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Crack and flaw identification problems in two-dimensional elastomechanics
are numerically studied in this paper. The mechanical modelling is based on
boundary element techniques, with special care of hypersingular issues for
the cracks. The possibility of partially or totally closed cracks (unilateral
contact effects) is taken into account by linear complementarity techniques.
Backpropagation neural networks are used for the solution of the inverse
problems. For dynamical problems, a suitable preprocessing of the input
data enhances the effectiveness of the procedure. For the two-dimensional
examples presented here, the proposed method has similar performance
for classical crack and flaw identification problems. The identification of
unilateral cracks is a considerably more difficult task, which nevertheless,
can also be solved by the same method, provided that a suitable dynamical
test loading is applied.
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1. Introduction

Crack and flaw identification problems are solved in the paper. Accurate
modelling of static and dynamic problems in two-dimensional linearly elastic
bodies is done by means of the boundary element method, based on Gallego
and Dominguez (1996, 1997). Unilateral effects, which allow for partial or total
closure of cracks, are also included, following a linear complementarity problem
formulation of the unilateral problem, see Antes and Panagiotopoulos (1992).

For the numerical solution of the inverse problem, usually the problem is
transformed into an optimization task, following an output error minimization
formulation. It is solved subsequently by numerical optimization (see, among
others, Stavroulakis, 2000; Rus and Carlborg, 2001; Rus and Gallego, 2002).
Neural networks are able to directly approximate the relation between measu-
rements and unknown parameters. They have been tested for the solution of
crack identification problems in statics (Stavroulakis and Antes, 1997), and in
dynamics (both steady state, harmonic elastodynamics, in Stavroulakis and
Antes (1998), and time domain elastodynamics in Stavroulakis (1999), see also
Stavroulakis (2000)). The mentioned optimization task is now hidden in the
training phase of the neural network.

This general methodology is extended in the present paper for the solution
of two-dimensional problems. From the mechanical point of view, this paper
presents a comparison of the identifiability of flaws (holes) with respect to
cracks and a numerical study of the effect of non-classical, due to the unilateral
contact phenomenon, cracks. From the data processing point of view, the main
task is the reduction of the size of data used for the training of the neural
network. A partial answer to this problem is proposed and tested here. The
modelling of back propagation neural networks is based on the Neural Network
Toolbox of MATLAB and on home made programs (Likas et al., 1998).

2. Static and dynamic identification problems

Based on the loading excitation, which is used for the testing of a structu-
re, damage and crack identification problems can be divided into static pro-
blems, harmonic dynamic or modal analysis problems and transient dynamic
problems. For solving the inverse problem, first, the unknown quantities li-
ke number and type of defects, their position and other shape constants are
expressed with the help of certain variables. In the next step, a number of
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mechanical tests are considered, where for each value of the unknown defect
parameters, the corresponding responses of the structure are compared with
the wished (measured) ones.

Several methods for the effective numerical solution to this problem have
been tested (among others, numerical optimization, genetic algorithms, soft
computing, see Stavroulakis (2000)). The method used here employs a neural
network to solve the inverse problem, and supports on-line implementation.
Analogous results were published in statics (Liang and Hwu, 2001) and in
dynamics (one-dimensional problems in Ziemianski and Piatkowski (2000),
two-dimensional problems in Oishi et al. (1995)). Moreover, the evaluation
of ultrasonic data has been performed in several cases by means of neural
network models, see, among others, Zgonc and Achenbach (1996) and the
review articles Yagawa and Okuda (1996), Zeng (1998).

In the author’s previous work, dynamical problems on relatively simple
layered structures with cracks or defects, which were parallel to the layers,
were considered (Stavroulakis, 1999). In the present paper, the method is
extended to general two-dimensional structures with measurements of dyna-
mical responses on several different parts of the boundaries. The size of the
data (measured waveforms) increases dramatically, therefore a data reduction
scheme must be used to allow for effective treatment by neural networks. Con-
cerning the identification of unilateral cracks, except for the previous work
by the authors summarized in Stavroulakis (2000), and the paper Alessandri
and Mallardo (1999) which was based on the classical optimization for the
solution to statical problems, no other published work is available to the best
knowledge of the authors.

3. Boundary element modelling of the mechanical problem

3.1. Boundary integral equations for elastostatics

The formulation of the direct elastomechanical problem is based on the
basic equations of the theory of elasticity, i.e., on Navier’s equation

pui () + (1 + Mg (e) + bi(e) = 0 (3.1)

where the Lamé constants p and A are used. Further, one formulates the
weighted residuum

Jlwii(@) + (1 Nugis(@) + b)) d2 =0
0
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where u}.(x,&) is the so called fundamental solution, i.e., the displacement
field at the point @ (observation point), due to a unit force applied at the
point £ (collocation or source point), in an infinite domain.

Integrating by parts and taking into account that the fundamental solution
fulfills governing equations (3.1), the previous equation leads to

ul®) = [@ui(@:€) - ui(@pin(@ O] il + [ bi@pui(e:e) d. (32
r n

where p;(x) and pj (x; &) are the traction vectors at the boundary I" corre-
sponding to the displacement fields u; and u, respectively. In equation (3.2),
the collocation point belongs to the interior of the domain, i.e., & € {2 but
& ¢ I'. To obtain the displacement Boundary Integral Equation a limiting
process must be carried out, which finally leads to

(€)= flpi@)uy(@i) — wi@pip(@:€) dT (33)

r

where the free term c;; depends on the position of the collocation point:
cir = O if € belongs to the interior of (2; ¢ = 0if € & 2;if &€ € I,
the value of ¢;;. depends on the local geometry of the boundary at &; if the
normal to the boundary is continuous at &€ € I" then ¢;; = d;/2. f-stands for
the Cauchy Principal Value (CPV) of the integral.

3.2. Displacement boundary integral representation for transient elasto-
dynamics

Consider an elastodynamic problem in the domain (2 subject to transient
loads. The displacement field wu; satisfies Navier’s differential equations in the
domain
bj (:]3, t)

p

(c% — cg)ui,ij (x,t) + cguj,ii (x,t) — ij(z,t) = — (3.4)

where c; and cg are the dilatational and shear wave velocities, p is the density
and b; are the components of the body force per unit volume. The initial and
boundary conditions have to be satisfied in the domain at ¢ = 0, and on

the boundary I', respectively. The stresses at a point in the domain can be
obtained from the displacement field using Hooke’s law

Cim = p[éim(cf — QCg)uj,j +c%(ui,m F Uy )] (3.5)
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and the traction at a point on I', whose outward normal has components np,
can be computed from the stresses

Di = OiNE = p[ni(c% — QCg)uj,j +nkc§(ui,k +ugyi )] (3.6)

where p; are the components of the traction vector.
The displacement at a point & and time t can be represented in terms of
the displacements and tractions on the boundary by

cij(&§)u; (&) +][/]5§kj($,t —1;8)uj(x,7) drdl’ =
ne (3.7)

+t+

= //(ufj(m,t —1;8)pj(x,7) drdl’

o

where uf;(z,t — 7;§) is the displacement field in an infinite medium due to
a unit impulse in the direction z; located at the point & and acting at the
time 7; pf;(z,t — 7;§) is the corresponding traction field obtained from the
displacements by Hooke’s law (3.6); c¢;; is equal to the free term in equation

(3.3); féﬁ = lim._o f§ *°. Zero initial conditions and zero body forces b; have
been assumed.

The traction tensor pj; contains Dirac’s delta functions which preclude a
direct numerical integration of eqaution (3.7) (see Mansur (1983), Dominguez
(1993) for technical details). To eliminate Dirac’s delta terms, the spatial deri-
vative of the Heaviside function is related to its time derivative, and integration
by parts is performed. This leads to the integral equation

tt tt

i + / / (0%, + pltiy) dr dI" = / / wlp; drdl’ (3.8)
o0 o0

where 4; is the velocity field, and p;; and p;* are new kernels where Dirac’s
delta terms have been removed.

3.3. Traction boundary integral representation for transient elasto-
dynamics

From the integral representation of the displacements at an interior point
(3.8), the corresponding integral representation for the stress tensor at this
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point can be obtained by Hooke’s law

t+ t+
Gim(&,) + / / dz,pj drdl’ = / / (55u; +500,) drdl (3.9)
I o0 I 0

where

divj = PlOim (et = 263)Df 5ot +C3(DFjom +Prnoi )] (3.10)
and similar equations for the rest of the kernels.

Again, Dirac’s delta function terms appear in the kernels of equation (3.9),
due to the differentation of the Heaviside functions in the kernels of (3.8).
Integration by parts leads to the equation

azm+// 07 s+ d2p;) dr dl =
(3.11)

tt
// zm]uj + Szm]u] + Szmj ) drdl’
ro

where ii; is the acceleration field; pi is the time derivative of the traction
vector; the kernels, d;,., di -, 85,55 Si; and s do not contain any strongly
singular term (Dirac’s delta functions).

Before carrying the former equation to the boundary it is necessary to
asses the order and location of the singularities involved in the time and space
integrations. It can be shown that the kernels have the same singularities as
the corresponding ones in the dynamic antiplane formulation (Gallego and
Dominguez, 1995, 1996), and therefore a similar regularization approach can
be performed to find the traction boundary integral representation (Guiggiani,
1992). The final boundary integral representation for the traction at a smooth
boundary, whose outward normal is n,,, can be written as

tt+

cijpj—i—][/(d;}pj d”*pj) drdI’ = 7[/ swu]—i—szj uj—i—szj M) drdl’ (3.12)
T 0

. * * * * * *
where CZ] = 0;5/2; 4y = djpinm, 4 = dinnm, S5 = ShuiMm,
vk

Sif = SimiNm and siT = SiT nm; 3@ stands for the Hadamard Finite Part

of the integral. Equation (3.12) can be written at interior points and points
outside (2 with ¢;; = 1 and ¢;; = 0, respectively.
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3.4. Application of the traction integral equation to crack problems

A mixed Boundary Element formulation has been proposed to solve frac-
ture mechanics problems in static (Portela et al., 1992; Sédez et al., 1995) and
dynamic loadings (Fedelinski et al., 1994). A more refined approach, taken
from Gallego and Dominguez (1997), which is essential for problems with a
nonzero traction on the crack faces, is used here.

Let us call I'" and I'~ the upper and lower face of the crack, respecti-
vely, and I, the rest of the boundary. The superscripts ‘+’ and ‘—’ denote
any function evaluated on the upper and lower face of the crack, respecti-
vely. Tt could be checked that di* = df~, dff" = dff~, si;T = —si;7,
syt = —sPr” and s{ft = —s{7. Therefore, assuming that Ap; = p;r +p; =0,
equation (3.12) for an interior point can be written as

tt t+
pit [ [+ diny) drdr = [ [(siu;+ sty + sifig) drdr +
I.0

r.0
(3.13)
tt
+ //(sfjAuj + 877 Aty + 577 Adig) drdl”
r+o0
where Au; = uj — uj is the crack displacement jump. If this equation is

carried to a point on the boundary I'T, the following expression is obtained

tt tt
() + / / (dfp; + 2 p;) dr dT" = / / (suj + sU0i + s&iy) dr T+
I.0

I.0
(3.14)
+t+
+ 7[ /(s;ijuj + 8§ At + siF Adig) dr dI
r+ 0

The difference between this equation and the general traction representa-
tion, Eq (3.12), is the free term, which is 1 for the crack point instead of 1/2.

Hypersingular boundary integral equation (3.14) in the crack face I'" and
the standard displacement boundary integral representation on the rest of the
boundary I, provide a complete set of equations to compute the tractions
and/or displacement or displacement jump on the boundary and the crack
faces.
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3.5. Boundary element discretization

The existence of the hypersingular boundary integral equation demands
C' continuity on the displacement at the collocation point. On the other
hand, the collocation point should be placed at a smooth boundary point,
since otherwise the value of the traction is not unique. The boundary element
discretization must fulfill both conditions, as it has been discussed in Gallego
and Dominguez (1997). Taking this into account and using standard Boundary
Element Techniques otherwise for spatial and time discretization, the resulting
set of algebraic equations is written in a compact matricial notation as

n—1

m=1
where the arrays 4™ and p" contain the displacements and tractions of the
nodes on I, and the displacement jumps and tractions on I'", for the time
step m.

At this point, the boundary conditions of the elastomechanical problem
at the time m are taken into account, known and unknown quantities are
separated and a system of linear equations is formulated and solved for all
unknown boundary displacements with respect to tractions y

Gnnpn = H"y" + R" = A""y" — f" (3.16)

This system of equations is solved step by step as in the standard displa-
cement formulation in the time domain.

3.6. Unilateral contact at cracks (partial closure): a linear complemen-
tarity problem

Unilateral contact problems can be considered by using a LCP-BEM (linear
complementarity — boundary element) method, analogous to the one develo-
ped in the case of the two-region BEM in Antes and Panagiotopoulos (1992),
Stavroulakis (1997, 2000). Without going into details, let us mention that,
with a suitable sign assumption, a unilateral contact mechanism implying no-
penetration and no-tension between the boundary displacements u and boun-
dary tractions t is described by the set of inequalities and the complementarity
condition

u<0 t<0 uw't=0 (3.17)

The LCP is composed of the latter set of relations for all unilateral mechanisms
(here, on all crack nodes relating crack opening and contact traction) together
with the underdetermined system of equations shown in the first part of (3.16).
For other approaches see, in addition, Guz and Zozulya (2002).
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4. Neural networks for crack and flaw identification

4.1. The direct-inverse neural modelling technique

Let a given structure which contains an unknown crack be considered. The
crack is characterized by a set of parameters z = [z1,..., zy] . For example,
in the crack identification, the coordinates of the crack center and the length
of the crack are the parameters of interest. Let, moreover, the response of the
structural system for a given loading b',  =1,...,l; and for a given crack z
be given by the vector #(z,b!) obtained as the solution to the corresponding
static or dynamic mechanical problem. Here [y is the total number of different
loading cases. Obviously, the response of the considered mechanical system is
parametrized by the unknown crack parameters z. Let, moreover, the response
of the examined structure with the known crack subjected to the same loading
b' be denoted by Zo(z,b').

Here, a feedforward neural network is used to learn the inverse mapping

Z(z,b) — 2z (4.1)

for a given value of the loading vector b using an appropriate dataset of the
example cases. The network takes the vector & as the input and provides the
corresponding vector z of crack parameters as the output.

The data pairs composed of the vectors #(z,b!) and the corresponding
parameter vectors z are used as training examples. In the prediction mode,
the nonlinear network reproduces the mapping & — z, i.e., for a given vector of
measurements  (different from the ones used for training) it gives a prediction
for the variables characterising the internal crack.

The previously outlined method for the direct inverse modelling can be
extended to treat problems in elastodynamics by enlarging the input vector
such that it takes into account the whole time series. This method was used in
our previous investigations (see Stavroulakis, 2000). The problems which arise
with the above simple treatment of the inverse problems in elastodynamics is
that the dimension of the input vectors is dramatically increased and that a
lot of this huge information is actually redundant. The redundancy is easily
explained from the fact that, for example, all measurements at the external
boundary before the appearance of the first wave reflected from the unknown
defect do not convey any information about this defect and therefore do not
help at all for the solution to the inverse problem. In this work, we have chosen
a few suitably selected time instances along each waveform which seemed
characteristic for the problems under study. These time instances correspond
to the local maxima and minima, as well as turning points of the waveforms.
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This way, only 4-5 time steps are kept for every measurement point, thus the
increase in the number of input dimension is not large compared to the static
case.

4.2. The neural network model and training algorithm

The neural network model that we used to implement the inverse map-
ping is the well-known Multilayer Perceptron (MLP). It is the most widely
used neural network model for function approximation with numerous suc-
cessful applications in almost every scientific and engineering domain. The
most attractive feature of the MLP is that it exhibits excellent interpolation
capabilities (even when trained with sparse datasets) which make it an ideal
solution for data-driven inverse modelling problems.

The MLP model (also known as backpropagation neural network) is a
feedforward neural network with one or more hidden layer containing units
(called hidden units) with a nonlinear activation function (usually of sigmoid
type). In our experiments, to implement a mapping from a d-dimensional
input space to an m-dimensional output space, we have used the MLP with
d inputs, m outputs and one hidden layer with H hidden units with the
hyperbolic tangent sigmoid activation function

ef —e™*

tanhy = ———
el 4 e~ ®

More specifically, if [W] = [w;;] denotes the weight matrix from the input
units to the hidden units, V = [v;;] denotes the weight matrix from the hidden
units to the output units and b; denotes the bias of the hidden unit ¢ then
for a given input vector x = [z1,...,x4], the corresponding output vector
Yy =1[y1,...,Ym] is computed as follows:

e First the outputs of the hidden units are computed

d
2 :tanh<2w1jxj+bi) 1=1,....H
j=1

e Next, the network outputs y; are computed using the z; values

H
yk:kajzj k=1,...,m
J=1
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The weights (w;j,v;;) and biases (b;) constitute the neural network para-
meters to be adjusted during training in order to learn the network to imple-
ment the desired mapping.

The MLP model can be trained to implement the desired inverse mapping
from a d-dimensional to an m-dimensional domain by using a training set
that contains N examples of the mapping, ie. pairs of the form (x;,t;) where
x; = [Ti1,...,%q) is an input vector and t; = [t;1, ..., tin] the desired output
for the input ;. Once the training set is available, the training process is actu-
ally an optimization procedure that adjusts the network parameters (weights
and biases) to minimize the error function

E= 3 > (yi(®i) — tix)
=1 k=1

To achieve the error minimization, any numerical optimization method can be
applied, from simple gradient-descent (also called backpropagation training
algorithm) to more sophisticated quasi-Newton methods or even global opti-
mization methods. In this work, the Levenberg-Marquadt method has been
used for the minimization of the error function that is available in the Matlab
Neural Network toolbox. This training method has been found to be the most
effective among several tested local optimization techniques and achieved to
provide near zero minima of the error function even in the case of networks
with a small number H of hidden units.

An important issue for the construction of an effective neural network mo-
del is the specification of the number of hidden units H. It is well-known that
for large values of H the network tends to overfit the training set. This means
that although the network learns the training set very accurately (the training
error becomes very small), the prediction performance of the network on new
examples (not used for training) is poor. On the other hand, if the number
of hidden units H is very small the network does not manage to learn the
training set with acceptable accuracy. Therefore, a procedure called the com-
plexity control is needed to find a reasonable value for the number of hidden
units H. The objective of the complexity control is to identify the smallest
neural architecture that is able to learn the training set with acceptable accu-
racy. In this work, we applied the complexity control by starting with a small
network having H = 2 hidden units and gradually increasing the value of H
by one, until a sufficiently trained network (with a low error value) is obtained.
Since the training algorithm (Levemberg-Marquadt) is local and depends on
the initial values of the weights, for each value of H we applied the training
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algorithm at most 20 times, starting each time from random weight initial
values.

Finally, for every problem examined, after the completion of training, the
prediction accuracy of the constructed network was assessed by using a sepa-
rate test set of cases (different from the training set).

5. Mechanical modelling

Consider an academic two-dimensional problem that is concerned with de-
fect idenfication within a rectangular elastic plate from measurements along
its external boundaries, see Fig. 1. It should be pointed out that we are consi-
dering relatively small defects, with length or diameter equal to 1, in a plate
with the external side equal to [ = 100.

p)

Ye

Xo
Fig. 1. Geometry and loading of the considered plate with a crack

For the assumed defect, the coordinates of its center are denoted by =z,
and 7.. The lower boundary of the plate is fixed and the loading is ap-
plied at the upper boundary. For the elastic material an elasticity modulus
E = 1000000 and Poisson’s ratio v = 0,3 are used. For the discretization of
the whole external boundary of the plate 10 quadratic elements are used. For
each hole, 20 quadratic elements in statics and 10 in dynamics, and for every
crack 7 quadratic crack elements are used.
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We have considered three cases of defects. First, a circular hole is used
for the modelling of the defect. Further, a horizontal rectilinear crack is used.
Finally, unilateral contact phenomena are considered along the crack sides.
The dynamic loading has either a form of the Heaviside function or of a dyna-
mical pulse of one wave duration. The pulse loading has a form of a sinusoidal
excitation or an impact-like one. The displacement records at specific points
of the boundary are used as the input for the neural networks. For the model
problem presented in Fig. 1, this information is shown, for one point at the
boundary of the plate, in Fig. 2. The various lines correspond to various po-
sitions of the defect. Clearly, one can use these lines in order to identify the
defect.

(a) Vertical displacement of point A (b) Horizontal displacement of point A4
7 T T 020 " T T T

0.02
0.01}
Uy
113
-0.01H\
-0.02} 1%
-0.03}
-0.04}
-0.05}

-0.06 L L L L L L L L L L L L L L L L L L
0 10 20 30 40 50 60 70 80t 90 100 0 10 20 30 40 50 60 70 80t 90100

Fig. 2. Horizontal (z) and vertical (y) displacements at boundary point A:
Dependence on the crack position

The preparation of data for the neural network postprocessing and the sub-
sequent solution to the inverse problem has been done in the following way.
A learning set, for the training of the neural network, and a test set, for the
demonstration of its ability, are produced. The position of the assumed defect
changes in each element of these two sets of examples (paradigms). The tra-
ining set includes displacements of the upper side for positions of the hole with
x=10to z =90 and from y = 10 to y = 90 with all combinations produced
with the step Ax = Ay = 10. Therefore, the training set has 81 examples
(i.e. different positions of the defect, different mechanical problems), each one
including 21 measurements. For the training set, the coordinates of the hole
center are considered from z. = 15 and y. = 15 with steps Az = 10, Ay = 10
up to the defect with coordinates at . = 85 and y. = 85 (all intermediate
combinations). Thus, the training set has 64 examples with different positions
of the defect. We have chosen measurement points at time instants where the
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displacement values comming from the considered examples, i.e. with different
crack positions, differ as much as possible. These are, practically, the turning
points of the waveforms shown in Fig. 2. In addition, the time instants where
the wave reflections seem to play a significant role in the data are chosen (local
minima and maxima of the waveform). This way one tries to have a minimum
size of the input data, so that significant features of the measurements are still
represented. In a future step of the investigation this point could be done au-
tomatically. For the hole identification 81 examples with various measurement
points on the boundary of the plate have been used.

The crack identification follows a similar procedure. Nevertheless, a smal-
ler area within the plate is considered for the placement of potential cracks
and the calculation of training and test data. This is due to the fact that the
crack-type defects with their stress singularity at the end of the crack make the
dynamic boundary element method we used unstable for crack positions near
the external boundaries. A finer discretization would resolve this numerical in-
stability and make the computational effort significantly higher. Nevertheless,
we did not use a finer discretization, in order to be able to directly compare
the effectiveness of the procedure with the previously solved hole identification
problem. The training set consisted of displacement values at the external bo-
undary of the plate from 49 simulations. These data were produced by taking
into account a crack with the center coordinates from z. = 20 and y. = 20 to
z. = 80 and y. = 80 with the step Ax = 10 and Ay = 10 and all intermediate
combinations. The test set had, analogously, 36 simulations.

5.1. Numerical results
5.1.1.  Ezample 1: hole identification in elastostatics with two unknowns

A circular hole of diameter equal to 4.0 is considered to be the unknown
defect. The coordinates (z,y) of its center are the unknown parameters of
the inverse problem. The defect is hidden within a rectangular plate with
dimensions equal to 100.0x100.0. One static loading case (pure traction on the
upper side of the plate, fixed boundary on the opposite side) is considered. The
boundary displacements (10 nodes per boundary) are used as measurements
for the solution to the inverse problem. Thus, the dataset contains input-
output pairs with 20-dimensional inputs and two-dimensional outputs with
values normalized in the range (—0.9,0.9). These are the displacements of
the boundary nodes, in the x and y direction with respect to the reference
otrhogonal coordinate system, as they are calculated by the boundary element
method. For the construction of the training set we considered all possible
positions of the center. In particular, for the training set all values of x and y
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coordinates in the interval [10 — 90] with a step equal to 10 have been used.
For the test set we used values in the interval [15—85] with a step equal to 10.
The training dataset contains 81 cases, while the test set includes 64 cases.
We used a neural network model with 20 inputs, 2 outputs and H = 5 hidden
units. The training error achieved was less than 0.001, and the results for the
training set are shown in Fig. 3a. The performance on the test set of cases is
illustrated in Fig. 3b.

(a) Results after training (b) Results with test data
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Fig. 3. Example 1. Performance of the neural network on the training and the test
set; o given position, + predicted position

A very interesting issue to note was that in order to achieve successful tra-
ining, it was not necessary to use the complete 20-dimensional input vector.
Instead, if only a small part of this vector was used (for example eight compo-
nents) the same training and test performance was achieved. This fact suggests
that it is possible to solve the inverse problem using sparse boundary displa-
cements (eg. three nodes instead of ten) or a lower number of measurements
during an experiment, and needs further investigation. Similar results can be
obtained with different sizes of holes and with classical (bilateral) cracks.

5.1.2.  Ezxzample 2: hole identification in elastostatics with three unknowns

In this case, both the center of the circular defect and its diameter are
considered to be unknown. Holes with a diameter between 8 and 12 have been
considered. All sites in between these values, with a step equal to 0.2 have
been used for the construction of the training set. In the test set, diameters
between 8.5 and 11.5 with a step equal to 0.2 have been considered.

The dataset contains input-output pairs with 20-dimensional inputs and
three-dimensional outputs (two outputs for the position coordinates and one
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output for the diameter) normalized in the range (—0.9,0.9). The training
dataset contains 1701 cases, while the test set includes 1024 cases.

In the first experiment we tried to use the available training set to train
a single network with three outputs that simultaneously provide both the lo-
cation and diameter of the defect for a given input vector of measurements.
Nevertheless, it was impossible to successfully train such a network and obtain
results of reasonable accuracy on the test set, especially in terms of the diame-
ter of the defect. For this reason, we followed a different (two-stage) approach
that involved a cascade of two neural networks.

In the first stage, the neural network with two outputs is trained. It takes
as the input the vector of measurements and provides as the outputs the (x,y)
coordinates of the defect. It must be noted that the diameter measurements
are not taken into account for the construction of this network.

(b) Result of the diameter
with test data
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Fig. 4. Example 2. Performance of the neural network in predicting location and size
for the case of the test set

Then, the computed location coordinates (outputs of the first network)
along with the measurements are used as the inputs to another network (se-
cond stage) that has one output providing the diameter of the defect. Using
this two-stage approach we were able to obtain sufficiently accurate results.
The number of hidden units was H = 10 and H = 5 for the first and second
network, respectively. The prediction accuracy of the defect location (accuracy
of the first network) for the test cases is shown in Fig. 4a. In this figure, the
multiple predictions '+’ shown for each defect location correspond to cases
(experiments) with the same defect location but different diameter. In what
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concerns the accuracy of the second network, the average test set error for
the estimation of the diameter was found equal to 0.25 with standard devia-
tion 0.15, thus indicating the estimation performance of acceptable quality
(see Fig. 4b).

Further investigation showed that the crack and hole identification pro-
blems using elastostatic measurements had similar performance. The detailed
documentation of this investigation does not provide additional information
in this paper (see Engelhardt [4]).

5.1.8.  Ezxzample 3: Hole and classical crack identification in elastodynamics

The transient dynamic problem is modelled with the previously outlined
theory. The calculated waveforms have been preprocessed by the authors so
that only essential measurement points and time instances were used for the
neural network. Only classical cracks without contact were considered in this
example. The remaining of the work was similar to the static case. Predictions
of the neural network for the set of experiments used in the unknown (testing)
data are shown in Fig. 5.

(a) Results with test data (b) Results with test data
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Fig. 5. Example 3. Performance of the neural network in predicting hole and
classical (bilateral) location for the test set

5.1.4.  Ezxzample 4: Unilateral crack identification in elastodynamics

An identification of cracks with contact using transient dynamic measure-
ments was done in the last example. The identification task was more com-
plicated, since one tries to use complicate waves, which include reflection and
transmission from nonlinear interfaces. For the used limited time interval the
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method worked quite satisfactory, as it is shown in Fig. 6. A generalization to
more complicated problems should be done with care, since nonlinear dyna-
mical phenomena may have chaotic characteristics. Further research in this
direction is certainly needed.

(a) Result after training (b) Results with test data
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Fig. 6. Example 4. Unilateral crack identification. Performance of the neural
network in predicting location for the cases of the training set

Acknowledgments
The work has been partially supported by the German Research Foundation
(DFG) and by the Greek-German Scientific Cooperation Programm (IKYDA2001).

References

1. ALESSANDRI C., MALLARDO V., 1999, Crack identification in two-dimensional
unilateral contact mechanics with the boundary element method, Computatio-
nal Mechanics, 24, 100-109

2. ANTES H., PANAGIOTOPOULOS P.D.; 1992, The Boundary Integral Approach
to Static and Dynamic Contact Problems. Equality and Inequality Methods,
Birkhauser, Basel-Boston-Berlin

3. DOMINGUEZ J., 1993, Boundary Elements in Dynamics, Computational Me-
chanics Publications, Southampton and Elsevier Applied Science, London

4. ENGELHARDT M., 2004, PHD Thesis, Technical University of Braunschweig,
Germany (in preparation)



10.

11.

12.

13.

14.

15.

16.

17.

NEURAL NETWORK ASSISTED CRACK... 647

. FEDELINSKI P., ALIABADI M.H., ROOKE D.P., 1994, Dynamic stress intensity

factors in mixed mode, in Boundary Elements X VI, Brebbia C.A. edit., Comp.
Mech. Publications, Southampton, 513-520

GALLEGO R., DOMINGUEZ J., 1995, HBEM applied to Transient Dynamic
Fracture, Proc. ICES’95, Hawaii, USA, Edit. S.N. Atluri

GALLEGO R., DOMINGUEZ J., 1996, Hypersingular BEM for transient elasto-
dynamics, International Journal for Numerical Methods in Engineering, 39, 10,
1681-1705

GALLEGO R., DoMINGUEZ J., 1997, Solving transient dynamic crack problems
by the hypersingular boundary element method, Fatigue and Fracture of Engi-
neering Materials and Structures, 20, 5, 799-812

GUIGGIANI M., 1992, Direct evaluation of hypersingular integrals in 2D BEM,
Notes on. Numerical Fluid Mechanics, 33, W. Hackbusch, edit., Vieweg, Braun-
schweig, 23-34

Guz A.N., ZozuLyA V.V., 2002, Elastodynamic unilateral contact problems
with friction for bodies with cracks, International Applied Mechanics, 38, 8,
895-932

LianG Y.C., Hwu C., 2001, On-line identification of holes/cracks in composite
structures, Smart Materials and Structures, 10, 4, 599-609

Likas A., KARRAS D., LacAris I.E., 1998, Neural network training and
simulation using a multidimensional optimization system, Int. J. of Computer
Mathematics, 67, 33-46

MANSUR W.J., 1983, A time-stepping technique to solve wave propagation
problems using the Boundary Element Method, Ph.D. Thesis, Universiy of So-
uthampton, U.K.

O1sHI A., YAMADA K., YOSHIMURA A., YAGAWA G., 1995, Quantitative non-
destructive evaluation with ultrasonic method using neural networks and com-
putational mechanics, Computational Mechanics, 15, 521-533

PorTELA A., ALiABADI M.H., ROOKE D.P., 1992, The dual Boundary Ele-
ment Method: effective implementation for crack problems, Int. J. Numer.
Meth. Engineering, 33, 6, 1269-1287

Rus G., CARLBORG, 2001, Numerical methods for nondestructive identifica-
tion of defects, Doctoral Thesis, Departamento de Mecanica de Estructuras,
Universidad de Granada, Spain

Rus G., GALLECO R., 2002, Optimization algorithms for identification of in-
verse problems with the boundary element method, Engineering Analysis with
Boundary Elements, 26, 4, 315-327



648

18

19.

20.

21.

22.

23.

24.

25.

26.

27.

G.E. STAVROULAKIS ET AL.

. SAEz A., GALLEGO R., DoMmINGUEzZ J., 1995, Hypersingular quarter point
boundary elements for crack problems, Int. J. Numer. Methods Engineering,
38, 1681-1701

STAVROULAKIS G.E., 1999, Impact-echo from a unilateral interlayer crack.
LCP-BEM modelling and neural identification, Engineering Fracture Mecha-
nics, 62, 2-3, 165-184

STAVROULAKIS G.E., 2000, Inverse and Crack Identification Problems in Engi-
neering Mechanics, Kluwer Academic Publishers, Dordrecht, and Habilitation
Thesis, Technical University of Braunschweig, Germany

STAVROULAKIS G.E., ANTES H., 1997, Nondestructive elastostatic identifica-
tion of unilateral cracks through BEM and neural networks, Computational
Mechanics, 20, 5, 439-451

STAVROULAKIS G.E., ANTES H., 1998, Neural crack identification in steady
state elastodynamics, Computer Methods in Applied Mechanics and Engine-
ering, 165, 1/4, 129-146

YAacAawa G., OkubpA H., 1996, Neural networks in computational mechanics,
Archives of Computational Methods in Engineering, 3, 4, 435-512

Yusa N., CHENG W., CHEN Z., MivA K., 2002, Generalized neural network
approach to eddy current inversion, NCT and E. International, 35, 609-614

ZENG P., 1998, Neural computing in mechanics, ASME Applied Mechanics
Reviews, 51, 2, 173-197

Zconc K., ACHENBACH J.D., 1996, A neural network for crack sizing trained
by finite element calculations, NDT and E. International, 29, 3, 147-155

ZIEMIANSKI L., PiaTkowskl G., 2000, Use of neural networks for damage
detection in structural elements using wave propagation, In: Computational
Engineering using Metaphors from Nature, Edit. B.H.V. Topping, Civil-Comp
Press, Edinburgh, U.K.

Identyfikacja peknieé¢ i wad strukturalnych w stanach nieustalonych za

pomoca sieci neuronowych

Streszczenie

W pracy zajeto sie problemem identyfikacji peknigé i innych uszkodzen struk-
turalnych w dwuwymiarowym stanie odksztalcen sprezystych za pomoca metod nu-
merycznych. Modelowanie mechaniczne oparto na metodzie elementéw brzegowych
ze szczegdlnym uwzglednieniem kwestii osobliwosci peknieé. Mozliwo$é powstawania
czedciowo lub caltkowicie zamknietych peknieé wprowadzono poprzez wykorzystanie
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liniowej metody komplementarnosci. Dla rozwiazania zagadnien odwrotnych uzyto
sieci neuronowych ze wsteczna propagacja. W zagadnieniach dynamicznych efektyw-
nosé¢ zaproponowanej procedury zwiekszono poprzez odpowiednia wstepna obrébke
danych wejsciowych. Na przyktadzie dwuwymiarowych modeli opisywanych w pracy
stwierdzono podobna skutecznosé¢ metody, jak w przypadku klasycznego zagadnienia
identyfikacji wad strukturalnych. Wykazano, ze identyfikacja jednostronnych peknieé,
ktéra jest znacznie trudniejszym zadaniem, jest mozliwa za pomoca zaprezentowanej
metody, jesli do analizy modelu przyja¢ odpowiednio dobrane obcigzenie testowe.
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