated
as nondiscernible with a rectangular cell shown in Fig. 3.

Fig. 3. The rectangular cell

The conformability assumption states that the deflection w(·) of the plate
midplane is in a small region P (x) (Eq. (3.5)) a periodic-like function, w(·) ∈
PL∆(x)(T ), that means the deflection is conformable to the plate structure.
This condition may be violated only near the boundary of the plate. Bearing
in mind the lemmas of the tolerance averaging method (see Woźniak and
Wierzbicki, 2000), the conformability assumption can be represented by the
decomposition

w(ξβ , t) = w0(ξβ , t) + w̃(ξβ , t) (4.1)

where w0 = 〈w〉, w0(·) ∈ SV∆(x)(T ), w̃(·) ∈ PL1∆(x)(T ) is called the deflection
disturbance and satisfy the condition 〈w̃〉 ∼= 0.
Substituting the right-hand side of Eq. (4.1) into equilibrium equation (2.6)

and applying the tolerance averaging, we arrive at the equation

[
〈BHαβγδ〉(ξτ )w0|γδ(ξτ , t)

]

|αβ
+
[
〈BHαβγδw̃|γδ〉(ξτ , t)

]

|αβ
−Nαβw0|βα(ξτ , t) = 0

(4.2)
where Nαβ = 〈nαβ〉. According to the conformability assumption, we have to
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assume that the forces in the plate midplane are determined by the periodic-
like function nαβ(·) ∈ PL∆(x)(T ).
Hence, these forces can be represented by the decomposition

nαβ(ξβ, t) = Nαβ(ξβ, t) + ñαβ(ξβ, t) (4.3)

where Nαβ(·) ∈ SV∆(x)(T ), and ñαβ(·) ∈ PL1∆(x)(T ) is a fluctuating part of
forces nαβ(·), such that 〈ñαβ〉 ∼= 0.
Multiplying Eq. (2.6) by an arbitrary ∆(x)-periodic test function δw, such

that 〈δw〉 = 0, averaging this equation over ∆(x), x ∈ Π∆, and using the
tolerance averaging formulae (see Woźniak and Wierzbicki, 2000), we obtain
a periodic problem on the cell ∆(x) for the ∆(x)-periodic function w̃x(·),
given by the following variational condition

〈δw|αβBHαβγδw̃x|γδ〉(ξτ , t) + 〈δw|βnαβw̃x|α〉(ξτ , t) =
(4.4)

= −〈δw|αβBHαβγδ〉(ξτ )w0|γδ(ξτ , t)

which has to hold for every test function δw.
The approximate solution to the above variational cell problem will be

assumed in the form
w̃x(y, t) ∼= hα(y)Vα(x, t) (4.5)

where y ∈ ∆(x), x ∈ Π∆; hα(·) are postulated ∆(x)-periodic functions
such that 〈hα〉 = 0, and Vα(·, t) are new unknowns which are assumed to be
slowly varying functions, Vα(·) ∈ SV∆(x)(T ). The functions hα(·), called shape
functions, depend on the mesostructure parameter l such that l−1hα(·) ∈ O(l),
lhα|γβ(x) ∈ O(l), max |hα(y)| ¬ l2, y ∈ ∆(x).
Substituting the right-hand sides of Eq. (4.5) into (4.2) and (4.4) and

setting δw = hα(y) in (4.4) on the basis of the tolerance averaging relations,
we finally arrive at the governing equations for the considered plates
[
〈BHαβγδ〉(ξτ )w0|γδ(·, t)

]

|αβ
+
[
〈BHαβγδhµ|γδ〉(ξ

τ )Vµ(·, t)
]

|αβ
−Nαβw0|αβ = 0

(4.6)

〈BHαβγδhµ|αβ〉(ξ
λ)w0|γδ(·, t) + 〈BHαβγδh

µ
|αβh

τ
|γδ〉(ξλ)Vτ (·, t) +

+Nαβ〈hµ|βh
τ
|α〉Vτ = 0

where the underlined term depends on the mesostructure parameter l. In
Eq. (4.6)2 we have assumed that the fluctuating part ñ

αβ(·) of the forces
nαβ(·) is very small compared to their averaging part N αβ(·), and hence
〈hµ|βnαβhτ|α〉 ∼= Nαβ〈h

µ
|βh
τ
|α〉.
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Taking into account Eq. (4.5), the plate deflection can be approximated
by means of the formula

w(ξβ , t) ∼= w0(ξβ , t) + hα(y)Vα(ξβ , t) (4.7)

The presented model has a physical sense when the basic unknowns
w0(ξβ, t), Vα(ξ

β , t) are ∆(x)-slowly varying functions, w0(·) ∈ SV∆(x)(T ),
Vα(·) ∈ SV∆(x)(T ).
The characteristic features of the derived length-scale model are:

• The model takes into account the effect of the cell size on the stability
of the considered plate.

• The governing equations have averaged coefficients that are slowly vary-
ing functions.

The simplified model of the stability of plates with non-uniform distribu-
tion of constituents can be derived from the length-scale model, Eq. (4.6), by
passing to the limit l→ 0, i.e. by neglecting the parameter l, which is placed
in the underlined term. Hence, we arrive at the local model governed by
[
〈BHαβγδ〉(ξτ )w0|γδ(·, t)

]

|αβ
+
[
〈BHαβγδhµ|γδ〉(ξ

τ )Vµ(·, t)
]

|αβ
−Nαβw0|αβ = 0

(4.8)

〈BHαβγδhµ|αβ〉(ξ
λ)w0|γδ(·, t) + 〈BHαβγδh

µ
|αβh

τ
|γδ〉(ξλ)Vτ (·, t) = 0

This model can be treated as a certain homogenized model, in which through
the tolerance averaging method one can calculate an approximate value of the
averaged stiffnesses modulus.

5. Applications

We shall investigate the linear stability of plates for polar-symmetric buc-
kling. Assume that the matrix and walls of a plate are made of two different
isotropic homogeneous materials. The bending stiffness of the walls is denoted
by B1 and that of the matrix by B2 = α1B1, Poisson’s ratio respectively
by ν1 and ν2 = α2ν1. Moreover, the loadings p are neglected. On the leading
assumption, the physical components of shape functions, for the cell shown in
Fig. 3, will be taken as

h〈1〉(y) = h1(y) = s1(y1)
[
1−
(2y2
b2

)2]

(5.1)

h〈2〉(y) = ρh2(y) = s2(y2)
[
1−
(2y1
b1

)2]
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where

s1(y1) =





a2
[ 4
a2

(
y1 −
1

2
l1)
2 − 1− 2

3

l1 − 2a
l1

]
y1 ∈

〈1
2
b1,
1

2
l1
〉

a2
[
− 4

(l1 − a)2
(y1)

2 + 1− 2
3

l1 − 2a
l1

]
y1 ∈

〈
− 1
2
b1,
1

2
b1
〉

a2
[
4
a2

(
y1 +

1
2 l1
)2
− 1− 23

l1−2a
l1

]
y1 ∈

〈
− 1
2
l1,−
1

2
b1
〉

(5.2)

s2(y2) =






a2
[ 4
a2

(
y2 −
1

2
∆ϕρ
)2
− 1− 2

3

∆ϕρ− 2a
∆ϕρ

]
y2 ∈

〈1
2
b2,
1

2
l2
〉

a2
[
− 4

(∆ϕρ− a)2 (y2)
2 + 1− 2

3

∆ϕρ− 2a
∆ϕρ

]
y2 ∈

〈
− 1
2
b2,
1

2
b2
〉

a2
[ 4
a2

(
y2 +
1

2
∆ϕρ
)2
− 1− 2

3

∆ϕρ− 2a
∆ϕρ

]
y2 ∈

〈
− 1
2
l2,−
1

2
b2
〉

5.1. Governing equations for the length-scale model

Using Eq. (4.6) with shape functions given by Eq. (5.1), (5.2), we obtain a
system of governing equations for polar-symmetric buckling. These equations,
describing the buckling of the plate in the framework of the length-scale model,
take the form

(〈BH11γδ〉(ρ)w0|γδ),11+
(2
ρ
〈BH11γδ〉(ρ)w0|γδ

)
,1−2〈BH22γδ〉(ρ)w0|γδ +

−ρ(〈BH22γδ〉(ρ)w0|γδ),1 + (〈BH11γδh1|γδ〉(ρ)V1),11+(〈BH11γδh2|γδ〉(ρ)V2),11+

+
2

ρ
(〈BH11γδh1|γδ〉(ρ)V1),1 +

2

ρ
(〈BH11γδh2|γδ〉(ρ)V2),1 − 2〈BH22γδh1|γδ〉(ρ)V1 +

−2〈BH22γδh2|γδ〉(ρ)V2 − ρ(〈BH22γδh1|γδ〉(ρ)V1),1 − ρ(〈BH22γδh2|γδ〉(ρ)V2),1 +
−N11w0,11 −N22w0,1 = 0

(5.3)

[C11(ρ) +N11〈(h1|1)2〉+N22〈(h1|2)2〉]V1 +
+[C12(ρ) +N11〈h1|1h2|1〉+N22〈h1|2h2|2〉]V2 +B111(ρ)w0,11 +B221(ρ)w0,1 = 0

[C21(ρ) +N11〈h1|1h2|1〉+N22〈h1|2h2|2〉]V1 +
+[C22(ρ) +N11〈(h2|1)2〉+N22〈(h2|2)2〉]V2 +B211(ρ)w0,11 +B222(ρ)w0,1 = 0
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where the following denotations have been introduced

B111(ρ) = 〈BH1111h1|11〉+ 〈BH1122h1|22〉

B211(ρ) = 〈BH1111h2|11〉+ 〈BH2211h2|22〉

B221(ρ) = 〈BH1122h1|11〉+ 〈BH2222h1|22〉

B222(ρ) = 〈BH1122h2|11〉+ 〈BH2222h2|22〉 (5.4)

C11(ρ) = 〈BH1111h1|11h1|11〉+ 2〈BH1122h1|11h1|22〉+
+4〈BH1212h1|12h1|12〉+ 〈BH2222h1|22h1|22〉

C12(ρ) = C21(ρ) = 〈BH1111h1|11h2|11〉+ 〈BH1122h1|11h2|22〉+
+4〈BH1212h1|12h2|12〉+ 〈BH2211h1|22h2|11〉+ 〈BH2222h1|22h2|22〉

C22(ρ) = 〈BH1111h2|11h2|11〉+ 2〈BH1122h2|11h2|22〉+
+4〈BH1212h2|12h2|12〉+ 〈BH2222h2|22h2|22〉

Eliminating the internal variables

V1 = A
11w0,11+A

1ρw0,1=
B211K1 −B111K2
K3K2 −K21

w0,11+
B222K1 −B221K2
K3K2 −K21

ρw0,1

(5.5)

V2 = A
22w0,11+A

2ρw0,1=
B111K1 −B211K3
K3K2 −K21

w0,11+
B221K1 −B222K3
K3K2 −K21

ρw0,1

where

K1 = C
12(ρ) +N11〈h1|1h2|1〉+N22〈h1|2h2|2〉

K2 = C
22(ρ) +N11〈(h2|1)2〉+N22〈(h2|2)2〉

K3 = C
11(ρ) +N11〈(h1|1)2〉+N22〈(h1|2)2〉

we obtain the equilibrium equation in the form

(C1(ρ,N
αβ)w0,11 ),11+C2(ρ,N

αβ)w0,11+(ρC2(ρ,N
αβ)w0,11 ),1+

+(ρC3(ρ,N
αβ)w0,1 ),11+ρC4(ρ,N

αβ)w0,1+(ρ
2C4(ρ,N

αβ)w0,1 ),1+ (5.6)

−N11w0,11−N22ρw0,1= 0
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where

C1(ρ,N
αβ) = 〈BH1111〉+B111A11 +B211A22

C2(ρ,N
αβ) =

2

ρ2
〈BH1111〉 − 〈BH2211〉+

( 2
ρ2
B111 −B221

)
A11 +

+
( 2
ρ2
B211 −B222

)
A22

(5.7)

C3(ρ,N
αβ) = 〈BH1122〉+B111A1 +B211A2

C4(ρ,N
αβ) =

2

ρ2
〈BH1122〉 − 〈BH2222〉+

( 2
ρ2
B111 −B221

)
A1 +

+
( 2
ρ2
B211 −B222

)
A2

5.2. Governing equations for the local model

Now we consider buckling of a plate in the framework of the local model.
This model can be derived directly from the length-scale model Eqs (5.3)-(5.7)
by passing l→ 0, i.e. by neglecting terms with the mesostructure parameter l.
Hence, we arrive at equilibrium equations

(〈BH11γδ〉(ρ)w0|γδ),11+
(2
ρ
〈BH11γδ〉(ρ)w0|γδ

)
,1−2〈BH22γδ〉(ρ)w0|γδ +

−ρ(〈BH22γδ〉(ρ)w0|γδ),1 + (〈BH11γδh1|γδ〉(ρ)V1),11+(〈BH11γδh2|γδ〉(ρ)V2),11+

+
2

ρ
(〈BH11γδh1|γδ〉(ρ)V1),1 +

2

ρ
(〈BH11γδh2|γδ〉(ρ)V2),1 − 2〈BH22γδh1|γδ〉(ρ)V1 +

−2〈BH22γδh2|γδ〉(ρ)V2 − ρ(〈BH22γδh1|γδ〉(ρ)V1),1 − ρ(〈BH22γδh2|γδ〉(ρ)V2),1 +

−N11w0,11 −N22w0,1 = 0
(5.8)

C11(ρ)V1 + C
12(ρ)V2 +B

111(ρ)w0,11 +B
221(ρ)w0,1 = 0

C21(ρ)V1 + C
22(ρ)V2 +B

211(ρ)w0,11 +B
222(ρ)w0,1 = 0

with the denotations given by Eq. (5.4).
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Eliminating the internal variables

V1 = A
11w0,11+A

1ρw0,1=

=
B211C12 −B111C22
C11C22 − (C12)2 w

0,11+
B222C12 −B221C22
C11C22 − (C12)2 ρw

0,1

(5.9)

V2 = A
22w0,11+A

2ρw0,1=

=
B111C12 −B211C11
C11C22 − (C12)2 w

0,11+
B221C12 −B222C11
C11C22 − (C12)2 ρw

0,1

we obtain the equilibrium equation in the form similar to Eq. (5.6)

(C1(ρ)w
0,11 ),11+C2(ρ)w

0,11+(ρC2(ρ)w
0,11 ),1+(ρC3(ρ)w

0,1 ),11+
(5.10)

+ρC4(ρ)w
0,1+(ρ

2C4(ρ)w
0,1 ),1−N11w0,11−N22ρw0,1= 0

where

C1(ρ) = 〈BH1111〉+B111A11 +B211A22

C2(ρ) =
2

ρ2
〈BH1111〉 − 〈BH2211〉+

( 2
ρ2
B111 −B221

)
A11 +

+
( 2
ρ2
B211 −B222

)
A22

(5.11)

C3(ρ) = 〈BH1122〉+B111A1 +B211A2

C4(ρ) =
2

ρ2
〈BH1122〉 − 〈BH2222〉+

( 2
ρ2
B111 −B221

)
A1 +

+
( 2
ρ2
B211 −B222

)
A2

5.3. Illustrative example

Now we will investigate a special case of polar- symmetrical buckling of
an annular plate. Assume that the cell length l1 = ∆ϕρ, Poisson’s ratio
ν1 = ν2 = 0 and the beam thickness a = ml1. Hence, all averaged plate
stiffenesses are constant, and for the local model equilibrium equation (5.10)
have the form

C̃1w
0
,1111 +

2

ρ
C̃1w

0
,111 −

1

ρ2
C̃1w

0
,11 +

1

ρ3
C̃1w

0
,1 −Nρw0,11 −

1

ρ
Nϕw

0
,1 = 0 (5.12)
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where

C̃1(ρ) = 〈BH̃1111〉+ B̃111Ã11 + B̃211Ã22

Ã11 = A11 Ã22 =
1

ρ
A22

B̃111 = B111 B̃211 = ρB211
(5.13)

〈BH̃1111〉 = B1[m+m(1−m) + α1(1−m)2]

In Eq. (5.13), B1 denotes the bending stiffeness of the beams, and
α1 = Ematrix/Ebeams.

Fig. 4. An annular plate subjected to constant compressive forces

We will investigate the stability of the annular plate subjected to constant
compressive forces distributed along the edges of the plate (Fig. 4). Bearing
in mind that the tensile forces Nρ and Nϕ are averaged parts of the middle
surface forces nαβ, from the equilibrium equations for membrane forces in the
midplane one gets, for pa = pb, the following condition Nρ = Nϕ = N . In this
case, equilibrium equation (5.12) can be assumed in the form

L[Lw0(x)]− γLw0(x) = 0 (5.14)



394 B.Michalak

where, adopting a new dimensionless independent variable x = ρ/rz (rz is the
external radius of the annular plate)

L =
d2

dx2
+
1

x

d

dx
γ =
N(rz)

2

C̃1
(5.15)

Fourth order differential equations (5.14) can be replaced by two independent
second order Bessel’s differential equations. The solution to these equations
will be obtained as

w0(x) = D1 +D2 lnx+D3J0(λx) +D4Y0(λx) (5.16)

where λ =
√−γ and J0(λx), Y0(λx) are Bessel’s functions.

In the case of an annular plate clamped along the circumference, the bo-
undary conditions have the form

w0(x = η) = 0
dw0(x = η)

dρ
= 0

w0(x = 1) = 0
dw0(x = 1)

dρ
= 0

(5.17)

where η = rw/rz (rz – external and rw – internal radius of the annular plate).
Substituting Eq. (5.16) into (5.17), we obtain the condition

∣∣∣∣∣∣∣∣∣

J0(ηλ) Y0(ηλ) ln η 1
−ηλJ1(ηλ) −ηλY1(ηλ) 1 0
J0(λ) Y0(λ) 0 1
−λJ1(λ) −λY1(λ) 1 0

∣∣∣∣∣∣∣∣∣

= 0 (5.18)

from which we calculate the critical value of the coefficient λcr and the critical
compressive force

Ncr =
(λcr)

2C̃1
(rz)2

(5.19)

Introducing notations Ncr = scrB1/(rz)
2, where B1 = Ebeamsh

3/12(1 − ν2),
we derive diagrams of the parameter scr versus the ratio n = rw/rz. On the
diagram in Fig. 5 one can observe the smallest value of the critical parameter
scr versus the ratio n for the ratio of the matrix and beams Young moduli
α1 = Ematrix/Ebeams = 0.5, where the ratio a/l1 was used as a parameter. The
diagram presenting the parameter scr for n = a/l1 = 1.0 shows the parameter
corresponding to the critical force for a homogeneous plate made of the same
material as that of the beams, while the diagram for n = a/l1 = 0 shows
the critical parameter for a homogeneous plate made of the matrix material.
Figure 6 shows the critical parameter scr for n = a/l1 = 0.1, where the ratio
α1 = Ematrix/Ebeams is used as a parameter.
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Fig. 5. The smallest value of the parameter scr of critical forces N versus the ratio
n = rw/rz. The ratio a/l1 is used as a parameter. It is assumed that

α1 = Ematrix/Ewalls = 0.5

Fig. 6. The smallest value of the parameter scr of the critical forces N versus the
ratio n = rw/rz. The ratio α1 = Ematrix/Ewalls is used as a parameter. It is

assumed that a/l1 = 0.1

6. Conclusions

In this paper, the tolerance averaging method, developed by Woźniak and
Wierzbicki (2000) for heteroperiodic solids, is adopted to the analysis of sta-
bility of composite plates with non-uniform distribution of constituents. From
the above considerations it follows that the tolerance averaging method can



396 B.Michalak

be successfully applied to the formulation of the averaging model of the linear
stability of such plates.
The modelling approach is different from the known homogenization me-

thods and leads to a model in which governing equations depend on the mi-
crostructure size. It has to be mentioned that the results obtained in this
contribution cannot be derived by using the homogenization method related
to solids which are periodic with respect to a certain curvilinear parametriza-
tion, see Lewiński and Telega (2000).
It can be seen that the above modelling approach leads from equations,

which have highly oscillating coefficients, to a system of equations with non-
constant but slowly varying coefficients. A solution to these equations can be
obtained by applying known typical numerical procedures.
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Stateczność płyt kompozytowych z niejednorodnym rozkładem

składników

Streszczenie

Celem pracy jest sformułowanie i zbadanie uśrednionego modelu opisującego sta-
teczność płyty kompozytowej z niejednorodnym rozkładem składników. Rozpatry-
wana płyta ma określoną budowę, która nie jest periodyczna, ale która w małym
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obszarze rozpatrywanej płyty może być w przybliżeniu traktowana jako periodyczna.
Przedmiotem analizy jest kolista płyta kompozytowa zbudowana z dwóch rodzajów
sprężystych prętów, których osie są prostopadłe. Obszar pomiędzy prętami wypełnia
jednorodny sprężysty materiał matrycy. Sformułowanie przybliżonego modelu mate-
matycznego bazuje na koncepcji uśredniania tolerancyjnego przedstawionej w pracy
Woźniaka i Wierzbickiego (2000), gdzie ciało tego rodzaju nazwane jest ciałem hete-
roperiodycznym.
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