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1. Introduction

1.1. Hierarchy in biology and mechanical engineering

We may distinct two goals in hierarchy creation or identification in optimal
design problems coming from mechanical engineering:

• To select the proper scale or the accuracy of analysis. A whole, large
civil structure may be analyzed as a single unit if the wind resistance is
analyzed. The plate being one of its part may be handled as a distinct
structure in the smaller scale and may be analyzed as a complicated,
periodic construction if its internal organization should be improved. The
opposite passage may be observed if we analyze a composite material in
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the scale of its one characteristic cell (unit) and then go to the macro-
scale analysis by homogenizing the parameters of components.

• To express the internal structure or the method of manufacturing. The
feature-oriented representation of the geometry of mechanical parts al-
lows one to represent the geometry as the log of the manufacturing pro-
cess. The root of this hierarchy may be interpreted as a crude piece of
material and the low level objects as effects of the particular, dependent
tooling actions.

We may also underline some hierarchical dependencies within biological
systems.

• Hierarchy among body parts of individuals caused by the cellular struc-
ture, tissues and organs follows the hierarchy of the individual body
structure.

• Hierarchy of individuals imposed by the degree of complexity of spe-
cies. Usually simple, low complex species (microbes, plankton, insects,...)
explore first new environment regions finding suitable niches. If the envi-
ronment is partially recognized, then high complexity species can obtain
the maximum fitness in the selected parts of niches.

Hierarchy identified in mechanical systems encourage us to emply hierar-
chic computational methods. We may distinct a group of genetic algorithms
that follows hierarchy of a computational problem by utilizing the proper bio-
logical metaphor.

1.2. Short taxonomy of genetic hierarchical methods

The first group of algorithms introduces the hierarchy of accuracy in the
global genetic searches performed in continuous domains. Delta coding (see
Whitley et al., 1991) introduces hierarchy of binary codes that allow more
intensive search around the best fitted individual encountered previously. The
genotype shortening is performed by keeping the prefixes at the value charac-
teristic for the best individual. This strategy is also extended to the multi-
population one based on the island scheme (see Mathias, 1991). The hierarchy
of searches is utilized in the Dynamic Parameter Encoding DPE (see Whitley
et al., 1991). The admissible domain is spread into the nested system of subdo-
mains. If the single-population binary coded genetic algorithm is dense in one
ore more subdomains, the search will be restricted to these parts and ”zoo-
med” by recoding all genotypes to the new smaller domain. Another idea is
represented in the Optimal Hierarchic Algorithm OHA described by Cant-Paz
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(see Bickel and Bickel, 1987). A two-level hierarchy is introduced. The island
structure of many populations makes a higher level. The fine-grained parallel
implementation of each island population combined with the master-slave or
cellular parallel mechanisms is used at the lower level of hierarchy. The most
comprehensive strategy that creates a hierarchy of parallel dependent robust
searches with the different resolution HGS will be described in Section 2.

The second group of genetic algorithms follows the internal structure of
the mechanical part during optimization. Hierarchical structures can be re-
presented as a hierarchical graph being a genotype in graph-oriented genetic
algorithms (see Nikodem, 2000; Wierzba et al., 2003). Graph-based genetic
operators are usually more complex than binary ones but the benefits coming
from the possibility of coding relationships between the components of an ar-
tifact and ability to introduce structural alternations compensate it. Other
solution is a modified hierarchical chromosome with the corresponding cros-
sover and mutation operators (see Paszyńska, 2002). This representation is
easier to implement than the graph-based one, but no direct information of
relations between primitives of the artifact is available. The advantage of the
hierarchical chromosome based method is a possibility to start an evolutionary
process with a random population. In the graph-based one it is an ability to
produce highly fit individuals faster, but the user-provided initial population
is required. An example of such an approach is contained in Section 3.

Hierarchical structures are often a representation of individuals in many
other evolutionary algorithms. Already Wilson wrote in the year 1987 (see
Wilson, 1987) about the meaning of hierarchy in the representation of tasks
and subtasks. In the same year, Bickel A.S. and Bickel R.W. (see Bickel and
Bickel, 1987) used trees in their system. Also the genetic programming is
often based on trees (see Koza, 1992; and Langdon and Poli, 2002). In spite
of numerous applications, there is still little known about the mathematical
model and theoretical results of evolutionary algorithms based on hierarchical
structures.

2. Hierarchical Genetic Strategy (HGS) for the continuous
parameter optimization

2.1. The idea of HGS search

The Hierarchical Genetic Strategy (HGS), introduced by Schaefer et al.
(2000), is a kind of multideme, parallel genetic algorithm, which is a very
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effective tool in solving ill-posed problems of continuous global optimization
with multimodal and weakly convex objective functions. High efficiency of the
strategy comes from the concurrent search in the optimization landscape by
many small populations.
The main idea of the Hierarchical Genetic Strategy (HGS) is running in

a parallel set of dependent evolutionary processes. The dependency relation
among processes has a tree structure with the restricted number of levels. The
processes of lower order (close to the root of the structure) represent chaotic
search with a low accuracy. They detect promising regions in the optimization
landscape, in which more accurate processes of higher orders are activated.
Every process creates a branch of the tree and can be defined as a sequence of
evolving populations. Populations evolving in different processes can contain
individuals which represent the solution (the phenotype) with different preci-
sion. This precision can be achieved by binary genotypes of different lengths
or by different phenotype scaling.
The strategy starts with the process of the lowest order called the root.

After a fixed number of evolution epochs, the best adapted individual is se-
lected. We call this procedure the metaepoch of the fixed period. After every
metaepoch, a new process of a higher order can be activated. This procedu-
re is called the sprouting operation. It is performed conditionally according
to the outcome of the branch comparison operation, and can be generalized
to some extent to HGS branches of higher orders. The definitions of those
operations depend strongly on the implementation of the HGS. In the binary
implementation of the HGS (see Schaefer and Kołodziej, 2003) the Simple Ge-
netic Algorithm (SGA) was applied as the law of evolution in every process.
The replacement of the SGA engine by a mechanism based on real-number
encoding, normal mutation and the simple arithmetic crossover increases the
efficiency of the HGS (see Wierzba et al., 2003).

2.2. Binary implementation of the HGS

Let us define the basic object and operations in the binary implementation
of HGS.
Let us denote by Ωs a set of all possible binary coded genotypes of the

fixed length s ∈ N. A collection of n elements of Ωs is called a population of
the size n and can be represented by its frequency vector

p = [p0, ..., pr−1]
> pj ­ 0

∑

j

pj = 1 (2.1)

where pj is the proportion of the element j in the population. The coordinates
of this vector are identical with baricentric coordinates of some point in the
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standard unit (r − 1)-dimensional (r = 2s) simplex Λ. We denote by Xrn a
set of all possible populations of the size n.
To start the strategy we have to fix the following parameters

• 1 ¬ s1 < s2 < ... < sm < ∞ – lengths of binary coded strings
(Ωs1 , Ωs2 , ..., Ωsm are the genetic spaces associated with those strings)

• 1 ¬ n1 ¬ n2 ¬ ... ¬ nm – sizes of populations which are multisubsets of
Ωs1 , Ωs2 , ..., Ωsm , respectively.

We can say that a given process has an order j, (i ∈ N), if the individuals
from the evolving populations have genotypes of the length sj. The unique
branch of the lowest degree 1 is called the root. The populations evolving in
this branch contain individuals with genotypes of the shortest length.
The nested coding is a method of coding the designed for the HGS with

SGA genetic engine (see Schaefer and Kołodziej, 2003). This method was first
defined for D ⊂ R and then generalized to D ⊂ R

N , N > 1, µ(D) > 0, where
µ stands for the Lebesgue measure over R

N . For D ⊂ R we have to define
recursively the sequence of meshes Dr1 , ..., Drm and the sequence of strictly
increasing coding mappings codej : Drj 3 x(ω) → ω ∈ Ωsj , j = 1, ...,m.
We start from the densest mesh Drm ⊂ R and the coding function codem:
Drm → Ωsm . For every 1 ¬ j ¬ m − 1 we define the selecting function φj :
Ωsj → Ω(sj+1−sj) which is fundamental for the construction of the sets Drj ,
j = 1, ...,m − 1. We put

Drj = {x(ω,φj(ω)), ω ∈ Ωsj}

where x(ω,ξ) = code
−1
j+1(ω, ξ), 1 ¬ j ¬ m− 1.

For D ⊂ R
N , N > 1 and for sj ∈ N, Nsj = sj we define the sets

D1rm , ..., D
N
rm
⊂ R such that the Cartesian product D1rm× . . .×D

N
rm
is included

in D. We also define the strictly increasing mappings codeim: D
i
rm
→ Ωsm

for i = 1, ..., N . For each i ∈ {1, ..., N} we define recursively a sequence of
sets Dirj , a sequence of mappings code

i
j : D

i
rj
→ Ωsj , j = 1, ...,m − 1 and the

selecting function φj : Ωsj → Ωsj+1−sj for 1 ¬ j ¬ m− 1 such that:

(1) Dirj = {x(ω,φj(ω)), ω ∈ Ωsj}, where x(ω,ξ) = (code
i
j+1)

−1(ω, ξ),
1 ¬ j ¬ m− 1

(2) codeij : D
i
rj
3 x(ω,φj(ω)) → ω ∈ Ωsj , 1 ¬ j ¬ m− 1.

We put:
Drj = D

1
rj
× . . .×DNrj j = 1, ...,m

Ωsj = (Ωsj )
N j = 1, ...,m

codej = (code
1
j , ..., code

N
j ) j = 1, ...,m
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Note that Dr1 ⊂ Dr2 ⊂ ... ⊂ Drm−1 ⊂ Drm . Figure 1 shows the sets Dr1 , Dr2
and Dr3 ⊂ R in the case of s1 = 2, s2 = 3, s3 = 5, φ1(00) = φ1(01) = 1,
φ1(10) = φ1(11) = 0, φ2 ≡ 01.

Fig. 1. Nested meshes for the Hierarchical Genetic Strategy in the case s1 = 2,
s2 = 3, s3 = 5

The fitness function in the HGS should be defined separately for each
branch of degree j ∈ {1, ...,m}

fj = Φ̃ ◦ code
−1
j : Ωsj → R+ (2.2)

One of the basic procedures in the strategy is the metaepoch. Formally, we
can define the k-periodic metaepoch Mk, k ∈ N as a discrete evolution pro-
cess which starts from the given population and terminates after at most k
generations by selection of the best adapted individual. The outcome of the
metaepoch starts from the population pr in the r-th generation. It may be
denoted by Mk(p

r) = (pr+l, ω̂, stop), l ¬ k, where pr+l denotes the frequency
vector of the resulting population, ω̂ – the best adapted individual in the me-
taepoch and stop – the branch stop criterion flag. The branch stop criterion
detects the lack of progression in the evolution process. It is usually heuristic
(e.g. detects a small increment of the average fitness).
By application of the sprouting operator the structure of the HGS can be

extended by creating new branches from the given one. To define the sprouting
operator, we have to introduce an operator As′ which ‘cuts off’ an s

′-length
prefix from the given binary string of the length s′′, s′′ > s′.

Definition 2.1

• If D ⊂ R, then for a binary string ω2 of the length |ω2| = s
′′ we have

As′(ω2) = ω1 where |ω1| = s
′; s′′, s′ ∈ N, s′′ > s′. It means that ω1

constitutes the s′-length prefix of the string ω2.

• If D ⊂ R
N , N > 1, µ(D) > 0, then for s′, s′′ ∈ N such that

Ns′ = s′, Ns′′ = s′′ and for ωj = (ω
1
j , ..., ω

N
j ); j = 1, 2; |ω

i
1| = s

′;
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|ωi2| = s
′′; i = 1, ..., N then As′ is defined as the catenation of operators

Ai
s′
, i = 1, ..., N

As′ = (A
1
s′ , . . . , A

N
s′ ) Ais′(ω

i
2) = ω

i
1 i = 1, ..., N

where ωi1 constitutes the s
′-length prefix of ωi2; i = 1, ..., N .

Now we can define an operator SO of sprouting a new branch from the
given one.

Definition 2.2

Let ω̂(j) be the best adapted individual in some metaepoch selected from
the population represented by psj evolving in a branch of the degree j
and let sj+1 > sj. An operator SO, given by the formula SO(psj ) =
(psj , psj+1), defines the process of construction of a population represen-
ted by the vector psj+1, which is the initial population for the new branch
of the degree j + 1. This population is a multisubset of Ωsj+1 and indi-
viduals for this set are selected according to the following rules:

• Asj (ω) = ω̂(j), ∀ω ∈ Ωsj+1 (i.e. |ω| = sj+1)
• if D ⊂ R, then a (sj+1 − sj)-length suffix is selected according to
the uniform probability distribution over Ω(sj+1−sj)
• if D ⊂ R

N , N > 1, µ(D) > 0, ω = (ω1, . . . , ωN ); ωi ∈ Ωsj+1
and Nsj = sj (j = 1, ...,m), then a (sj+1 − sj)-length suffix of
ωi is selected according to the uniform probability distribution over
Ω(sj+1−sj) independently for i = 1, 2, ..., N

The sprouting operator can be activated or not, depending on the outcome
of the prefix comparison operator defined below.

Definition 2.3

The operator PC: Q→ {0, 1} given by the formula:

PC(X,Y, s′) =

{
1 ∃ω1 ∈ X and ∃ω2 ∈ Y such that As(ω1) = As(ω2)
0 otherwise

where

Q = {(X,Y, s′) : X,Y – are multisets in Ωs′′ , Ωs′′′ , respectively,

s′ ∈ N, s′ ¬ s′′, s′ ¬ s′′′}

is called the prefix comparison operator.
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We usually stop the algorithm when there are no new branches sprouted
from the root and the evolution process in every branch is stopped. Detailed
description of the HGS may be found in Kołodziej (2003a,b), Schaefer and
Kołodziej (2003).

2.3. Theoretical models of the HGS

To obtain deeper understanding of how genetic algorithms work, we can con-
struct their theoretical model. If we imagine that a population is a point in
the space of all possible populations, then the effect of one generation of the
genetic algorithm is to move that population to another point. As the genera-
tions go by, we obtain the trajectory of population mapped out in the space.
In this way we can consider the action of the genetic algorithm to be a discrete
dynamical system. Constructing the theoretical model of EA, we wish to study
the properties of the trajectories through the population space that different
evolutionary operators (i.e. mutation, crossover and selection) produce. There
are not many theoretical models for genetic algorithms. Vose et al. (see e.g.
Vose, 1999) have investigated an exact mathematical model for SGA, which
forms a Markov chain in the case of finite sizes of evaluating populations. We
apply this theory for construction and analysis of simple mathematical model
for HGS.

According to the Vose theory (see Vose, 1999; Nix and Vose, 1992), in the
case of finite sizes of populations and positive mutation rate, the SGA forms
an ergodic Markov chain with states in X rn. When the sizes of populations are
infinite, then the SGA is modelled as a sequence of trajectories of G which
converges to its fixed points, if they exist.

In binary implementation of the HGS, where SGA plays the role of the
mechanism of evolution, every branch in the HGS can be modelled as a Markov
chain according to the Vose theory. After running several metaepochs, we have
a finite family of Markov chains C tij , where j is the branch degree, t is the
local time measured in genetic epochs starting from the branch creation and
i = (i1, ..., im), (ip = 0 for p > j) is the unambiguous branch identifier, which
describes the ”history of creation” of every branch (see Kołodziej, 2003a).
In this family we have b = ]{C tim} branches of the maximum degree m.
That means that there are b copies of Markov chains with states in the set
Xrmnm ⊂ Λ

rm−1, (nm denotes the size of populations evolving in these branches,
sm – length of genotypes of individuals sampled in these populations and
rm = 2

sm).

We use this simple model to examine some asymptotic properties of
the HGS. We applied Vose asymptotic theorems for the SGA (see Nix and
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Vose, 1992; Vose, 1999) and SGA genetic sampling measures (see Schaefer et
al., 2000). We proved that the HGS does not miss any local extrema of the
objective function with respect to the single population SGA, and it is more
effective than the SGA in finding the multiple local optima of this function
which is expressed by the ratio between the number of individuals of the single
population SGA and HGS that finds the same set of local extrema. But this
model has also many disadvantages, the same as the original Vose model. We
could, for example, compare the properties of the HGS only with SGA.

Another idea consists in using the stochastic grammars to construct theore-
tical models of genetic algorithms. A big advantage of the grammar approach is
that the rules of the grammar can be used to generate strings which then auto-
matically belong to the language of the grammar. We used a context-sensitive
stochastic Lindenmayer system to define another model of the Hierarchical
Genetic Strategy (HGS) (see Kołodziej, 2003c). Lindenmayer systems were
previously applied in genetic programming (see Koza, 1992). This idea is new
and it is hard to discuss its advantages and drawbacks.

2.4. The identification of the CMM Parametric Errors by the HGS

Although the HGS is recommended mainly as a good strategy for solving
multimodal problems, we reported below the solution to a problem coming
from mechanical engineering. The main difficulty comes here from the objec-
tive irregularity that excludes the utilization of convex optimization methods
and the need of very high accuracy. Some procedures for the evaluation of
uncertainty in a coordinate measurement require the knowledge of geometri-
cal (translational and rotational) errors of the Coordinate Measuring Machine
(CMM). The traditional procedures of identification of these errors are time
consuming and require special expensive equipment (see Kuntzmann et al.,
1990). In Kołodziej et al. (2004) we applied for the first time the HGS as a
genetic method to deal with this problem. In this paper, we performed similar
experiments for different values of parameters for the HGS as in Kołodziej et
al. (2004).

The designation of geometrical errors of the CMM consists of three com-
ponents: designation of the CMM axis concerning the reason of an error, the
kind of an error (p – position, t – translation, r – rotation) and the designa-
tion of the axis on which the error has influence (refers to the errors of the
kind t and p) or the designation of the rotation axis (refers to the error r).
The complete model of CMM parametric errors has 21 components: positional,
translational and rotational parametric (together 18 errors) and three errors of
perpendicularity. The error of indication E for the CMM can be calculated as
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the product of the vector containing 21 components of geometrical parametric
errors and the matrix M which presents the influence (weights) of each error
onto the x, y and z components of the error of indication of the CMM

E =KM (2.3)

where E = [Ex, Ey, Ez] is the vector containing three components of the error
of indication in a specified point in the measuring volume, and

K = [ywz, xwz, xwy, ytx, ypy, ytz, yrx, yry, yrz, xpx, xty, xtz,

xrx, xry, xrz, ztx, zty, zpz, zrx, zry, zrz]

is the vector containing 21 components of geometrical parametric errors. These
parametric errors play the role of the correction coefficients of the machine.
The detailed definition of the matrix M is given in Kołodziej et al. (2004). The
knowledge of all 21 geometrical parametric errors is necessary to carry out the
mathematical correction of geometrical errors and build the virtual model of
CMM. In our experiments, we used the sphere ball plate CM Machine model
(see Kuntzmann et al., 1990).
The optimization problem originated from the CMM errors of identifica-

tion can be defined as the problem of finding the values of geometrical errors
of CMM for which the results obtained from the virtual model (simulation)
differ minimally from the measurement results (in the sense of the minimum
sum of squares). In fact these geometrical errors are the components of so-
me vector K̂, which play the role of optimal correction coefficients. For this
problem the objective function F can be defined as the superposition of the
following operators

F : K → E →

{
Bi −E = Bim
i = 1, ..., 25

}
→ f (2.4)

where
K – vector containing 21 components of geometrical parametric

errors
E – vector containing three components of the error of indica-

tion in a specified point in the measuring volume

Bi – vector of coordinates of the center of the ith ball obtained
from the measurement, Bi = [xi, yi, zi]>

Bim – vector of measured coordinates of the center of the ith ball
after correction, Bim = [x

i
m, y

i
m, z

i
m]
>]

(xit, y
i
t, z
i
t) – coordinates of the center of the ith ball after transforma-

tion
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X – discrete set of series of measurements of the sphere ball
plate in some locations and

f =

√√√√√√
∑
X

25∑
i=1
[(xim − x

i
t)
2 + (yim − y

i
t)
2 + (zim − z

i
t)
2]

25(#X)
(2.5)

The value f of the objective function has an interpretation of the mean
error of the measurement [m−3] which remains after correcting the CMM ac-
curacy by the K vector. In other words, we are looking for the vector K̂ for
which f is minimum.

To define the search space of the problem, we assume that the coefficients
of the positional and translational parametric errors (e.g. xpx, ytz, etc.) ha-
ve values in the range (−0.003; 0.003) and the coefficients of the rotational
parametric errors (e.g. yry) lie in the range (−0.000004, 0.000004).

In our simple numerical experiments we compare the accuracy of the solu-
tion given by the HGS and the Simple Genetic Algorithm (SGA). The values
of parameters for these algorithms are presented in Table 1.

Table 1. Values of parameters for SGA and HGS

Parameter SGA
HGS

Level 1 Level 2 Level 3

Code length 30 10 20 30
Population size 1000 100 50 20
Mutation rate 0.015 0.03 0.015 0.01
Period of metaepoch 1 10 10 10

The results of the tests are given in Table 2.

Table 2. Results of experiments for SGA and HGS

Algorithm
Minimal value Number of fitness
of objective evaluations

SGA
0.0652 259200

after 6000 gen.

HGS
0.0028 149200

after 1700 gen.

The objective function has only one point in which the global minimum is
reached. As in Kołodziej et al. (2004) both algorithms quickly localize their
best individual close one to another: HGS after 10 generations (one metaepoch)
and SGA after about 11 generations. Because we know the lower bound of the
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objective function (it is 0 as usual in the case of the identification problem), we
can compare the algorithms analyzing the ratio of fitness values corresponding
to the best individual. The HGS was about 17 times more accurate than
SGA. The computational complexity of the HGS measured in evaluation of
the fitness function is also considerably smaller. The obtained objective value
0.0028 is more accurate than in Kołodziej et al. (2004) (0.0031) and is of the
same degree as declared by the CMM manufacturer. We conclude that for the
smaller populations on every level of the algorithm HGS was more accurate.
These results are important also for the genetic algorithms theory. Usually,
genetic methods do not guarantee high accurate detection of the extremal
points of the objective function. We have to start additionally a local method
after genetic algorithms. The HGS gave us a very accurate solution without any
additional method. The comparison with SGA showed us that the hierarchy
of the processes could be the main reason of this high accuracy.

3. Optimal creative design of hierarchically represented
structures

3.1. Hierarchical representation of structures

In three dimensional design problems, the solid can be defined by its par-
titioning into a number of smaller primitives that could not intersect (spatial
partitioning). This representation is not unique. We assume that the solid is fil-
led with the smallest possible number of primitives. Following the conclusions
of Bentley (see Bentley, 1997), the Clipped Stretched Cube representation was
used to represent the prototypes (the primitive is a cuboid eventually inter-
sected by a plane defined relative to its center). Figure 2 shows examples of
primitives and an object obtained out of them.

Each primitive is described by nine parameters (x, y, z, height, width,
depth, α, β, d) and two additional attributes: class of chair part and colour. The
parameters define exactly the geometry of the primitive. The point (x, y, z)
describes the centre of the primitive. The clipping plane is defined by the two
angels α and β and by the parameter d, which states for the distance of the
plane from the centre of the cuboid. The attribute class of chair parts takes
one value from the set {base, back, seat}. The colour attribute defines the
colour of the primitive.

Traditionally, the meaning of the allele is defined by its position in the
genotype (see Goldberg, 1989). The modified hierarchical chromosome must



Hierarchical genetic computation in optimal design 531

Fig. 2. Examples of primitives and an object obtained out of them

be used (see Bentley, 1997) because the number of the primitives of the gra-
phical objects chosen to the crossover can be different (hence the length of the
genotype of the individuals can be different). The meaning of the allele is thus
defined by the primitive number, primitive class and the gene number. An
example of the object and the hierarchical chromosome coding it are shown in
Fig. 3.

Fig. 3. An example of an object and the hierarchical chromosome coding it

In this example, the object consists of nine primitives, each of them de-
scribed by nine genes. Each gene is coded as the binary string.

The representation was used to represent solids, which are solutions to
real-life design problems. Thus, the assumption of the maximum number of
primitives n in each chromosome could be made.

3.2. Hierarchical genetic operators

The genetic algorithm based on the modified hierarchical chromosome ope-
rates on the constant size population. It utilizes the proportional selection in
order to distinct the parent for mutation and crossover. Hierarchical mutation
and hierarchical crossover were used (see Paszyńska, 2002).
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The hierarchical crossover, like the traditional one, is a two stage process,
which consists in:

• Finding suitable crossover points (similarity points) – the triplets
(P,G,B) and (P ′, G,B) within the parents where P is the number of the
primitive in the first parent, P ′ in the second parent, G is the number
of the gene and B is the number of the bit.

• Generating children from parents by using the crossover operator.

In the first step, primitives P1 and P2 in parents are randomly chosen.
If they do not belong to the same class, the corresponding (i.e. of the same
class) primitive in the second parent is searched for. If it is impossible to find
such a primitive, the crossover process is terminated. After finding primitives
P1 and P2 the number of the gene G is randomly chosen (Fig. 4).

Fig. 4. Determination of similarity points between parents

In the second step, all primitives situated left from P1 or P2, respectively,
and its sub-tree are copied to the children being generated – from the first
parent to the first child, from the second parent to the second child (see Fig. 5).

In P1 and P2, the traditional binary crossover is used to generate two
new primitives (see Fig. 6).

In the last step of the crossing process, the primitives situated right from
P1 or P2 and its sub-tree are copied – from the first parent to the second
child, from the second parent to the first child (see Fig. 7).

Two types of mutation are defined: the mutation of alleles and mutation of
groups of alleles. The mutation operator of the first kind consists in changing
one of the genes: height, width or depth. It is used with the probability 0.90.
The mutation operator of the second kind is done by splitting or removing
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Fig. 5. The children during crossing after coping the primitives in front of a
similarity point

Fig. 6. The children during crossing

Fig. 7. The children during crossing
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the group of genes constituting a single primitive. Removing a group of genes
consists in removing a primitive they code from an individual. To split the
promitive, the parameters describing the splitting plane (the angles α, β and
the distance from the centre of the primitive d) has to be randomly chosen
and the nine parameters of two newly created primitives by the splitting plane
has to be calculated. The old primitive has to be removed and the two new
primitives has to be added to the individual. The operator is used with the
probability 0.10.

3.3. The simple test result

The object oriented application based on the genetic algorithm presen-
ted above was designed and implemented. Based on the hypothesis that the
function of designs can be broken down into a number of smaller functional
elements, the evaluation software is modularized into a number of evaluation
modules. The modules enable the user to analyze of different designs only
by picking the evaluation modules that should be used in combination. The
application was designed as an open one, which means that it is possible to
define new types of the evaluation.

Our case study consists in the creative designing of a chair-like structure
composed of cuboids. Five modules of the evaluation were implemented:

Size: the size of the design is specified by the user-defined minimum and ma-
ximum parameters for the left, right, front, back, top and bottom of the
design. Two fitness values are returned by this module: maximum size
and minimum size. The module examines the six outer parameters of
each phenotype. The maximum size is set to the sum of the differen-
ces between the parameters which exceed the corresponding maximum
ones. The minimum size of the fitness value is calculated as the sum
of the absolute values of differences between the parameters which are
smaller than the corresponding minimum extents and the corresponding
minimum ones.

Fragmentation: this evaluation module calculates whether the design is frag-
mented. If the design is fragmented, the fitness value is equal to the
number of the primitives which are detached from the rest of the design.
If the design is not fragmented the perfect value of zero is returned.

Center: the fitness value is set to the absolute distance between the center of
the mass and the center calculated as the arithmetic sum of the vertex
of all primitives.
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Proportion of the chair: this evaluation module calculates whether all pri-
mitives belonging to the class back of the seat are well located. The loca-
tion of the back is specified by the user-defined value of the back depth.
The fitness value is set to the sum of the absolute differences between
the user-specified value and the corresponding value calculated for all
primitives belonging to the class back of the seat.

Flat seat surface: this evaluation module uses three user-specified values:
height of the seat surface from the ground, seat width, seat depth. The
fitness value is set to the sum of the absolute differences between the
three user-specified values and the corresponding values calculated for
the design.

Fig. 8. Examples of randomly generated designs from the initial population

Fig. 9. The design of a chair-like structure obtained from a randomly chosen initial
population after 50 steps
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The applied method of the analysis of multiobjective optimisation were
described by Bentley and Wakefield (1998). The multiobjective method Sum
of Weighted Global Rations (SWGR) was used to calculate the overall fitness
determining the position of each individual. The method based on the ag-
gregation technique converts the fitness values for every objective into ratios,
using the globally best and worst values for this objective (instead of the best
and worst values in the current population, like in the SWGR). The ratios are
weighted by their relative values as specified by the user, and summed up to
provide a single overall fitness value for each solution.

The presented sample results were obtained from a randomly chosen po-
pulation after 50 steps of the genetic algorithm operation. The population size
was 120. Each individual consisted of maximum 20 cuboids randomly located
in the space. The individuals from the randomly selected starting population
were not the designs of the chair-like structures but constituted a randomly
selected set of primitives. At the beginning they were ubderstimated by the
system and in the following steps approached to more correct and more in-
teresting designs. It can be seen that the final design fulfills all the defined
requirements. For the best results, the evaluation modules like symmetry or
esthetics should be defined.

4. Conclusion and perspectives

• Hierarchical genetic searches are economic (low complexity), robust and
accurate with respect to classical methods for difficult optimal design
problems coming from mechanical engineering and optimal creative de-
sign.

• The world is organized in a hierarchical manner and evolves continuously,
so much wider applications of hierarchical genetic investigations may be
expected.
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Hierarchiczne obliczenia genetyczne w projektowaniu optymalnym

Streszczenie

Praca przedstawia dwa przykłady hierarchicznych, genetycznych metod optyma-
lizacji. Sklasyfikowano dwa główne powody wprowadzenia hierarchii do modelu obli-
czeniowego: dla uzyskania wieloskalowego przeszukiwania z adaptowaną dokładnością
oraz dla lepszego odwzorowania kształtu konstrukcji w zadaniach optymalnego projek-
towania kształtu. Zamieszczono rezultaty formalnej analizy proponowanych strategii
oraz proste przykłady obliczeniowe.
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