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The paper provides an exact solution to a nonstationary two-dimensional
heat transfer problem where heat sources move along the edge of the
area. Finite Fourier transforms are applied to find the solution. It is
given as a sum of four parts. The investigations aim at the determination
of the temperature distribution in a brake drum while the vehicle rolls
down a slope at a constant velocity. Brake linings, brought into frictional
contact with the drum in braking, constitute moving heat sources. Due
to the nature of the process under examination, it is possible to assume
that the heat transfer is two-dimensional. The dimensions of the brake
drum (the internal radius to external radius ratio is approx. 0.95) and
simplifications allow one to model it as a rectangular area.
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1. Introduction

The problem of the identification of a temperature field generated by a
moving heat source has been investigated in numerous papers. In a paper by
Grysa (1977a), the author considered the temperature distribution in a long
circular cylinder whose lateral surface was affected by temperature being a
function of the angular coordinate. The cylinder itself rotated around its axis
with a constant angular velocity ω. The problem was analysed in the cylindri-
cal coordinate system r, ϕ, z. Because points were regarded to be located at a
sufficient distance from both ends of the cylinder, it was assumed that the tem-
perature distribution was a function of time t and spatial variables r and ϕ.
The problem was solved by applying Hankel transformations. In a paper by
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Drzewicki et al. (1977), the authors investigated the temperature field in an
infinite circular cylinder when its lateral surface was affected by a temperatu-
re field distributed according to a function T = T (ϕ, t). The cylinder rotated
around its axis with a constant angular velocity ω. The problem was solved
by applying Green’s functions. The solution was presented for certain special
cases by appropriately specifying the form of the function T = T (ϕ, t). The
calculations were made for three forms of the boundary condition: a constant
function; a square function of ϕ − ωt at a part of the boundary and zero at
the remaining boundary part; a cosine function at a part of the boundary with
the argument ϕ − ωt and zero elsewhere. In a paper by Grysa and Legutko
(1981), the authors determined the intensity of a moving heat source in the
contact area between the blade and the grinding detail. The temperature was
calculated by applying an analytic method based on inverse heat conduction
problems. Two shapes of a grinding object were taken into account: a circular
disk and a cubicoid.

2. Mathematical model

The aim of the present paper is to provide an exact solution to a transient
heat transfer problem when a part of the boundary of the area under analysis
is heated with a moving heat source. For the sake of calculations, a boundary
condition of the second kind is adopted. The condition can be expressed in a
form −λ∂T/∂n = qn, where λ denotes the thermal conductivity coefficient
[W/mK], ∂T/∂n – derivative in the direction perpendicular to the surface of
the body and directed outwards, −qn = qnf(x, t) – normal component of the
heat flux density [W/m2], qn – its extreme value at the contact of the source
with the body (qn > 0), f(x, t) – polynomial function characterizing the type
of the heat flux density distribution (f(x, t) > 0).
The determination of the temperature distribution in the brake drum is

carried out when velocity of the vehicle riding down a slope is being reduced.
It is assumed that the road inclination angle α is constant and velocity of the
vehicle is also constant. Brake linings fixed to brake shoes that come into fric-
tional contact with the brake drum while braking are treated as moving heat
sources. For the purpose of formulating a mathematical model, the following
simplifying assumptions were made:

1. The temperature is constant along the entire width of the drum. It me-
ans that the direction of the heat transfer is also assumed to be two-
dimensional.
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2. Due to a large diameter of the drum in relation to its thickness, the
annulus is thought to be unrolled into a flat rectangular area. What is
investigated is the temperature distribution within a rectangular area of
the length l and width b.

3. Two heat sources, each of the length a equal to the length of the brake
lining and the width equal to the drumwidth, move at a constant velocity
v in a periodic manner. The density distribution of the heat flux at the
contact of the brake lining with the drum is modelled with a polynomial
function. Figure 1 presents the graph of the function −qn at a fixed time
instant.

Fig. 1. Distribution of the heat flux on the heated body surface at a fixed time
instant

4. Except for the brake lining contact with the brake drum (also on the
opposite side), the area is assumed to be thermally insulated.

5. Repeatability of the process resulting from the vehicle wheel rotation is
achieved by the adoption of boundary conditions of the fourth kind at
the edges of the rectangle, which are perpendicular to the side affected
by the heat source.

6. It is assumed that at the initial time instant, the temperature of the
brake drum and the environment is constant and equals Θ0.

7. The brake drum is made of a homogenous and isotropic material.

8. It is assumed that the thermal conductivity coefficient κ and thermal
diffusivity k of the brake drum do not depend on temperature.

The problem will be formulated mathematically in a dimensionless form.

Dimensionless (reduced) temperature is defined as follows: T = (Θ−Θ0)/
qnb

λ
,

where Θ denotes actual temperature [K], Θ0 – actual temperature at the
initial moment [K], qn – maximum value of the heat flux density resulting
from the action of the moving heat source [W/m2], b = rz − rw – thickness of
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the body [m], rz - the external radius of the brake drum, rw – internal radius of
the brake drum, λ – thermal conductivity coefficient [W/mK]. Dimensionless

coordinates are expressed in the following way: x = x/b, y = y/b, t = κt/b
2

where κ is the thermal diffusivity coefficient [m2/s]. We define dimensionless
parameters: l = l/b, a = a/b, b = 1, v = vb/κ (l = π(rz − rw) is length of
the body [m], a – length of the source [m], v – actual velocity of the source
[m/s]).

Fig. 2. A model of the system for temperature identification in heating with moving
heat sources

The following dimensionless form of the problem under analysis is achieved

∂2T

∂x2
+
∂2T

∂y2
−
∂T

∂t
= 0 (2.1)

for (x, y) ∈ Ω, t > 0, Ω = {(x, y) ∈ R2 : 0 < x < l, 0 < y < b}.
The initial and boundary conditions are

T (x, y, 0) = 0
∂T

∂y
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(2.2)
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where X = (x− vt)mod.l gives the remainder of division of (x− vt) by l.
Additionally, consistency conditions are required in the following form

T (0, y, t) = T (l, y, t)
∂T

∂x
(0, y, t) =

∂T

∂x
(l, y, t) (2.3)
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Condition (2.2)3 describes the distribution of the heat transfer generated
by the moving source. The condition can be presented in a form better suited
for calculations, that is, the one in which the function f is expanded into a
Fourier series

∂T

∂y
(x, b, t) =

16a

15l
−
∞
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n=1

{ 16l2

a4(nπ)5

(
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nπ

2
+ cos

3nπ

2

)

·

·
[

3anπl cos
anπ

l
+ (−3l2 + (anπ)2) sin

anπ

l

]

cos[λn(x− vt)]
}

where λn = 2πn/l.

3. Solution of the heat conduction equation

A solution to equation (2.1) is sought in a form of a Fourier series with
respect to the variable x− vt

T (x, y, t) =
1

l
T0(y, t)+

2

l

∞
∑

n=1

{

Tn1(y, t) cos[λn(x−vt)]+Tn2(y, t) sin[λn(x−vt)]
}

(3.1)
Substitution of (3.1) in (2.1) results in a system of equations with unknown
coefficients T0, Tn1, Tn2 in the form

∂2T0
∂y2
−
∂T0
∂t
= 0

∂2Tn1
∂y2

− λ2nTn1 −
∂Tn1
∂t
+ λnvTn2 = 0 (3.2)

∂2Tn2
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∂Tn2
∂t
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with conditions
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∂Tn2
∂y
(b, t) = 0

∂T0
∂y
(0, t) = 0

∂Tn1
∂y
(0, t) = 0

∂Tn2
∂y
(0, t) = 0

In order to solve the system of equations (3.2) with conditions (3.3), a finite
Fourier transformation is applied (Sneddon, 1951). Therefore the functions T0,
Tn1, Tn2 are assumed to satisfy Dirichlets conditions for a fixed t. With the
aforementioned assumptions, the Fourier transformation has the form

T (k, t) =

b
∫

0

T (y, t) cosαk dy (3.4)

where αk = kπ/b, k = 0, 1, 2, ... and the function is expressed through its
transform by the formula

T (y, t) =
1

b
T (0, t) +

2

b

∞
∑
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T (k, t) cosαky (3.5)

Application of the transformation to the system of equations (3.2) and
conditions (3.3) results in a system of differential equations for the variable t
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2
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Solutions to the system must be equal to zero for t = 0. The system of
equations (3.6) has the following solutions
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2
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By virtue of (3.5), we arrive at the following solution to the system of equations
(3.2)

T0(y, t) =
q0t
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Then, the problem described by equations (2.1)-(2.3) has the following
solution
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4. Analysis of the obtained solution

Due to the nature of the thermal field changes in time, a division of the
transient state is introduced following Kondratiev (1954) into:
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• a purely nonstationary heating process (t < 0.5)

• a regular heating process (t > 0.5).

In the purely nonstationary heating process, the temperature field depends on
physical properties of the body, its geometry, dimensions and also initial and
boundary conditions. The regular heating process is already a well-established
one, in which the time-space temperature distribution depends on the body
geometry, its dimensions, physical properties and boundary conditions. The
impact of initial conditions on the temperature, however, is negligibly small.
For the sake of analysis, relation (3.9) is presented in a form of the sum

T (x, y, t) = TK(x, y, t) + TN (x, y, t) + TB(x, y, t) + T S(x, y, t) (4.1)

where
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By applying formula (5.14) in Grysa (1977b) with x = b, equation (4.4) takes
the form

T S(x− vt, y) =
2

bl

{

q0
[η(y − b)

2
(b− y) +

2 + 3y2 − 6b+ 3b2

12

]

+

+
∞
∑

n=1

qn1
λ2n
cos λn(x− vt)

}

+
4

bl

∞
∑

n=1

qn1 cos λn(x− vt)

2λn sinhλn
· (4.6)

·
{

η(y − b) sinhλn sinh[λn(b− y)] + cosh λny cosh[λn(1− b)]
}

where η(z) denotes the Heaviside function.
In formula (4.1),its individual terms have the following sense:

• TK(x, y, t) is a linear term representing the heat accumulation within
the area under analysis

• TN (x, y, t) describes temperature changes at individual points of the
area, which result from the heating, and which are not affected by motion
of the source

• TB(x, y, t) describes the thermal inertia caused by the heating

• T S(x−vt, y) is actually a function of two variables: y and the difference
x− vt.

The change in time t by ∆t leads to a similar change in the value of the
function T S as the change in x by ∆x = −v∆t.
The temperature distribution expressed by formula (4.3) may be interpre-

ted as a temperature field generated by a stationary source after a lapse of
very long time described in the system x, y. A characteristic feature of the
term is the fact that it does not depend on physical properties of the body, its
dimensions and initial conditions. In a purely nonstationary heating process,
none of the expressions present in relations (4.1), (4.2), (4.3) and (4.5) can be
excluded. In a regular heating process, the function assumes on a much simpler
form. All expressions containing exp[−(λ2n+α

2
k)t], except for exp(−α

2
1t), can

be excluded. The expressions highlighted in relation (4.1) take the forms

TN (x, y, t) =
2

bl

q0 cosα1y

α21
(e−α

2

1
t) (4.7)

TB(x, y, t) = TB(x, y, t) = −
2

bl

∞
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qn1 sinγn0
λ2n

sin[λn(x− vt) + γn0] +
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−
4

bl

∞
∑

n=1

∞
∑
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(−1)kqn1 sinγnk cosα1y

λ2n + α
2
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sin[λn(x− vt) + γnk]
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Expressions (4.2), (4.6) do not change their forms. Therefore, for t > 0.5,
relation (4.1) can be presented as follows

T (x, y, t) = TK(x, y, t) + TN (y, t) + TB(x− vt, y) + T S(x− vt, y) (4.9)

With time running, the second of the highlighted expressions quickly ap-
proaches zero, the third and the fourth are actually functions of two variables;
they describe a quasi-steady state.
T (x, y, t)→∞, t→∞ because TK(x, y, t)→∞, t→∞ and TN (x, y, t),

TB(x, y, t), T S(x, y, t) are limited. The component TK(x, y, t) describes the
accumulation of heat collected inside the body. The formulated model and
the calculated temperature function are applied to determine the temperature
distribution in the brake drum over a short time of the vehicle braking.
The velocity v significantly affects the thermal inertia, because the value

of the function TB(x− vt, y) depends on sin γnk. For velocities satisfying the
condition v � 1, we have sin γnk � 1 and T

B(x−vt, y) ≈ 0. The temperature
field will be then expressed by the relation

T (x, y, t) ≈ TK(x, y, t) + TN (y, t) + T S(x− vt, y) (4.10)

which indicates that the movement of the source does not really affect the
way in which heat penetrates the inside of the area. Figures 9a,b present
the temperature distribution for the dimensionless velocity v = 0.001. When
the velocity is sufficiently high, then cos γnk ≈ 0 and the terms with cos γnk
disappear in expression (3.9), and the temperature may be approximated with
the formula

T (y, t) =
q0t

bl
+
2

bl

∞
∑

k=1

(−1)kq0 cosαky

α2k
(1− e−α

2

k
t) (4.11)

It is apparent from formula (4.11) that the temperature depends only on
one spatial variable, so the temperature distribution is one-dimensional and
heat flow is one-directional. The same solution would be achieved if it was
assumed that the source with the consistent intensiveness equal to q0/l affected
the entire surface of the body, i.e. there was an insulation on the opposite
surface and the heat conduction equation had the form

∂2T

∂y2
−
∂T

∂t
= 0 for y ∈ (0, b), t > 0

In formula (4.11), q0 is formulated as follows

q0 =

l
∫

0

f(x, t) dx (4.12)
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where f(x, t) is expressed by relation (2.2)3. Figures 5a,b present the tempe-
rature distribution for the dimensionless velocity v = 2.1 ·104. For t > 1.5, the
expression TN (y, t) introduces a correction of the order 10−8q0 into formula
(4.9), which can be neglected. Formula (4.9) has the form

T (x, y, t) ≈ TK(x, y, t) + TB(x− vt, y) + T S(x− vt, y) (4.13)

Upon introduction of a notion of the characteristic time τ0 = 1/α
2
1 (it is the

time that characterises the heating rate of the brake drum in the regular he-
ating process), one can notice that the condition t > 0.5 means t > (π/b)2τ0/2,
and t > 1.5 for which the expression TN (y, t) can be excluded in formula (4.9),
means t > 3(π/b)2τ0/2. When the source is not moving (v = 0), relation (4.1)
is transformed into the form

T (x, y, t) = TK(x, y, t) + TN (x, y, t) + T S(x, y) (4.14)

where

T S(x, t) =
2

bl

{

q0
[η(y − b)

2
(b− y) +

2 + 3y2 − 6b+ 3b2

12

]

+
∞
∑

n=1

qn1
λ2n
cos λnx

}

+

+
4

bl

∞
∑

n=1

qn1 cos λnx

2λn sinhλn

{

η(y − b) sinhλn sinh[λn(b− y)] + (4.15)

+ coshλny cosh[λn(1− b)]
}

TK , TN do not change their forms.

5. Numerical example

Let us consider a thermal field in a cast-iron brake drum of a lorry riding
down a road inclined at an angle α = 10◦ with a constant velocity. We assume
the following numerical data: λ = 50 W/mK, κ = 0.125·10−4 m2/s, l = 1.3 m,
b = 0.013 m, a = 0.3 m, Θ0 = 293 K, qn = (σGδv sinα)/(2S), δ = 0.4 – ratio
of braking force acting on front wheels to braking force, σ = 0.95 – heat
distribution between brake lining and drum, α = 10◦ – road inclination angle,
v – vehicle velocity [m/s2], S = 0.093 m2 – area of contact between two brake
linings and brake drum, G = 108 · 103 N – vehicle weight.
The data and nomenclature were taken from the literature on the subject,

see Łukomski et al. (1976), Wrzesiński (1978).
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The temperature field was calculated for a source moving with velocities:
v = 72 km/h, v = 10.8 km/h and v ≈ 0 km/h. The qn = 7.7 · 10

5 W/m2 was
adopted for a source moving with a velocity v = 72 km/h. Figure 3 presents
the temperature distribution through the entire drum thickness at the moment
t = 0.02 s. Figures 4a,b present the temperature distribution in a fragment of
the drum close to the heat-affected surface at the same moment.

Fig. 3. The temperature distribution at the moment t = 0.02 s for the velocity
v = 72 km/h

Fig. 4. (a) The temperature distribution in a fragment of the drum close to the
heat-affected surface at the moment t = 0.02 s for the velocity v = 72 km/h;

(b) a contour diagram

Figures 5a,b present the temperature distribution through the entire drum
thickness at the moment t = 30 s. Figures 6a,b present the temperature di-
stribution in a fragment of the drum close to the heat-affected surface at the
same moment.
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Fig. 5. (a) The temperature distribution at the moment t = 30 s for the velocity
v = 72 km/h; (b) a contour diagram

Fig. 6. (a) The temperature distribution in a fragment of the drum close to the
heat-affected surface at the moment t = 30 s for the velocity v = 72 km/h;

(b) a contour diagram

The value of qn = 1.2 · 10
5 W/m2 is adopted for a source moving with

the velocity v = 10 km/h. Figures 7a,b present the temperature distribution
through the entire drum thickness at the moment t = 30 s. Figures 8a,b
present the temperature distribution in a fragment of the drum close to the
heat-affected surface at the same moment.

The qn = 0.04 W/m
2 is adopted for a source moving with the velocity

v ≈ 0 km/h (v = 10−7 km/h). Figures 9a,b present the temperature distribu-
tion at the moment t = 20 s.
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Fig. 7. (a) The temperature distribution at the moment t = 30 s for the velocity
v = 10 km/h; (b) a contour diagram

Fig. 8. (a) The temperature distribution in a fragment of the drum close to the
heat-affected surface at the moment t = 30 s for the velocity v = 10 km/h;

(b) a contour diagram

Fig. 9. (a) The temperature distribution at the moment t = 20 s for the velocity
v ≈ 0 km/h; (b) a contour diagram
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6. Conclusions

It is apparent from Fig. 1 to fig. 9 that the postulates adopted in the second
section of the paper have been satisfied, i.e. at the beginning and at the end
of the unrolled drum the temperatures and heat fluxes are equal (the tangents
to isotherms are parallel). The perpendicularity of isotherms to the surface
y = 0.013 beyond the area affected by the sources indicates the satisfaction
of insulation that was assumed to be present there. For a source moving with
the velocity v = 10 km/h, the predicted effect of inertia caused by movement
of the sources can be observed, and with the velocity v = 72 km/h, for the
purpose of better visualisation of that effect, some fragments of the figures
had to be enlarged. As it was also expected, that effect is not present at a
velocity of the sources close to zero, which can be observed in Fig. 9. The heat
penetration depth inside the drum depends mostly on velocity and the number
of cycles. The slower the velocity is, the deeper the heat penetrates the inside.
The opposite holds true for the number of consecutive passes of the sources –
the greater it is, the deeper the heat penetrates the inside and is accumulated
there, which is represented by the expression TK expressed by formula (4.2).
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Nieustalone pole temperatury w obszarze prostokąta z ruchomymi

źródłami ciepła na jego brzegu

Streszczenie

W pracy rozwiązane zostało, w sposób ścisły, niestacjonarne dwuwymiarowe za-
gadnienie przepływu ciepła z poruszającymi się źródłami ciepła wzdłuż brzegu ob-
szaru. W celu znalezienia rozwiązania zastosowana została skończona transformata
Fouriera. Rozwiązanie podane zostało w postaci sumy czterech składników. Zastoso-
wane zostało do wyznaczenia rozkładu temperatury w bębnie hamulcowym podczas
utrzymywania stałej prędkości samochodu zjeżdżającego z pochyłości. Okładziny ha-
mulcowe trąc o bęben hamulca w trakcie hamowania stanowią poruszające się źródła
ciepła. Ze względu na charakter badanego procesu można przyjąć, że wymiana ciepła
jest dwuwymiarowa. Wymiary bębna hamulcowego (stosunek promienia wewnętrzne-
go do zewętrznego wynosi około 0.95) i poczynione uproszczenia pozwalają modelować
go obszarem o kształcie prostokąta.
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