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A growing number of industrial fields is concerned by complex and multi-
objective problems. For this kind of problems, optimal decision making is
critical. Decision support systems using fuzzy logic are often used to deal
with complex and large decision making problems. However the main draw-
back is the need of an expert to manually construct the knowledge base.
The use of genetic algorithms proved to be an effective way to solve this pro-
blem. Genetic algorithms model the life evolution strategy using the Darwin
theory. A main problem in genetic algorithms is the premature convergen-
ce, and the last enhancements in order to solve this problem include new
multi-combinative reproduction techniques. There are two principal ways to
perform multi-combinative reproduction within a genetic algorithm, name-
ly the Multi-parent Recombination, Multiple Crossover on Multiple Parents
(MCMP); and the Multiple Crossovers Per Couple (MCPC). Both techniqu-
es try to take the most of the genetic information contained in the parents.
This paper explores the possibility to decrease premature convergence in a
real/binary like coded genetic algorithm (RBCGA) used in automatic gene-
ration of fuzzy knowledge bases (FKBs). The RBCGA uses several crossover
mechanisms applied to the same couple of parents. The crossovers are al-
so combined in different ways creating a multiple offspring from the same
parent genes. The large family concept and the variation of the crossovers
should introduce diversity and variation in otherwise prematurely converged
populations and hence, keeping the search process active.

Key words: artificial intelligence, fuzzy decision support system, fuzzy know-
ledge base, learning, premature convergence, genetic algorithm, crossover
operators
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1. Introduction and problem definition

Fuzzy decision support systems use an approximate reasoning that emula-
tes the human thinking process. The thinking is done through fuzzy knowledge
bases (FKB). The behavior of the FKB is easily understandable by a human
being, since it is expressed through simple fuzzy sets and a set of linguistic
rules. A FKB is generally constructed manually by an expert who translates
his own knowledge of the task at hand to propose fuzzy sets – number, shape
and repartition – and the appropriate fuzzy rules. The method used by the
expert is based on a tedious process of trial and error approach, since fuzzy
systems, unlike some other artificial intelligence methods, cannot learn from
data. This lack implied several researches to automatically generate the rule
base of a FKB from the expert knowledge or a numerical set of data (Castel-
lano et al., 1997; Casillas et al., 2000; Hagras et al., 1999). Other researchers,
concentrated their efforts on the automatic generation of fuzzy sets (Nomura
et al., 1992; Valesco et al., 1997). Other investigations were focused on si-
multaneous generation of the fuzzy sets and the fuzzy rules (Achiche et al.,
2002; Baron et al., 2001; Xiong and Litz, 2002). To perform automatic gene-
ration of FKBs, several optimization algorithms can be used, however with
the presence of non-derivable functions in the FKBs (inference engine ... etc),
the presence of a high number of possible FKBs for each problem encoun-
tered and the number of fuzzy rules increasing exponentially with the num-
ber of fuzzy sets, genetic algorithms (GAs) appear to be the most promising
learning tool.

The GAs are powerful stochastic optimization methods presented first in
the late 1960’s and early 1970’s by John Holland (Holland, 1973) and his stu-
dents. In the mid-1980’s, these algorithms became more popular and were used
in several fields such as machine learning (Goldberg, 1989). GAs are conside-
red here as an optimization tool for the automatic generation of FKBs. The
GA used in this paper is a real/binary-like coded genetic algorithm (RBC-
GA) developed by the authors (Achiche et al., 2003). The RBCGA allows one
to solve a contradictory paradigm in terms of FKB precision and simplicity
(less fuzzy rules and less fuzzy sets) considering a randomly generated po-
pulation of potential FKBs. The RBCGA is divided in two principal coding
ways. First, a real coded genetic algorithm (RCGA) that maps the fuzzy sets
repartition and number into a set of real numbers, and second, a binary like
coded genetic algorithm deals with the fuzzy rule base relationships (a set
of integers is used). Although, GAs have proved to be effective in the auto-
matic generation of FKBs (Baron et al., 2001), one of their drawbacks is the
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premature convergence problem (stagnation of the evolution). A GA is said
asymptotically convergent if there is no change in the individuals from a ge-
neration to the next. At this state, all the individuals look almost alike. GAs
can converge even though the near optimal solution is not yet found, which
means that the GA is unable to explore the remaining search space, namely
the premature convergence. The premature convergence is generally due to
the loss of diversity within the population. This loss can be caused by the
selection pressure, the schemata distribution due to crossover operators, and a
poor evolution parameters setting (Li et al., 1992; Mahfoud, 1995). Premature
convergence is in some cases considered a complete failure of the GAs (Gold-
berg, 1989; Eshelman and Schaffer, 1991). To avoid the premature convergence,
several researches have been performed, such as, dynamic niche sharing to ef-
ficiently identify and search multiple niches (peaks) in a multi-modal domain
(Brad and Miller, 1996), the partition of the population in several subpo-
pulations have been tried, this inducted the distributed genetic algorithms
(Herrera and Lozano, 1997). Multi-combinative techniques have been also
newly reported.

There are two principal ways to perform multi-combinative reproduction
within a genetic algorithm. The first one being the Multi-parent Recombi-
nation, i.e., Multiple Crossover on Multiple Parents (MCMP) (Eiben and
Bäck, 1997; Ono and Kobayashi, 1997; Tsutsui, 1998; Tsutsui and Ghosh,
1998). The second one is the Multiple Crossovers Per Couple (MCPC). Both
techniques try to take most of the genetic information contained in the
parents.

This paper explores the possibility to decrease the premature convergen-
ce in the RBCGA used for the automatic generation of FKBs by means of
an MCPC strategy. The large family concept and the variation of crossovers
should introduce diversity and variation in otherwise prematurely converged
populations, and hence, keeping the search process active.

An overview of fuzzy logic based decision system, the FDSS software Fuzzy-
Flou, developed at Ecole Polytechnique (Canada) and University of Silesia
(Poland) (Balazinski et al., 1993) is first presented. This software is used for
the validation tests. Then, it presents a description of the RBCGA used in this
work, explaining the specificities of the reproduction and mutation mechani-
sms and their combination to ensure the MCPC strategy. Validation results
are presented along with a comparative study of their performances evaluated
through different evolution parameters. Finally, an application on experimen-
tal data is discussed.
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2. Fuzzy decision support systems

A rule-based approach to the decision making using fuzzy logic techniques
may consider an imprecise vague language as a set of rules linking a finite
number of conclusions. The knowledge base of such systems consists of two
components: a linguistic terms base and a fuzzy rules base (Balazinski et al.,
1993). The former is divided into two parts: the fuzzy premises (or inputs)
and the fuzzy conclusions (or outputs). In general, both can contain more
than one premise and one conclusion. However, we limit ourself in this paper
to systems of N multiple inputs and one single output (MISO). Moreover, for
the sake of simplicity, we consider only non-symmetric triangular fuzzy sets on
the premises and sharp-symmetric triangular fuzzy sets on the conclusion. The
representation of such imprecise knowledge by means of fuzzy linguistic terms
makes it possible to carry out quantitative processing in the course of infe-
rence that is used for handling uncertain (imprecise) knowledge. This is often
called approximate reasoning (Zadeh, 1973). Such knowledge can be collected
and delivered by a human expert (e.g. decision-maker, designer, process pla-
ner, machine operator). This knowledge, expressed by (k = 1, 2, ...,K) finite
heuristic fuzzy rules of the type MISO, may be written in the form

RkMISO : if x1 is X
k
1 and x2 is X

k
2 and . . . and xN is X

k
N then y is Y

k (2.1)

where {Xki }Ni=1 denote values of linguistic variables {xi}Ni=1 (conditions) de-
fined in the following universe of discourse {X i}Ni=1; and Y k stands for the
value of the independent linguistic variable y (conclusion) in the universe of
discourse Y . The global relation aggregating all rules from k = 1 to K is
given as

R = alsoKk=1(R
k
MISO) (2.2)

where the sentence connective also denotes any t- or s-norm (e.g., min (∧)
or max (∨) operators) or averages. For a given set of fuzzy inputs {X ′i}N1 (or
observations), the fuzzy output Y ′ (or conclusion) may be expressed symbo-
lically as

Y ′ = (X ′1, X
′
2, . . . , X

′
N ) ◦ R (2.3)

where ◦ denotes a compositional rule of inference (CRI), e.g., the sup-∧ or
sup-prod (sup-∗). Alternatively, the CRI of Eq. (2.3) is easily computed as

Y ′ = X ′N ◦ . . . ◦ (X ′2 ◦ (X ′1 ◦ R)) (2.4)

In FDSS Fuzzy-Flou, there are four variants of CRI: the sentence connective
also can be either ∨ or sum (∑); the compositional operator is the supremum
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(sup) of either ∧ or ∗, denoted sup∧ and sup∗; while the sentence connective
and and the fuzzy relation are always identical to the second part of the latter.
For the sake of brevity, all four variants of CRI – i.e.: ∨-sup∧-∧-∧; ∨-sup∗-∗-∗;
∑

-sup∧-∧-∧; and ∑-sup∗-∗-∗ – are expressed as

Y ′ =

{

∨Kk=1
∑K
k=1

}

sup
{xi∈Xi}Ni=1

∗t
(

∗t(X ′N , . . . , X ′2, X ′1), ∗t(Xk1 , Xk2 , . . . , XkN , Y k)
)

(2.5)
where ∗t(·) denotes the t-norm of (·) defined as either ∧ or ∗. These variants
of CRI mechanisms allow us to obtain different conclusions represented as the
membership function Y ′. In FDSS Fuzzy-Flou, there are three defuzzification
methods: the center of gravity (COG); the mean of maxima (MOM); and the
height method (HM). All the results presented in this paper are obtained with
the
∑

-sup∗-∗-∗ CRI and COG as defuzzification. Figure 1 shows a screen
printout of the premises and conclusion (on the right), the fuzzy rules and
settings (on the left) of the FDSS Fuzzy-Flou software.

Fig. 1. Screen shot of the FDSS Fuzzy-Flou
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3. Real/binary-like coded genetic algorithm

The most important success of the GAs remains in their evolution basis
rather than the coding, hence the occurrence of real coded genetic algorithms
(RCGA) in recent years. At first, they were mostly used in numerical opti-
mization works (Herrera et al., 1995). The use of RCGAs overcomes some of
the weaknesses of Binary Coded Genetic Algorithms (BCGAs), such as the
low resolution of the solutions (Baron et al., 2001). Moreover, most optimi-
zation works are performed in a continuous mathematical space (real space).
However, the FKBs contains two cooperative but distinct parts in terms of:

• premises, conclusions, along with the fuzzy sets on them
• fuzzy rules base.

They are distinct in a way that the first one deals with real numbers while
the second one uses integer numbers, since the fuzzy rules are simple pointers
to the index of a fuzzy set on the conclusion. For this matter, we used a
combination between an RCGA and a BCGA, where the binary part is mapped
into a string of integers. The algorithm is therfore called the Real/Binary-Like
Coded Genetic Algorithm (RBLGA).

3.1. Coding

The genotype corresponds to several independent sets of reals and a set of
integers. Here, the genotype can be described as follow:

Premises and conclusion – There is as many real number sets as there is
premises in the problem and one set for the conclusion. Each set contains
a predefined maximum number of real numbers representing the loca-
tion of the summit of each fuzzy set on each premise and the conclusion.
The two summits located at the minimum and maximum limits of each
premise and conclusion are not coded. We consider non-symmetrical-
overlapping triangular fuzzy sets for the premises and symmetrical trian-
gular fuzzy sets for the conclusion.

Fuzzy rules – The fuzzy rules are coded as a set of integers representing
an ordered list of the combination of the premises. Each integer in the
set represents a conclusion fuzzy set summit. The initial population of
FKBs is composed of P FKBs randomly generated. The genotype of each
new solution contains all the sets mentioned above, however as we will
explain below, the size of the sets can decrease throughout the evolution,
but cannot increase.



Multi-combinative strategy to avoid premature convergence... 423

3.1.1. Reproduction mechanisms of the RBCGA

The reproduction is performed by crossover of the genotype of the parents
to obtain the genotype of an offspring (or two offsprings). The reproduction
of the FKBs in the RBCGA is preformed through three principal crossover
mechanisms, each one has its own purpose, as explained below.
a) Multi crossover
The multi-crossover is a combination of crossovers applied on different parts
of the genotype.
a.1) Premises/conclusion crossover
For this part of the FKB, three crossover mechanisms are used concurrently
as explained later in the paper. For the three reproduction mechanisms, if
A = {x1, x2, · · · , xi, · · · , xn} and B = {y1, y2, · · · , yi, · · · , yn} represents the
two selected parents, C the offspring obtained by the crossover of A and B
then C = {z1, z2, · · · , zi, · · · , zn}, where zi are selected according to the used
crossover. The values of the offspring can belong to two main intervals, i.e.,
the exploitation or the exploration zone. The exploitation means using the
interval between the values of the two parents, while the exploration uses an
interval outside of these two limits, therefore trying new solutions (see Fig. ),
knowing that:

• in the exploitation zone, the offspring inherits behaviors close to those
of his parent’s average, since he was produced between them

• in the exploration zone, the offspring is a result of an exploration, his
attributes are away from his parent’s average.

Fig. 2. Interval action of an offspring gene

a.1.1) Blended crossover α
The blended crossover α is denoted as BLX-α (Herrera and Lozano, 2000),
where α controls the exploitation/exploration level of the offspring obtained
from the selected parents. As shown in Fig. 3, the zi values of the offspring
are randomly selected in the interval [min,max] where:

• max = maximum{xi, yi} − Iα
• min = minimum{xi, yi}+ Iα
• I = maximum{xi, yi} −minimum{xi, yi}
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Fig. 3. Blended crossover α – BLX-α

In order to avoid any bias in either direction (exploitation or exploration)
the value of α is set to 0.5, which provides offspring in the relaxed exploitation
zone.
a.1.2) Non-uniform arithmetical crossover
The non-uniform Arithmetical Crossover (non-uniform arithmetical crossover)
(Michalewicz, 1992) is denoted as NAX. The zi values of the offspring are
computed as follows:

• zi = λxi + (1− λ)yi or zi = λyi + (1− λ)xi.

The zi values are set to one of these two values at an equal probability
(50% each). The value of λ is randomly selected at each generation in the
interval [0, 1], making the non-uniform part of the mechanism. The min, max
values are the limits, as shown in Fig. 4.

Fig. 4. Arithmetical crossover NAX

a.1.3) Extended line crossover
The Extended Line Crossover (Mählenbein and Schlierkamp-Voosen, 1993) is
denoted as ELX. The zi values of the offspring are computed as follows:

• zi = βxi + β(yi − xi).

The value of β is randomly chosen within the interval [−0.25, 1.25]. Again,
the min, max values are the limits as shown in Fig. 5.

Fig. 5. Extended line crossover ELX

a.2) Fuzzy rules crossover
Since the part of the genotype representing the fuzzy rule base is composed
of integer numbers, the crossover on this part of the genotype is done by a
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simple crossover. The use of BLX/NAX/ELX crossovers is not suitable in this
case, because of the integer nature of the values. The operation is performed
by inverting the end part of the sets of the parents at a randomly selected
crossover site as shown in Fig. 6. These two mechanisms are governed by the
initiating probability pr1.

Fig. 6. Simple crossover of the RBLGA

b) Fuzzy set reducer
This mechanism is set to increase the simplicity of the FKBs by selecting on
each premise a summit and erasing it from the respective sets representing the
premises. The mechanism can be described as follows:

• the set given by

premisei = {summit1, summit2, · · · , summiti, · · · , summitn}

is selected

• one of the summits is randomly selected and erased
• the operation is repeated for each premise.

Decreasing the number of fuzzy sets reduces the maximum number of fuzzy
rules. This mechanism allows one to obtain different and more simple solutions
(FKBs). This mechanism is governed by the initiating probability pr2.
c) Mutation
Mutation is the creation of a new individual by altering the gene of the existing
one. The probability pr3 governs the occurrence of this mechanism. This paper
uses a uniform mutation (Michalewicz, 1992) applied to one randomly selected
individual, as follows:

• an individual C is randomly selected, C = {z1, z2, · · · , zi, · · · , zn}
• a mutation site i is randomly chosen in the interval [1, n]
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• zi is changed to z′i = random(ai, bi), where ai and bi are the limits
enclosing zi.

d) Selection mechanism
The selection mechanism used in this paper (to select the parents) is performed
as follows:

• a real value R, is randomly generated in the interval [0, 1]
• R is multiplied by S, S being the sum of fitness values of the individuals
in the population. The value RS is obtained

• beginning from the best individual of the population, the fitness values
are summed till the result is higher than RS. The last added individual
is considered as a potential parent

• the same mechanism is used to select the second parent.

4. Performance criteria

The performance criteria allow one to compute the rating of each FKB.
This performance rating is used by the RBCGA in order to perform the natu-
ral selection. Here, the performance criteria are the accuracy level of a FKB
(approximation error) in reproducing the outputs of the learning data. The
approximation error is measured using the root-mean-square error

∆rms =

√

√

√

√

N
∑

i=1

(RBCGAoutput − dataoutput)2
N

(4.1)

where N represents the number of learning data. The fitness value is evaluated
as a percentage of the output length L = zmax − zmin of the conclusion, i.e.,
φrms = 100(L −∆rms)/L.

4.1. Natural selection (elitist approach)

Natural selection is performed on the population by keeping the most pro-
mising individuals based on their fitness value (elitist approach). This is equ-
ivalent to using solutions that are closest to the optimum. For convenience, we
keep the size of the population constant.

The first generation begins with P FKBs, and the same number of addi-
tional FKBs are generated by reproduction and mutation. Moreover, in the
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RBLGA natural selection is applied on the 2P FKBs by ordering them accor-
ding to the performance criterion φrms and keeping the P first FKBs. The
size P has to be selected depending upon the performances of the computer
in use. A high value of P generally ensures a better diversity in the popula-
tion, which helps to avoid premature convergence. However, it increases the
learning time.

5. Evolutionary strategy

To apply the MCPC strategy to the BCGA, the crossover mechanisms
applied to the genotype are combined in different ways to create a multiple
different offspring from the same parent’s genes. A critical point in overco-
ming premature convergence is the identification of why it occurs and when
it occurs, along with a good balance between exploitation and exploration
throughout the evolution. It is widely established that a loss of population
diversity leads to premature convergence. The MCPC strategy is used on the
reproduction mechanisms. Although we can use the recombination strategy on
all the parts of the FKB, the quality of the FKB is more sensitive to the quali-
ty of the repartition and the number of fuzzy sets (Bonissone et al., 1996), and
hence, the evolutionary strategy is only applied to the premises. The Fuzzy
Set Reducer mechanism is not used in the MCPC strategy.

The MCPC strategy will be applied as follow:

Single application – each crossover mechanism is applied independently
(BLX-α, NAX and ELX), the results are used as a comparison basis

Linear combination – a linear combination of the three mechanisms is used

Simultaneous application – all three mechanisms are used simultaneously
in the evolution

Exploration balance mechanism – a switch of the reproduction mecha-
nism is set based on some criteria, this mechanism being divided into
two main parts.

5.1. Test functions

The learning performances of the RBCGA are investigated using three
examples of known behavior in terms of 3D surfaces of the type z = f(x, y),
where the nodes are the learning set of sampled data. We have used three
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different surfaces of different complexities to have a better idea on the genera-
lity of the results. The evolution and selection criteria are set to the following
values:

• pr1 = 100.0%
• pr2 = 0.0%
• pr3 = 5.0%
• Maximal complexity: 4 fuzzy sets (including the limits) on each premise
and 8 on the conclusion (no limits on the number, it can match the num-
ber of fuzzy rules). These numbers were chosen based on performance
tests applied on the three surfaces.

The evolution is completely governed by the multi-crossover reproduction
mechanism, the fuzzy set reducer is disabled to allow a more comparable FKBs,
otherwise the number of fuzzy rules can vary excessively. However, the num-
ber of fuzzy sets can decrease when two summits are overlapping, hence, the
reducing of the fuzzy rule base. The theoretical surfaces are the following:
1. Sinusoid surface
The sinusoid surface is defined as

z = sin(x y)
0 ¬ x ¬ 1.6
0 ¬ y ¬ 1.4 (5.1)

2. Spherical surface
The spherical surface is defined as

z = x2 + y2
−2.0 ¬ x ¬ 2
−2 ¬ y ¬ 2 (5.2)

3. Hyper-tangent surface
The hyper-tangent surface is defined as

z = tanh(x(x2 + y2))
−0.2 ¬ x ¬ 1.4
−0.2 ¬ y ¬ 1.4 (5.3)

In order to measure the fitness (accuracy levels) of the RBCGA in generating
FKBs, and for the sake of comparison, several runs have been made on the
three surfaces. The population size P was set to 20 individuals. The runs
were performed three times for 10, 50, 100, 500, 1000, 2500 and 5000 gene-
rations. The fitness of the best individual, the fitness of the worst individual
and the average fitness of all the individuals are taken into account at the last
generation for each surface. The average value of the three different results
obtained for each theoretical surface was computed. The runs are performed
using different versions of the RBCGAs (different crossover mechanisms).
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5.1.1. Test functions: single applications

The multi-crossover of the RBCGA uses the BLX − 0.5, the NAX and
ELX, independently. At the end of the evolution the averages of the results
obtained for the three surfaces (each test being performed three times) are
computed.

Tables 1 to 7 show the fitness for the best individual, the worst individual
in the population, the average fitness of the last population along with the size
of the fuzzy rules base corresponding to the crossover mechanism applied.

1. Blended crossover BLX-0.5
As shown in Table 1, the highest value obtained is 91.63% after 5000 genera-
tions. However after only 500 generations the fitness is already up to 91.35%.
The worst fitness gets closer to the best individual with the improvement of
the populations, same goes for the mean value, which shows a lack of diversity
in the population. A drawback very difficult to overcome since it is a direct
consequence of the elitist philosophy.

Table 1. Average φrms obtained by BLX − 0.5

Generation # Best individual Worst individual Mean Fitness # rules

10 82.76% 77.88% 79.64% 16

50 90.68% 90.48% 90.54% 12.67

100 91.01% 91.01% 91.01% 12.67

500 91.35% 91.17% 91.18% 12.67

1000 91.35% 91.18% 91.21% 12.67

2500 91.60% 91.36% 91.48% 12.67

5000 91.63% 91.54% 91.59% 12.67

Figure 7 shows the fitness evolution of the best individual, the fitness
reaches a plateau around 92.00%. The number of rules is decreased to 13

2. Non-uniform Arithmetical Crossover
In Table 2, the highest value obtained is 92.00% after 5000 generations. The
fitness gained around 1.00% from 500 generations to 5000, which is not ne-
gligible but still quite low. The worst fitness is very close to the best one,
same for the mean value which can be interpreted as a presence of too many
alike individuals in the population. This is reached after 50 generations only.
The number of rules stays at 16, which means that no simplification occurred
during the evolution.
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Fig. 7. Accuracy level for the best individuals using BLX − 0.5

Table 2. Average φrms obtained by NAX

Generation # Best individual Worst individual Mean Fitness # rules

10 82.85% 79.63% 80.68% 16.00

50 89.17% 89.16% 89.16% 16.00

100 89.45% 89.45% 89.45% 16.00

500 91.09% 91.04% 91.05% 16.00

1000 91.45% 91.45% 91.45% 16.00

2500 91.83% 91.72% 91.73% 16.00

5000 92.00% 91.98% 91.98% 16.00

Fig. 8. Accuracy level for the best individual using NAX strategy

Figure 8 shows the fitness evolution of the best individual, the fitness re-
aches again a plateau around 92.00%. The evolution is slower than for the
BLX − 0.5, even if the best values are still very comparable (91.63% vs
92.00%).



Multi-combinative strategy to avoid premature convergence... 431

3. Extended-Line Crossover
From Table 3, the highest fitness value is 92.78% reached after 5000 gene-
rations. After 100 generations the best fitness reached is 91.10%. The worst
and mean fitness values are very close to the best individual from the 50th
generation.

Table 3. Average φrms obtained by ELX

Generation # Best individual Worst individual Mean Fitness # rules

10 82.63% 79.39% 80.37% 16.00

50 89.53% 89.46% 89.49% 13.67

100 91.10% 91.10% 91.10% 13.67

500 91.56% 91.56% 91.56% 13.67

1000 91.92% 91.92% 91.92% 13.67

2500 92.55% 91.55% 91.55% 13.67

5000 92.78% 91.77% 91.77% 13.67

The ELX reached the best fitness compared to BLX − 0.5 and NAX.
From Fig. 9, we can see that the fitness evolution of the best individual is
better distributed through the generations, however the slow down at the end
is still present, where a plateau seems to be reached.

Fig. 9. Fitness the best individual using ELX

Using the single crossover applications, we have noticed three main nega-
tive points:

1. Fast convergence (premature): after 50 generations the evolutions slowed
down noticeably

2. Lack of diversity: the worst fitness value gets too close to the best fitness
value too fast
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3. Reaching a plateau: a plateau is reached around the fitness value of
92.00%, a plateau being a period in the learning process in which mini-
mum or no progress takes place.

To try to overcome the three above drawbacks, we applied the strategies
presented in Section 5.

5.1.2. Test functions: linear combination

The Linear Combination is denoted as LC. The crossover mechanism is
a linear combination of the BLX − 0.5, the NAX and the ELX. From the
existing population P , a new population of the offspring is created, namely P ′.
However, one third of the offspring is generated using BLX − 0.5, the other
third is generated using NAX and the last third is generated using ELX.

The assumption is that the use of different mechanisms should create more
diversity and hence decrease the premature convergence and its consequences.
Moreover, it is noteworthy to say that in the LC the three mechanisms do
not work in competition, but rather in a symbiotic way, since all the offspring
created are part of the evolution. The results obtained are presented in Table 4.

Table 4. Average φrms obtained by LC

Generation # Best individual Worst individual Mean Fitness # rules

10 81.79% 78.92% 79.87% 14.67

50 89.55% 89.47% 89.49% 13.33

100 89.97% 89.47% 89.56% 13.33

500 91.61% 91.61% 91.61% 13.33

1000 91.82% 91.77% 91.77% 13.33

2500 92.54% 91.42% 91.43% 13.33

5000 93.16% 93.05% 93.07% 13.33

We can see that the ≈ 92.00% plateau is exceeded. The LC reached a
fitness value of 93.16% after 5000 generations. From Fig. 10, we can see that
the speed of convergence decreased (the curve is less abrupt). The plateau,
noticed in the single mechanisms, is less acute here. In the last stages of the
evolution (1000 generations and more) the improvement is continuing for the
best individuals (see Fig. 10). The size of the rule base decreased also, since it
went from 16 down to 13 fuzzy rules, which is equivalent to the best result
obtained by the single applications.
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Fig. 10. Accuracy level for the best individual using LC strategy

5.1.3. Test functions: simultaneous application strategy

The Simultaneous Application Strategy is denoted as SA. The crossover
mechanism is a simultaneous application of the BLX − 0.5, the NAX and
the ELX. From the existing population P , a new population of the offspring
is created, namely P ′. However, for each pair of selected parents, 6 children
are generated, two of them with BLX − 0.5, two with the NAX and the
last two with the ELX. The different mechanisms shall create diversity and
hence decrease the premature convergence and its consequences. However, in
the SA strategy the crossover mechanisms are used competitively, in a sense
that, only the best offsprings are selected to be a part of the evolution. Table 5
shows that the ≈ 92.00% plateau is also exeeded. The SA reached 93.61%
after 5000 generations.

Table 5. Average φrms obtained by SA

Generation # Best individual Worst individual Mean Fitness # rules

10 83.13% 78.50% 79.74% 13.67

50 89.75% 89.40% 89.51% 13.67

100 90.84% 90.77% 90.79% 13.67

500 92.93% 92.92% 92.92% 13.67

1000 93.23% 93.23% 93.23% 13.67

2500 93.46% 93.36% 93.40% 13.67

5000 93.61% 93.40% 93.43% 13.67
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From Fig. 11, we can see that the speed of convergence decreased if compa-
red to the single evolution strategies (Fig. 7 - Fig. 9). The curve is less abrupt
from 50-th generations. The plateau noticed in the single mechanisms disap-
peared. After the 1000-th generation the improvement is slowing down but
still active (see Fig. 11). The SA strategy gave very similar results to the ones
obtained by the LC strategy (with a small improvement in the fitness), and
the curves are also very alike. The size of the rule base decreased, since it
went from the maximum of 16 down to around 13 fuzzy rules, which is again
equivalent to the results obtained by the best single application (≈ 13 fuzzy
rules) and the LC strategy (≈ 13 fuzzy rules).

Fig. 11. Accuracy level for the best individual using SA strategy

5.1.4. Test functions: exploration/exploitation balance strategy

The Exploration/Exploitation Balance Strategy is denoted as EEB. As
mentioned earlier in the paper, the two main reasons that cause premature
convergence are the loss of diversity in the population and the bad balance
between the exploration and exploitation throughout the evolution process. In
this section, we study the influence of the exploration/exploitation balance on
the premature convergence aiming to find which combination is the best as
follows:

1. Exploiting the individuals at the early stages of the evolution, applying
relaxed exploitation through the main part of the evolution and then
exploring the individuals at the late stages

2. Exploring at the early stages of the evolution, applying relaxed exploita-
tion through the main part of the evolution and then exploiting at the
late stages of the evolution.
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The first combination is called EEB1, while the second is called EEB2.
Both mechanisms use the BLX − α, since it is quite easy to control the
exploration/exploitation balance through the variation of α. The different
values given to α influence the exploration, exploitation or relaxed exploitation
levels of the crossover mechanism. The three values are set as follows:

• Exploration: α = 1.00 for total exploration
• Relaxed Exploitation: α = 0.50
• Exploitation: α = 0.1 for close to the maximum exploitation – α 6= 0, in
order to make a difference between the BLX-α and the uniform mutation.

The question we should ask ourselves is: at which stage of the evolution process
these three mechanisms should occur?. The stage of the evolution is defined
by the generation number. However, what can be considered at an early stage
of the evolution? The 10 first generations? What, if the maximal number
generations is set to 10? For this matter we assumed the following, considering
the maximum number of generations N :

• The first quarter (1/4) of N is considered being the early stages
• The last quarter of N is considered being the last stages
• The remaining part (from the end of the first quarter to the beginning
of the last one, limits non included) is considered being the evolution
stage.

In the next sections, we present the results obtained for both EBB1 and
EBB2 strategies.

1. Exploitation/Relaxed exploitation/Exploration EEB1
For EBB1, α is set to 0.10 at the early stages, then changes to 0.50 for the
relaxed exploitation stage and finally switches to 1.00 for the last stages of the
evolution. The results obtained by using EBB1 are reported in Table 6.

Table 6. Average φrms obtained by EEB1

Generation # Best individual Worst individual Mean Fitness # rules

10 84.19% 78.80% 80.81% 16

50 88.71% 87.49% 88.03% 16

100 88.84% 88.47% 88.58% 16

500 90.72% 90.71% 90.72% 16

1000 91.61% 91.28% 91.52% 16

2500 90.97% 90.90% 90.93% 14.67

5000 90.42% 90.42% 90.42% 14.67
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The first noticeable change is that the best fitness reached is not for the
5000 generations test but for the 1000 generations one. It is the lowest fitness
obtained until now (for the best individual) by the different strategies. From
Fig. 12, we can clearly see that unlike for the other tests the fitness level is
not proportional to the number of generations. This is due to the fact that
the number of exploited and/or explored individuals is different from a test to
another. For example, a run using 1000 generations: during 250 generations
the new breed is obtained using mostly exploitation, while in a run of 5000
generations, the exploitation is performed during 1 250 generations. A good
balance has to be found to obtain the best results with this mechanism, which
is not a simple task to do. However, even though the fitness level is not as
high as the other tests, it remains that the evolution of the convergence speed
is quite interesting, since we do not have a plateau as shown in Fig. 12.

Fig. 12. Accuracy level for the best individual using EEB1 strategy

The number of fuzzy rules is around 15 (see Table 6) which is higher than
the one from the previous tests, i.e., the FKBs obtained are less simple.
2. Exploration/Relaxed exploitation/Exploitation EEB2
For EBB2, α is set to 1.00 at the early stages, then changes to 0.50 for the
relaxed exploitation stage and finally switches to 0.10 for the last stages of
evolution. The results obtained by using EBB2 are reported in Table 7.
The best fitness level reached is for the 5000 generations test with 93.30%.

From the 500 generations test the evolution is stagnating. However, the fitness
level achieved exceeded the plateau of the single applications (≈ 92.00%).
Figure 13 illustrates the fitness evolution of the best individuals, the fitness
reaches a plateau around 93.30%. The evolution seems as fast as for the single
applications, even if the best values are still higher (≈ 93.00% vs ≈ 92.00%).
In the EBB2, the problem of the balance between the exploration/exploitation
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levels and the number of generations did not occur. The EBB2 seems to be
a more natural way to explore solutions since at the early stages it is better
to explore the search space, before the diversity starts to drop. The number
of fuzzy rules is around 10 (see Table 7) which is the lowest of any other
strategies.

Table 7. Average φrms obtained by EEB2

Generation # Best individual Worst individual Mean Fitness # rules

10 81.92% 79.06% 80.40% 12.33

50 91.59% 91.57% 91.58% 9.00

100 92.89% 92.85% 92.85% 9.67

500 93.29% 93.20% 92.24% 9.67

1000 93.29% 93.23% 93.24% 9.67

2500 93.29% 93.23% 93.25% 9.67

5000 93.30% 93.25% 93.26% 9.67

Fig. 13. Accuracy level for the best individual using EEB2 strategy

5.2. Evolutionary strategy: discussion and conclusions

The main goal of the MCPC strategy is to improve (or overcome) the
behavior of the RBCGA against premature convergence while generating fuzzy
knowledge bases using a small population size. Using three different single
crossover applications, we have noticed three negative points:

1. Fast convergence (FC)

2. Lack of diversity (LD)

3. Reaching a plateau (RP).
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For the sake of comparison we assume that the FC is overcome if the best
fitness value is not reached before 1000 generations (improvement of 0.50%
or more), the LD is overcome if the ≈ 92.00% fitness level is exceeded and
finally the RP is overcome if the shape of the curve shows no plateau.

The different combinations of multi-combinative evolution strategy achie-
ved various results for the tests made in this paper. Table 8 summarizes the
ability of the different strategies, the check mark

√
means that the strategy

succeeded in overcoming a negative aspect or achieving a positive one.

Table 8. Performances: single applications vs. MCPC strategies

Strategy
Overcoming Simplifi- Improving Overcoming
FC cation LD RP

BLX − 0.5 √

NAX
√

ELX
√ √

LC
√ √ √ √

SA
√ √ √ √

EEB1
√

EEB2
√√ √ √

From Table 8 it is obvious that the only two strategies achieving all the
constraints are the LC and SA ones. Moreover, the EEB2, even with the
fast convergence, remains very efficient because of the high simplicity level of
the FKBs (less fuzzy rules), hence the two

√
marks. The EBB1 failed almost

in every single criteria, which means that the exploitation during the early
stages of an evolution is not a good way to perform the optimization process.
The best way is to explore the search space while the breed is young and
then exploiting at the end for a fine tuning. Among the strategies proposed,
the LC, SA and EBB2 are the best. The SA and LC strategies achieved
similar results. The SA achieved a slightly better fitness level at the 5000
generations test. The learning time being a very important point in computer
learning, the LC surpasses the SA at this point because it produces three
times less children, since for a couple of parents SA produces six children,
while the LC generates only two. If a fast convergence (time wise) is needed
combined with a high simplification rate (less fuzzy rules), the EBB2 strategy
must be used. The EBB2 can be very suitable for factory floor applications.

The MCPC strategy overcomes some of the problems faced by the single
applications, apart from the EBB1. In the next section, we apply the multi-
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combinative strategy on a set of experimental data and we compare it with
the single applications.

6. Application to experimental data

In this section, we use a multi-combinative and single application learning
processes on a set of experimental data used to predict tool wear (V B) ba-
sed on a measure of the feed feed, the cutting force Fc, the feed force Ff ,
the depth of cut ap during turning operations, and the time of turning t
(Achiche et al., 2002). In order to simulate factory floor conditions, a typical
part is machined on a conventional lathe under six different cutting conditions
(Balazinski et al., 202), as shown in Fig. 14.

Fig. 14. Sets of cutting conditions

The RBCGA is used to automatically generate the FKB, from the set of
experimental data collected during this experiment. The maximum complexity
is set to 5 fuzzy sets on each of the 5 input premises and 10 fuzzy sets on
the conclusion. Therefore, the maximum number of fuzzy rules is given by
K = 5× 5× . . .× 5 = 55 = 3125.

6.1. Selection of the strategies and the evolution parameters

Since we are dealing with a factory floor modeling problem, we need a
strategy that respects the following:

• achieving a reasonable fitness level in a reasonable time (around 5 mi-
nutes)
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• a simple FKB is preferable, in case it has to be fine tuned manually for
further applications.

From these constraints, we can easily pick the EBB2 application. Because of
the simplicity level of its FKBs, the learning will be processed faster by the
RBCGA. As for the single application, the BLX − 0.5 is the one giving the
less fuzzy rules, hence it runs faster while achieving comparable results to the
other single applications.

The evolution parameters of the RBCGA are:

• Multi crossover application [%]: pr1 = 85.00%
• Fuzzy set reducer application [%]: pr2 = 15.00%
• Uniform mutation [%]: pr3 = 05.00%
• Population size is fixed at 100
• Number of generations is fixed at 350.

The number of generations and the population size has been chosen with
respect to the convergence time constraint.

6.2. Application to experimental data: results

As shown in Table 9, the FKB obtained by BLX−0.5 is 94.43% accurate,
which is a fairly good fitness level. The size of the fuzzy rules base is 32
(reduced from 3125). The highest simplicity level is achieved since each input
premise contains the minimum number of fuzzy sets (2) that are obtained by
linking the limits.

Table 9. φrms obtained by EEB2 and BLX-0.5 for the experimental data

Crossover mechanism Best fitness level # of fuzzy rules

BLX-0.5 94.43% 32

EBB2 96.11% 72

The EBB2 outperformed the BLX−0.5 accuracy as it reached the 96.13%
fitness level. However, the number of fuzzy rules is higher than the one obtained
from the BLX−0.5, i.e., 72 fuzzy rules. Nevertheless, 72 fuzzy rules remain a
very good simplification from the maximal size of 3125. The multi-combinative
strategy is very successful in modeling the tool wear monitoring problem. The
FKB obtained is accurate but still sufficiently simple for further human tuning.
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7. Conclusion

The mutli-combinative strategies used in this paper helped to overcome
some aspects of the premature convergence encountered in the automatic ge-
neration of fuzzy knowledge bases using genetic algorithms. Different ways to
create new breed from the same pair of parents genes is a good way to improve
the diversity. However, at the very late stages of the evolution, the presence of
too many look-alike individuals is still a problem. We can also conclude that
the exploration/exploitation balance influences the results. The rule to use
is as follows: exploration at the early stages of the evolution, relaxing in the
middle and exploitation at the end. It achieves better results than using the
exploitation, exploration or relaxed exploitation only. The multi-combinative
strategy also proved to be efficient when applied to experimental data. In or-
der to improve the performances of our RBCGA, a new crossover mechanism
that increases the number of fuzzy sets when the minimum of two fuzzy sets
is reached on each premise can be added, which is a way to add more diversity
to the population.
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Multikombinacyjna strategia unikania przedwczesnej konwergencji
w genetycznie generowanych rozmytych bazach wiedzy

Streszczenie

Rosnącej liczbie dziedzin, którymi zainteresowany jest przemysł, towarzyszą zło-
żone zagadnienia wieloobiektowe. Dla takich zagadnień optymalne podejmowanie de-
cyzji jest krytyczne. Często dla wsparcia procesu decyzyjnego w złożonych problemach
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stosuje się układy logiki rozmytej. Kłopotem pozostaje jednak potrzeba manualne-
go wygenerowania bazy wiedzy poprzez eksperta. Okazuje się, że pewnym rozwią-
zaniem tego problemu może być użycie algorytmów genetycznych. Algorytmy takie
modelują zagadnienie ewolucyjne na podstawie teorii Darwina. Głównym problemem
w algorytmach genetycznych jest przedwczesna konwergencja, której próby wyelimi-
nowania oparto na strategii multikombinowanych technik reprodukcji. Występują za-
sadniczo dwie drogi realizacji techniki reprodukcji: Multiple Crossover on Multiple
Parents (MCMP) oraz Multiple Crossovers Per Couple (MCPC). Obydwie metody
celują w wykorzystanie jak największej ilości informacji genetycznej od rodziców.
W artykule zajęto się możliwością ograniczania przedwczesnej konwergencji w rze-

czywistym/binarnym kodzie genetycznym (RBCGA) używanym w automatycznym
generowaniu rozmytych baz wiedzy (FKBs). Algorytm RBCGA stosuje kilka mecha-
nizmów krzyżowania genów w odniesieniu do tej samej pary rodziców. Mechanizmy
te przeróżnie kombinowane pozwalają na wielokrotną kreację potomstwa od tej samej
pary rodziców. Koncepcja dużej rodziny i różnicowanie krzyżowania powinny wpro-
wadzić dywersyfikację nowogenerowanych pokoleń, które w przeciwnym razie szybko
uległyby konwergencji. Zapobieżenie temu zjawisku poprzez strategię multikombina-
cyjną utrzymuje proces poszukiwania rozwiązania w stanie aktywnym.
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