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An application of Artificial Neural Networks for a definition of the ef-
fective constitutive law for a composite is described in the paper. First,
a classical homogenisation procedure is directly interpreted with a use
of this numerical tool. Next, a self-learning Finite Element code (FE
with ANN inside) is used in the case when the effective constitutive
law is deduced from a numerical experiment (substituting here a purely
phenomenological approach). The new contribution to the classical self-
learning procedure consists of its adaptation to a case of a non-monotonic
loading (non one-to-one load-deformation curve). This new ability of the
method is principally due to the incremental form of the constitutive equ-
ation and the respective scheme of the neural network structure. Also
an organisation of a constitutive data-base containing learning patterns
is suitably modified. It is shown by examples that the training process
is very quick. The error of this method is smaller, comparing to other
schemes of data acquisition.
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1. Introduction

The paper is concerned with the presentation of some applications of Ar-
tificial Neural Networks (ANN) in the analysis of composites. Not only a for-
mulation of the constitutive law for a composite but also its representation
inside a finite element code is described in the paper. The methods presented
here are intended only for composites with a very fine microstructure.

In the introductory part we explain why the representation of the consti-
tutive law by ANN is useful, and we suggest what kind of problems can be
reasonably treated with it.
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The main problem in the analysis of composites is the estimation of the
effective mechanical stiffness, effective thermal conductivity, effective thermal
expansion, effective electrical resistance and so on. Effective — means here —
significant when the structure is considered as a fictious, homogeneous body,
disregarding details of its internal composition. These properties characterise
global (or macro) behaviour, i.e. the behaviour observed at the macrosca-
le. The perturbation of fields of variables of the problem due to the micro-
heterogeneity is insignificant from this perspective. It is obvious that the glo-
bal behaviour is determined at the microlevel, by geometry of components and
their individual physical properties. Despite this, we want to carry out the es-
timation of global effects without pushing a finite element mesh down, into
the geometry of the microstructure, while the global boundary value problem
under global loading conditions is to be solved. Because of the scale separation
between structural levels a mesh fine enough for the microlevel would result
in a huge number of elements at the macro-structural level, thus, with a huge
number of unknowns in the model. This can be avoided using theory of ho-
mogenisation. The theory of homogenisation (or rather a variety of theories)
can be considered as a fundamental tool of a reasonable analysis of materials
with a microstructure.

Alternatively, a set of experimental observations of the behaviour of a
macro-sample of the heterogeneous material must be performed to define the
effective properties of the composite. Recently this phenomenological approach
has been frequently substituted with a so-called ”numerical experiment” (Ban-
deira et al., 2001; Wriggers and Lohnert, 2002). In the paper we use mainly
such substitution as a source of constitutive data.

We note first that in the frame of the classical homogenisation theory some
regularity of the microgeometry of the composition is assumed. It is necessary
to simplify the description of a heterogeneous body. There are two principal
idealisations of real structures. Asymptotic homogenisation of periodic media
is applicable to the analysis of structures obtained by translation of an ele-
mentary cell (called the cell of periodicity) while in a self-consistent approach
one assumes that the considered composite is made by multiple, irregular re-
petitions of a scaled pattern. The third possibility is a stochastic description,
which is out of the scope of this paper.

In the case of periodic composites the mathematical formalism allows us to
build a qualitative theory without any a priori restriction concerning the form
of the resulting effective constitutive law (see, for example Sanchez-Palencia,
1980). However, in the practice of physically non-linear composites the natu-
re of non-linearity must be taken into account at an early stage of the de-
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velopment. For example, exponential non-linearity of components requires a
theoretical formulation quite different than that for an elastic-plastic physical
framework (Suquet, 1985). Because of this, many individual, particular the-
ories have been built for particular classes of materials sometimes combined
with particular geometries of the cell of periodicity.

Using asymptotic homogenisation, a solution to the problem of periodic
media typically splits into two boundary value problems. The first one is
formulated at the microlevel, for the repetitive microstructural domain. Its
solution determines effective material characteristics and allows for the con-
struction of stress distribution at the level of microstructure in the phase of
"unsmearing”. The second boundary value problem (the global one) is stated
for the homogeneous, fictious body. The constitutive description of this ma-
terial is obtained at the first stage. The principal difficulties result from the
fact that in the non-linear material or geometrical frame the superposition of
micro- and macro-behaviours is not allowed. Moreover, the coupling between
these two levels is explained by the fact that the solution to the micro BV pro-
blem depends on the micro-geometry which changes during the global solution,
which, in turn, depends on the results of the micro BV problem through the
values of constitutive parameters in the global constitutive law. In the case of
a complicated physical and geometrical composition the mentioned problems
are rather difficult to overcome. This situation is even more difficult from the
point of view of a designer who needs a method that works well for many geo-
metric and physical arrangements suitable for various schemes of the structure
that should be considered in the design process. This analysis is simpler if can
be done without revision of the mathematical formulation at each stage of
design and at each level of the structure.

Wriggers and others (Wriggers and Lohnert, 2002; Bandeira et al., 2001)
have made an important step toward such a solution. The proposed method
consists of some numerical experiments using FE method at the meso- or mi-
crolevel. The proposed approach is consistent with fundamental findings of the
homogenisation theory: as in the theory of homogenisation the global behavio-
ur is deduced from a small sample of a composite material but now the method
is fully numerical. It assumes the application of pre-existing numerical proce-
dures in the modelling of contact, friction and other effects at the microlevel
(inter-particular mechanics is considered for granular assemblies for example).
Another important direction in the numerical homogenisation is represented
by Kouznetzova, Brekelmans and co-workers (see Kouznetzova et al., 2001).
Also in this approach an expected form of the resulting, effective constitutive
law should be imposed a priori.
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A self-consistent approach can be considered as the most suitable theoreti-
cal frame resulting with a closed-form expression giving the effective material
characteristics as a function of the volume fraction of the forcing material di-
spersed in the matrix. This approach, (see Zaoui, 1997; Kroner, 1978; Boutin,
2000; Hashin, 1968) is less sensitive on the morphology of the sample of the
composite. Boutin, Zaoui and many other authors have developed expressions
for different effective properties in the case of three separate levels of porosity:
micro, meso and macro (Boutin et al., 1998; Zaoui, 1997). Unfortunately, also
this method assumes some qualitative a priori decisions concerning the global
constitutive law. Finally, it seems to be very difficult to take into account all
possible non-linear, unilateral microfeatures defining ”generic heterogeneity”
for this method. Also the geometry of the scalable cell should be very simple
in this approach (concentric ellipsoids).

Our method of solving the problem of the effective constitutive law for a
material with a microstructure is entirely numerical. It is based on the assump-
tions that the Cauchy stress (or its increment) in the fictitious, homogenised
body is an unknown, non-linear function of mean strains, strain increment,
physical parameters defining the microphysics of composition, and the geome-
try of the representative volume. The history of loading-unloading can affect
all this data. We assume a form of this function representing it by an Artifi-
cial Neural Network with hidden layers. At the input of this network we have
all independent variables, mentioned in the above sentence. At the output
we obtain a state of stress in the point of the body at the macrolevel. Since
the components of the strain tensor are present among the input variables,
the Artificial Neural Network acts as a numerical representation of the effec-
tive constitutive law. It is well known that the ANN can be considered as a
universal approximation of a function, functional or operator (a formal proof
of this statement can be found in Chen and Chen (1995)). Because of this,
this representation does not constrain the generality of the global, effective
constitutive law we are looking for. To define the ANN we must determine
all weights of the links between neurones belonging to various layers of the
network. The coefficients in this very rich and flexible representation are defi-
ned during an iterative process of "training”. The source of knowledge for the
learning can be a real or numerical experiment. If a numerical experiment is
considered, an auxiliary FE modelling process is similar to that proposed by
Wriggers and Lohnert (2002) with the exception that in our case the form of
the constitutive equation is defined by the ANN thus, it does not restrict the
possible effective behaviour. In this case, like in the periodic homogenisation,
we discover rather than impose the global constitutive law, but now — also
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for a possibly non-linear effective behaviour. The FE analysis of a sample of
the composite is a source of ”examples” for the training process. These exam-
ples form a knowledge base containing the constitutive data. The considered
sample of the composite that defines the microstructure consists of only one
repetitive cell or a representative volume. In examples presented in this pa-
per the representative volume will be replaced, for simplicity, by an array of
cells. The equivalence between the composite structure and its homogeneous
counterpart is defined in the paper in an original manner, consistent with the
proposed numerical procedure (different from that, described in the frame of
the theory of homogenisation).

The use of the ANN in the role of the constitutive operator is not new.
Classical application of Artificial Neural Networks for constitutive modelling
of concrete was originally proposed by Ghaboussi et al. (1991). An improved
technique of ANN approximation for a problem of mechanical behaviour of
drained and undrained sand is presented in Ghaboussi and Sidarta (1998). In
the latest surveys Waszczyszyn (1997, 1998), Yagawa and Okuda (1996) the
role of neural computing in the constitutive modelling is clearly pointed out.
A similar approach is employed in Garcia et al. (2000), Gawin et al. (2001),
Kortesis and Panagiotopoulos (1993), Mucha (1997), Penumadu and Zhao
(1999) and many other papers.

The essence of the ANN technique is to construct an application that
attributes a given set of output vectors to a given set of input vectors. When
applied to the constitutive description, the physical nature of these input-
output data is clearly determined by measured quantities: strains-stresses or
displacements-forces. The neural ”black box” operator, replacing the existing
symbolic description, cannot be directly used in the symbolic development of
the formulae and is useless for a closed-form solution. It can be very efficient
as an element of a FE code, as it is shown in Gawin et al. (2001), Mucha
(1997). A hybrid FE-ANN code is described also in Shin and Pande (2000,
2001). The authors show that the insertion of the constitutive law presented
in the form of a neural operator leads to some qualitative improvements in the
application of FE in engineering practice. Namely, the ANN representation can
be modified to reduce the error of a FE numerical experiment with respect to
the real experiment. Our representation of the constitutive law with the ANN
is slightly different. It is incremental while in Shin and Pande (2000, 2001) the
€ — o functions are directly approximated.

Obviously, there is no need to use the presented method in the case of a
simple micro-geometry of the composite and when the behaviour of compo-
nents is linear. In this case the classical description of the effective behaviour
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is much better. The ANN representation can be useful in a case, when the
physical or geometrical non-linearity dominates the micro-description and the
FE analysis at the level of the representative volume (or a direct experiment)
is the only possible tool for its effective analysis.

The paper contains academic examples illustrating the assumed strategy
of the modelling. We refer the interested reader to our previous papers (Lefik
and Schrefler, 2002a,b) in which some aspects of practical applications of the
presented method to the analysis of mechanical behaviour of a superconducting
cable is shown.

2. The effective constitutive law for acomposite and its
representation by an Artificial Neural Network with hidden
layers

2.1. Effective properties of the composite

For usual analysis of a two scale composite we define two sets of co-
ordinates: local y related to the single, repetitive cell of periodicity Y and
the global @ for the entire body (2 (composed of a finite number of the cells,
Fig. 1).

Fig. 1. The cell of periodicity and two systems of coordinates
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The dimensionless characteristic length e of the cell Y is treated as a small
parameter tending to zero (the "length” of the cell Y related to the "length”
of 2). Let the displacement field u®(x,y) be an e-depending solution to the
problem

find uj €V and oj; € L? such that: (
2.1)

Voi(x) e V /Jil(u)vk,l a2 = /Fivi dsSy
Q Sy

where the stress tensor o is computed via (2.2); and remains inside the ad-
missible set P (2.2)y defined by any usual yield criterion (an associated flow
rule completes the constitutive description)

o5 (u)(®,y) = aiju(y)en (v (z,y)) o5, € P(y) (2.2)

V' is the usual space of kinematically admissible displacements, e(v) is the
linearized strain tensor computed at v, F' denotes a vector of external load.
Components of the fourth order elasticity tensor a are piece-wise constant
functions of y with discontinuities along regular surfaces, and satisfy the clas-
sical conditions of symmetry, ellipticity and positivity.

Let u®, 0¥ be the solution to the "homogenised” problem, i.e. problem
(2.1) in which the variable material coefficients a(y) are replaced with some
unknown constant values a”. We suppose that the periodicity of material
characteristics imposes an analogous periodical perturbation on the quantities
describing the mechanical behaviour of the body. Hence, for the displacements
we have

uf(x) = u'(x) + cul(x,y) (2.3)

u! Y-periodic.
The same can be obtained for strains and the stress tensor via a simple
total differential formula with respect to x

ef(x) = e'(x,y) +cel (z,y) + ... + 0(c?)
(2.4)

of(x) = o' (x,y) +col(z,y) + ... + 0(c?)

Thanks to (2.4), problem (2.1) splits into a sequence of problems of the order
€0, el and 2.
The problem of the order ¢ leads to equation (2.5) in which the perturba-

tion of the displacement is computed according to (2.6) (this last expression
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is not an assumption, it follows from the detailed analysis of the problem, see
for example Sanchez-Palencia (1980) and references given there)

find x¥? € Vy such that:

(2.5)
Vo, € Vy /aijkl(y)(5z‘p5jq + X5 3(y) W)Uk (y) A2 =0

v
uzl (.’13, y) = €pq(x) (uo(w))qu(y) + Cz(w) (2'6)

We call xP?(y) the homogenisation functions for displacements.

For a" uniquely defined via the classical homogenisation procedure u®
converges weakly to u” as e tends to zero. In this case, the tensor a” defines
an effective constitutive relationship between e(u") and o (a new admissible
set in the stress space P" makes a part of this effective constitutive description)

@iipg = YT / a1t (y) Okpig + Xia(y) 4Y (2.7)
Y
oy (x) = alfen(u’) (2.8)

The heterogeneous structure can now be studied as a homogeneous one with
effective material coefficients given by (2.7). The global displacements, strains
and average stresses can be computed at that moment.

In this paper, instead of looking for a" and P" we are going to use a
numerical representation of the effective constitutive law by a suitably trained
ANN N. The input-output vector of N contains components of the strains
e(u) and stress tensor @ (in the vector-like notation)

o' = Nae(u") o =Y wis) fig (epuwly) +6001) + 07 (2.9)
q
Symbol @ denotes a result of an action of an operator at the specified operand.
In this case it is the value of the neural operator at the input vector. Repetition
of the subscript indicates summation over all its range (unless it is enclosed
by paranthesis). Superscripts denote the number of a layer of neurones.

The parameters w, 6 and f in (2.9), will be interpreted as weights, biases
and transfer functions of the Artificial Neural Network defined and discussed
in the next section. The finite element code with N included as a material
description subroutine can be used to solve numerically problem (2.10) for

find u) € V and J?j € L? such that:
(2.10)

Yui(x) € V / oy (w)vy, d92 = / Fyv; dSy o' = N'ae(u)
2h Sf
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The correct, effective constitutive law in (2.10), represented by the ANN called
N’ assures the following requirement

VF ||u® — uOHLQ(Q) <7 T < sHulHLz(y) as ¢—0 (2.11)

Estimation (2.11)9 follows from a direct application of Cauchy’s inequality.
Expression (2.11) defines a correspondence between the heterogeneous the ho-
mogeneous (homogenised) fictitious body in a manner suitable for our purpose.
In the numerical practice, comparison (2.11) of the effective solution with the
exact one will be checked only in a few strategic points. Condition (2.11)
formulated for any F' is verifiable in practice only for a finite number of pre-
scribed loads. Searching for the N", we employ an iterative procedure called
the ”training of Artificial Neural Network” proposed in all textbooks devoted
to ANNs, as for example Hertz et al. (1991), Osowski (1996), Tadeusiewicz
(1993) and shortly described in the next section.

3. Artificial Neural Network for constitutive description and a
hybrid ANN-FE code

An inspiration for the application of Artificial Neural Networks (ANNs) to
different branches of engineering sciences comes from the analysis of transmis-
sion and transformation of signals in human or animal neural systems. The
importance of the method significantly increased during last years. Nowadays,
the ANNs are successfully used in the computer-aided management, modelling
of different physical dynamic processes depending on many fuzzy variables. In
this application, the ANN will be included into the classical Finite Element
procedure as a constitutive subroutine, as it is described in this section.

3.1. Artificial neural network with hidden layer for incremental repre-
sentation of the constitutive law

The ANN can be considered as a universal, non-linear operator that trans-
forms a set of suitably interpreted discrete values into another set of nume-
rical data. Considering the structure of this operator, the ANN appears as a
collection of some simple processing units (called neurones or nodes) that are
mutually connected by links with adjustable strengths (see Fig. 1). This logical
system, with nodes organized in layers, transforms the input signal presented
at its "input” nodes into the output signal produced at the "output layer”.
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The sequence of signals presented at the input and that expected to be obta-
ined at the output layer, are called the input and target patterns, respectively.
The activity of the network consists of transformation of each input pattern
into the output signal, and is defined by expression (3.1). After each cycle
(forward transmission of the input signal and back propagation of the output
error), the weights of connection are modified to reduce the error between the
network response and the given output pattern

0i = [ (F(w Flipuf) + b)) +b) ci=o0i  (31)

In this representation, f is a given sigmoid function of one variable z, Eq.
(3.2), while w and b are weights and biases being constant during transmission
of the signal

_ pill — exp(=Aiz)]
filz) == ‘
T oxp(—Aia)

All independent variables are in 4. It can be proved that this form appro-
ximates all continuous functions of several variables. A graph related to this
formula is commonly known as a neural-like network. In Fig. 2 a special form
of such a network, useful for our purpose, is illustrated.

In Fig. 2 we show a canonical scheme of the Artificial Neural Network for
incremental approximation of the constitutive law.

(3.2)

[
O—L‘
w2
-
[}
: K% +—>
(rnHl & = Klexi ot+l
2
= Apt + —> pt+1
(AFH| At " E
el >
[

Fig. 2. A scheme of the ANN that is used throughout the paper. The light arrows
show spontaneous activity of the net along a given path in the space of
deformations. p is an internal parameter that allows for many suitable

interpretations, depending on the field of application
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For such a operational scheme there exist some well developed methods
for finding the coefficients: weights and biases.

One can observe that the form of (2.9) for the approximation of the effective
constitutive law is identical with expression (3.1), suitably truncated.

3.2. An incremental form of the constitutive equation

In our former papers (Lefik, 1997, 2001; Lefik and Schrefler, 2002, 2003), we
showed that the incremental form of the constitutive equation is more suitable
for approximation by an Artificial Neural Network. We shortly repeat here the
arguments that support this idea.

We consider only a special form of the incremental constitutive law, na-
mely (3.3)

o =glo,F F,p) (3.3)

In this representation F denotes the gradient of deformation, g is a function.
It is well known that g in the representation (3.3) can be chosen to fulfill all
conditions defining the admissible subspace P in the space of stresses. In this
way, the solution o to differential equation (3.3) can be statically admissible.
This formulation, on one hand involves only unknown function g that can be
well approximated by the ANN, on the other hand does not introduce any
”geometric” object in the stress space like a yield surface or other potential
usually defined in the case of non associated plastic flow. These are fundamen-
tal arguments supporting this representation when an ANN approximation is
used. The third important argument is following. The approximation of the
incremental form is simpler since the ANN learns only local and short seg-
ments of the stress-strain graph. In the hidden layers some neurons specialize
in switching between different ” current states of stress”. Thus, the network can
be small and learns quickly. This is shown by examples by Lefik and Schrefler
(2003). Some graphs taken from that paper are presented in Fig.3. In this
Figure we see an approximation of the experimental graph of the mechanical
histeresis of a superconducting cable, described by Nijuhuis et al. (1998). The
graph in this Fig. 3a shows an autonomous activity of the trained ANN along
the given ”path”, as it is expressed by equation (3.4), below. The approxi-
mation is realistic and the ANN — very small. Such a result is impossible to
obtain by a non-incremental network. In that case a typical result is shown in
Fig. 3b.

The incremental approximation of the constitutive law by the ANN can
be defined as follows.
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Fig. 3. Experimental graph (dashed line) taken from Nijuhuis et al. (1998),
approximated by the incremental and non-incremental ANN (solid line).
Autonomous generation of the graph by the networks for the points never shown in
the training, according to Lefik and Schrefler (2002b): (a) incremental approach,
(b) non-incremental one

The trained ANN is an operator that performs the the following operation
(o, F', pt, AF!) — (g1, FIH1 ity AFt = F' At (3.4)

3.3. Insertion of the ANN into a Finite Element code

We show next that representations (2.9), (3.1) work well inside a fini-
te element code. Let us suppose that the basic equation for the standard;
displacement-based finite element method can be written in the form

/B}:TdVO:/N}tdS+/N}de
v S v (3.5)
g(du) = Bydu

where V is the volume of the body in the reference configuration, By is the
matrix that operating on the vector of admissible variation of independent
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variables to give the strain measure e(du) coupled with the material stress 7.
In what follows in the paper, we will consider small transformations, thus an
infinitesimal strain tensor. The index N means that B is constructed on the
basis of the approximation of u by a set of interpolation functions N(zx) on
appropriate finite elements. On the right-hand side of (2.8) t is a stress vector
given on the part S of the boundary, while f are body forces acting on the
elementary volume dV'.

Since the considered material behaviour is non-linear, the Newton algori-
thm will be applied to solve the system of equations (2.8). The Jacobian of
the left-hand side of (2.8) can be written as follows

J= / [dT : e(du) + T : de(du)] dV° (3.6)
\%

The first term in integral (2.9) can be computed using a usual constitutive
assumption

dr =D : de (3.7)

where Dij = 87'@'/85]'.

We can rewrite the above equations, taking variation with respect to the
independent variables of the problem w and obtaining (by definition) the
stiffness matrix K

Kain :/BM :D:By dV?® (3.8)
Vo

The second term in integral (3.6) represents the initial stress matrix.
Using the assumed representation of the constitutive law by the ANN,
instead of (3.7) we obtain
dT = N4 ,Qde (3.9)

The index d denotes that the network quality is best for some given value of
the increment d, ¢ means that the stress increment is computed at the current
value of 7 = . It is clear that we must replace the neural operator in (3.1) by
the matrix D or simply, construct this matrix using the given representation
of the constitutive law. This will be done by trial incrementation of e. Let us
suppose that both tensors dr and de are represented by column vectors

do = [dTl, dTQ, dTl] = [Ndp@dsl, Nd,o‘@d€27 Nd,g@del]

[de'] = [de, dea, des) (3.10)
D = [do][de’]™?
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The matrix of trial vectors de! is always proportional to the strains in the last
equilibrated point (o, €) during the Newton iteration process (preceding step).
The trial vectors cannot be arbitrary because Ng,Qde # —Ny,Q(—de), and
in fact two different tangent stiffness matrices can be defined in any point: one
for loading and the other for unloading. It is supposed then that the loading
(unloading) is continued during current increment in the Newton iterations.
Formulae (3.10)1 2 are used here instead of computing the derivatives of the
neural network with respect to input values.

The stress in the second term in integral (3.6) is computed using the neural
network in the recall mode for a given constant step de, until the strain e
at the trial solution in the current step is reached. The ANN acts here in
the autonomous activity mode as it is defined in Section 3. This process cor-
responds to classical integration of the incremental constitutive equation for
updating o. It always starts in the last equilibrated point, and the increment
de is proportional to the one defined for this step (loading or unloading).

4. Classical homogenisation procedure directly interpreted by the
Artificial Neural Network

It can be shown that the vector of homogenisation functions, Eq. (2.5),
appears as a perturbation field in the numerical experiment in which the cell of
periodicity is loaded with a uniform displacement of points on the border. This
imposes a given average strain state equal to the homogeneous one, computed
from formula (2.9) in which w is to be applied on the border

u; = ef;°x; (4.1)
The corresponding stress can be obtained according to expression (4.2) with

t used for the stress vector on the boundary of the cell

o= /xl ®t; ds (4.2)
oYy

Since Eq. (2.9) is a universal approximator, the introduced assumption does
not restrict the possible effective behaviour. Like in the periodic homogeni-
sation, we discover rather than impose the global constitutive law. All the
constitutive information is in the data set furnished to the network.
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4.1. Constitutive data-base for the training

A constitutive data-base contains pairs of input vectors and output vectors
for the training of the network. The input and output is accorded with the
structure of the ANN (Fig. 2) and is always of the form:

{(input vector), (output vector)}

For the case of the incremental law, for the k-th pattern, we have

{[si’ G(si)’ ni; AEi]’ Aaaﬂi}k (4.3)

Additionally, in the below shown example, we must satisfy the following
condition imposed by isotropy of the approximated constitutive law (@ denotes
the action of the neural network operator on the input data)

€
o;

Vi if N@ = {Ao;} then VO ©'O® =1 we have

AEZ'

(4.4)
®'¢0
00,0

n
0 Ag0

N@ = {07 A0,;0}

To satisfy condition (4.4), we must train the network with some supplementary
data: the new subset of patterns is of the form

{[076:0,075,0,n,,07A¢,0],0" Ar,;0} (4.5)

The subscript k refers to the pattern obtained from the ith experimental
point by transformation via the kth rotation matrix @. The total number K of
these additional terms in the matrix of patterns depends on the number of trial
rotation needed to train the network up to a satisfactory level of tolerance. An
artificial construction of the experimental data has been necessary to perform
a 2D numerical experiment.

In this case, the source of constitutive data is a numerical experiment de-
fined with expressions (4.1) and (4.2) executed on a single cell of periodicity
of the composite. The results of FE computations for different (assumed and
imposed over the cell) values of a small deformation tensor or tensor of defor-
mation gradient must be completed by the manipulation prescribed by (4.4).
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4.2. Example

As an example, we consider a hyperelastic composite, the repetitive cell
of which consists of a neohookean material with a circular hole of the radius
equal to the distance between the neighbouring, circular pore.

In Fig. 4 this situation is shown. In Fig. 5 some of deformed configurations
are presented. The number of such numerical experiments was 1260, including
incrementation. The full constitutive data base containing all rotated data was
much bigger. As far as the increments with the negative sign were concerned
it was about 15000 patterns. The training was organized by epochs that con-
tained about 1250 patterns. After the first decisive reduction of the error of
the training, most of the patterns used as the test data revealed very good
coherence with the training results.

Fig. 4. A single cell of periodicity of the composite

5. The self-learning Finite Element code for deducing effective
constitutive relationships from a numerical experiment

The self-learning finite element procedure is based on the standard FE
code including the Newton-Raphson type iterative method. The neural con-
stitutive model, Eq. (3.1), can be applied for the solution to general structural
problems in the same manner as the conventional one. All details can be found
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Fig. 5. Examples of trial deformations of the cell of periodicity — a source of the
constitutive data

in Shin and Pande (2000, 2001). The main advantage of this substitution is
the possibility to modify the constitutive model simply by retraining the neu-
ral network. This feature results in a self-learning code, which evaluates the
supplied ANN model and adjusts itself to a desirable response of the structure.
This strategy permits the constitutive relationship to be built directly from
experimental data or, alternatively, from the exact FE solution. In our case,
it is solution of (2.1) for a structure composed of many repetitive cells of the
given internal structure (may be very complicated). If the considered number
of cells is large enough we are able to capture its effective (global) properties.
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The procedure starts with calculation of the trial FE solution using any
initial constitutive law (e.g. linear constitutive matrix). Pairs (e, o) at each
Gauss point on any considered load level are saved for future training of the
ANN. The displacements at some strategic points of the structure are moni-
tored ;7 and compared with the known data describing the behaviour of the
composite material § p. Those vectors constitute, respectively, the output and
the target of the whole procedure.

The current adjustment is measured by means of the normalized root-mean
square error calculated as follows (instead of (2.6);)

1 1 N M
Err = s\ 31 DX i< (5.1)
D D n=1m=1

In (5.1), N is the number of load increments, M — number of monitored
displacements, the vector d;;7 = d; — dp represents the errors made by the
ANN at the monitored points and §5%%, §B" are the maximum and minimum
values of |dp|, respectively.

In the following, the displacement differences dj; are treated as the load
for the new solution. The obtained strain-stress pairs (err,orr) are used to
correct the current guess (er,o7)

etrain = e O_train =0+ o0y (52)

Such prepared training data (5.2) are used for retraining the neural network
that forms the constitutive model. The new weights of the ANN are saved and
the next step of the self-learning procedure starts with the corrected ANN
constitutive model. If the value of E becomes lower than the tolerance level 7
? or the admissible number of self-learning steps is reached, the process is
finished. According to Shin and Pande (2000, 2001), this procedure converges.

5.1. Example

We consider the same example as in Section 4.3. This time, however, a sam-
ple containing several cells is considered. The non-deformed cell of periodicity
forms a square with a hole of diameter equal to half of the edge. For acquisition
of the constitutive data we perform three different numerical FE experiments
(because of (2.6)). All these experiments are qualitatively different than those
proposed by Shin and Pande. We impose uniform displacements of borders of a
portion of the composite. The nature of these kinematic loadings is easily seen
in Fig. 8: two different tests of tension (free and constrained tension) and a she-
ar test. The controlled quantities are now values of reactions in the boundary



HYBRID, FINITE ELEMENT-ARTIFICIAL NEURAL NETWORK MODEL... 557

nodes. A test like this was never proposed by the authors of the self-learning
method since its original application was acquisition of the constitutive data
from real and in situ observations. It is obvious that the point-wise reaction
is not an observable quantity. In the context of the numerical experiment this
strategy works quite well, even in the analysis of composite materials for which
the stress jumps in the small scale of the body. In the approximation of the
constitutive law an incremental constitutive description and the corresponding
architecture of the ANN has been used (described by Lefik (2001)).
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Fig. 6. Three numerical tests on a sample of the composite used simultaneously for
the preparation of the data-base for ANN training

5.2. Discussion of the results

In Fig. 7 two testing finite element computations are shown. These com-
putations have been executed for a loading never used in the training and
with the FE code including the ANN inside. A relatively small ANN with 10
and 7 neurones in hidden layers have been trained with the constitutive data
collected from each first Gauss point of the homogeneous problem (the black,
rectangular mesh in Fig. 7). The performance of the trained ANN was checked
with the loading scheme never used in the training. This scheme is shown in
Fig. 7. The coarse, rectangular mesh (dark line) represents the displacements
of the ”effective”, homogeneous body under action of the horizontal shearing
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Fig. 7. Two numerical tests on a sample of the composite that have never been used
in the training. The coars mesh — results obtained for the effective model, the light
deformed mesh — ”exact” solution
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stress vector applied to the upper edge of the rectangular sample. This compu-
tation was carried out by FE-ANN code (the FE code published by Bonet and
Wood (1997) was modified and used). The triangular mesh (light lines) repre-
sents the ”true” deformed configuration. The coarse mesh is defined for the
homogenised body. The qualitative accordance is good, the maximum error in
displacements does not exceed 5%.

In Fig. 8, the difference of the return curve and the one obtained with the
loading is used as the measure of the error. It is known that for hyperela-
stic composites these two curves should coincide. What is shown in Fig. 8 is
obtained for the example trained within the direct approach. In Fig.8b the
curves coincide much better that in Fig. 8a. The self-learning method of data
acquisition is more efficient. In this case the ANN is simply ”tailored” for the
Finite Element code in which will be included as a constitutive procedure.
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Fig. 8. Comparison of loading and unloading stress-strain curves used as the measure
of the error of the ANN representation of the constitutive law inside the FE code

In the example, only three cases of load are reported. As far as the co-
nvergence to zero is concerned, see Bandeira et al. (2001), a relatively small
trial portion of the composite is sufficient to predict the overall behaviour of
the non-homogeneous material. In our example we consider only 20 cells of
periodicity but even in this case we notice that the perturbation of the mean
displacements is negligible.

6. Conclusions

We conclude that the effective constitutive law for a composite can by
approximated by the Artificial Neural Network with hidden layers. This ap-
proximation does not constrain the form of unknown effective relationships.
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The following condition must be fulfilled to assure successful approximation:

The constitutive law must be formulated in the incremental form

The ANN must be included as a subroutine in the Finite Element pro-
cedure.

Moreover:

The self-learning procedure seems to be a very effective tool for the
identification of the global behaviour of composites. The microstructure
of the material (position of the monitored point on the cell of periodicity)
does not influence the identification abilities of the program.

The ANN representation of any constitutive law is a flexible tool for
the representation of the effective (global) behaviour of materials with a
complex internal microstructure.

This representation is very suitable for analysis of composites since it is
”automatic” in the sense that it does not require any a prior: choice or
adaptation of the existing constitutive theory for the description of the
observed material behaviour.

The convergence is surprisingly fast. Four steps are enough to obtain a
qualitatively good model.

A representation of the effective constitutive law can be very simple (a
network of the architecture 3-6-3 is sufficient in the first example).

The usefulness of the hybrid FE-ANN code has been confirmed since it
opens up new possibilities in comparison with the standard FE codes
in the sense that the constitutive models can be easily modified and its
simplicity accelerates work of the program.

These conclusions have been supported by examples, not by a theoretical

proof.
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Zastosowanie sztucznych sieci neuronowych w modelowaniu
numerycznym kompozytoéw przy pomocy metody elementéw skonczonych

Streszczenie

W artykule opisano zastosowanie sztucznych sieci neuronowych do okreslenia efek-
tywnego zwiazku konstytutywnego dla kompozytéow. To narzedzie numeryczne uzyte
zostalo dwojako: do bezposéredniego zapisu wynikoéw otrzymanych w ramach klasycz-
nej metody homogenizacji oraz do wnioskowania o wtasnosciach efektywnych na pod-
stawie eksperymentu numerycznego (zastepujacego eksperyment rzeczywisty) wyko-
nanego na malej, lecz reprezentatywnej probce kompozytu. W tym drugim przypadku
zastosowano schemat ,samouczacego si¢” programu metody elementéw skoficzonych,
w ktérym zwiazek konstytutywny opisany jest siecia neuronowa. Schemat ten zaadap-
towano tak, ze moze by¢ uzyty w przypadku obciazen niemonotonicznych oraz wtedy,
gdy zaleznosé: miara odksztalcenia—miara naprezenia nie jest wzajemnie jednoznacz-
na. Te nowe mozliwosci uzyskane zostaly dzieki przedstawieniu zwiazku konstytu-
tywnego w formie przyrostowej oraz opracowania odpowiedniej do tego budowy sieci
neuronowej. Schemat ,samouczacego si¢” programu MES charakteryzuje sie tym, ze
proces formutowania nieznanego zwiazku konstytutywnego jest szybki, a zgodnosé
modelu numerycznego z eksperymentem wieksza niz dla innych metod.
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