
JOURNAL OF THEORETICAL

AND APPLIED MECHANICS

42, 4, pp. 859-868, Warsaw 2004

ELASTIC BUCKLING OF A POROUS BEAM

Krzysztof Magnucki
Piotr Stasiewicz

Institute of Applied Mechanics, Poznań University of Technology

e-mail: krzysztof.magnucki@put.poznan.pl; piotr.stasiewicz@put.poznan.pl

The work deals with the problem a straight beam of a rectangular cross-
section pivoted at both ends and loaded with a lengthwise compressive
force. The beam is made of an isotropic porous material. Its proper-
ties vary through thickness of the beam. The modulus of elasticity is
minimal on the beam axis and assumes maximum values at its top and
bottom surfaces. The principle of stationarity of the total potential ener-
gy enables one to define a system of differential equations that govern
the beam stability. The system is analytically solved, which leads to an
explicit expression for the critical load of the compressed beam. Results
of the solution are verified on an example beam by means of the Finite
Element Method (COSMOS).
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1. Displacements of a porous beam

A mathematical description of composite structures obviously includes ma-
ny simplifying assumptions. Librescu and Hause (2000) provided a review
of sandwich structures, paying attention to their stability problems. Vinson
(1999) discussed sandwich structures made of isotropic and composite ma-
terials. Kołakowski and Kowal-Michalska (1999) presented some problems of
stability of thin-walled composite structures. The above mentioned works pro-
vide descriptions of displacements (strains) in cross-sections that are based on
the linear Euler-Bernoulli hypothesis. Thus, the effect of shearing due to trans-
verse forces is omitted. A separate group includes three-layered structures, in
the which shearing is taken into account. Lok and Cheng (2000) characterized
properties of structures, with special attention paid to the middle layer, subject
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mainly to the shearing. Magnucki and Ostwald (2001) presented problems of
stability and optimal shaping of three-layered structures. Displacements occur-
ring in cross-sections of such structures (Lok, Cheng and Magnucki, Ostwald)
were described using the broken-line hypothesis. Romanów (1995) assumed
a hyperbolic pattern of the normal stress distribution in the cross-section of
a three-layered wall. The works of Lok, Cheng and Magnucki, Ostwald and
Romanów took the shearing effect into account as well. Wielgosz and Thomas
(2002) discussed the results of an analytical solution, taking into consideration
the shearing effect and experimental studies related to panel bending. Bart-
Smith et al. (2001) presented the problem of bending of a sandwich structure
with the middle layer made of a cellular metal.

This work is concerned with an isotropic porous beam of a rectangular
cross-section pivoted at both ends and loaded with a lengthwise compressive
force. Mechanical properties of the material vary through thickness of the
beam. Young’s modulus is minimal on the beam axis and assumes maximum
values at its top and bottom surfaces. For such a case, the of Euler-Bernoulli
or Timoshenko beam theories do not correctly determine displacements of the
cross-section of the beam. Wang et al. (2000) discussed in details the effect
of non-dilatational strain of middle layers on bending of beams and plates
subject to various load cases.

Fig. 1. Scheme of porous beam

A porous beam (Fig. 1) is a generalized sandwich beam. Its outside surfaces
(top and bottom) are smooth, without pores. The material is of continuous
characteristics. The beam is porous inside, with the degree of porosity varying
in the transverse direction, assuming the maximum value on the beam axis.
A rectangular system of coordinates is introduced, with the x-axis oriented
along the beam, and the y-axis in the beam-depth direction.

The moduli of elasticity are defined as follows

E(y) = E1[1− e0 cos(πη)] G(y) = G1[1− e0 cos(πη)] (1.1)
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where
e0 – coefficient of beam porosity, e0 = 1−E0/E1
E0, E1 – Young’s moduli at y = 0 and y = ±h/2, respectively
G0, G1 – shear moduli (modulus of rigidity) for y = 0 and y = ±h/2,

respectively
Gj – relationship between the moduli of elasticity for j = 0, 1,

Gj = Ej/[2(1 + ν)]
ν – Poisson’s ratio (constant for the entire beam)
η – dimensionless coordinate, η = y/h
h – thickness of the beam.

Fig. 2. Geometric model of broken-line hypothesis

The field of displacements (geometric model) in the rectangular cross-
section of the beam is shown in Fig. 2. The cross-section, being initially a
planar surface, becomes curved after the deformation. The surface perpendi-
cularly intersects the top and bottom surfaces of the beam. The geometric
model is similar to that obtained by making use of the broken-line hypothesis
applied to three-layered structures. Such a definition of the displacement mo-
del gives a basis for adopting a field of displacements in any cross-section in
the following form

u(x, y) = −h
{

η
dv

dx
−
1

π
[ψ1(x) sin(πη) + ψ2(x) sin(2πη) cos

2(πη)]
}

(1.2)

v(x, y) = v(x, 0) = v(x)
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where
u(x, y) – longitudinal displacement along the x-axis
v(x) – deflection (displacement along the y-axis)
ψ1(x), ψ2(x) – dimensionless functions of displacements.

The geometric relationships, i.e. components of the strain field are

εx =
∂u

∂x
= −h

{

η
d2v

dx2
−
1

π

[dψ1
dx
sin(πη) +

dψ2
dx
sin(2πη) cos2(πη)

]}

(1.3)

γxy =
∂u

∂y
+
dv

dx
= ψ1(x) cos(πη) + ψ2(x)[cos(2πη) + cos(4πη)]

where εx is the normal strain along the x-axis, and γxy – the angle of shear
(shear strain).
The physical relationships, according to Hooke’s law are

σx = E(y)εx τxy = G(y)γxy (1.4)

Moduli of elasticity (1.1) occurring here are variable and depend on the y-
coordinate.

2. Equations of stability

The field of displacements for in the thus defined problem includes three
unknown functions: v(x), ψ1(x) and ψ2(x). Hence, three equations are neces-
sary for a complete description of the problem. They may be formulated on
the grounds of the principle of stationarity of the total potential energy of the
compressed beam

δ(Uε −W ) = 0 (2.1)

where Uε is the energy of elastic strain

Uε =
ht

2

L
∫

0

1/2
∫

−1/2

(σxεx + τxyγxy) dxdη

W is the work of the load (compressive force)

W =
F

2

L
∫

0

(dv

dx

)2
dx
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and L – length of the beam, t – width of the rectangular cross-section of the
beam.
A system of three equations of stability for the porous beam under com-

pression is formulated in the following form

E1h
3t
(

C1
d2v

dx2
− C2

dψ1
dx
− C3

dψ2
dx

)

+ Fv(x) = 0

C2
d3v

dx3
− C4

d2ψ1
dx2
−C5

d2ψ2
dx2
+

1

2(1 + ν)

1

h2
(C7ψ1 + C8ψ2) = 0 (2.2)

C3
d3v

dx3
− C5

d2ψ1
dx2
−C6

d2ψ2
dx2
+

1

2(1 + ν)

1

h2
(C8ψ1 + C9ψ2) = 0

where

C1 =
1

12
−
π2 − 8

2π3
e0 C2 =

1

π2

( 2

π
−
1

4
e0
)

C3 =
1

π2

( 3

16
−
32

75π
e0
)

C4 =
1

π2

(1

2
−
2

3π
e0
)

C5 =
1

π2

( 8

15π
−
1

8
e0
)

C6 =
1

π2

( 5

32
−
128

315π
e0
)

C7 =
1

2
−
4

3π
e0 C8 =

8

15π
−
1

4
e0

C9 = 1−
832

315π
e0

Moreover, appropriate boundary conditions are formulated (for x = 0 and
x = L)

[v′′δv′ − v′′′δv]
∣

∣

∣

L

0
= 0 [ψ′kδv

′
− ψ′′kδv]

∣

∣

∣

L

0
= 0

(v′′δψk)
∣

∣

∣

L

0
= 0 ψ′kδψk)

∣

∣

∣

L

0
= 0 k = 1, 2

(2.3)

The system of differential equations (2.2) may be approximately solved with
the use of Galerkin’s method. Hence, three unknown functions satisfying bo-
undary conditions (2.3) are assumed in the following form

v(x) = va sin
(

nπ
x

L

)

ψk(x) = ψak cos
(

nπ
x

L

)

k = 1, 2

where va, ψa1, ψa2 are parameters and n is a natural number.
Substituting these functions into equations (2.2) and using Galerkin’s me-

thod yields a system of three homogeneous algebraic equations

A(3×3)X = 0 (2.4)
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where

A =







a11 − f a12 a13
a21 a22 a23
a31 a32 a33






X =







−va
ψa1
ψa2







a11 = C1α
2
0 a12 = C2α0h a13 = C3α0h

a21 = C2α
3
0 a22 =

[

C4α
2
0 +

C7
2(1 + ν)

]

h a23 =
[

C5α
2
0 +

C8
2(1 + ν)

]

h

a31 = C3α
3
0 a32 =

[

C5α
2
0 +

C8
2(1 + ν)

]

h a33 =
[

C6α
2
0 +

C9
2(1 + ν)

]

h

α0 = nπ
h

L

and f is the dimensionless longitudal compressive force (0 < f)

f =
F

E1ht

The condition
detA = 0 (2.5)

enables determination of the dimensionless force f .
Limiting the considerations to the matrix A(2×2) and taking into account

condition (2.5) yields

f = a11 −
a12a21
a22

= C1α
2
0

[

1− 2(1 + ν)
C22α

2
0

C1(C7 + 2(1 + ν)C4α
2
0)

]

(2.6)

and the dimensionless critical load

fCR = min
n
f = π2

(h

L

)2
C1
[

1− 2(1 + ν)
C22
C1C0

]

(2.7)

for n = 1, where

C0 = 2(1 + ν)C4 +
C7
π2
λ2

and λ = L/h is the relative length of the beam.
The critical force is

FCR =
π2E1h

3t

L2
C1
[

1− 2(1 + ν)
C22
C1C0

]

(2.8)

In a particular case of a beam made of an isotropic non-porous material, the
elasticity coefficients do not depend on the coordinate y (e0 = 0, C1 = 1/12).
The negligence of the transverse force effect (C2 = 0) gives the classical Euler
force. Apart from varying elasticity constants, the effect of shear strain on the
critical force is also taken into consideration in expression (2.8).
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3. Numerical analysis of the stress state

A family of beams of the constant height h = 100mm and width t = 1mm
was assumed. The beam lengths were: L = 2000mm, 2500mm and 5000mm,
the material constants: E1 = 2.05 · 10

5MPa, e0 = 0.99, ν = 0.3. Numerical
analysis was carried out by means of the Finite Element Method – System
COSMOS/M. The symmetry of the system enabled modeling of a half of the
beam only by imposing suitable boundary conditions at one end for x = 0
(zero-displacement in the y-axis direction) and in the middle cross-section for
x = L/2 (zero-displacement in the x-axis direction). The beam was buckled
only in the xy plane. The material properties varying through thickness of the
cross-section were discretized with 20 layers of constant properties. Particular
layers were characterized by elasticity constants adopted according to (1.1)
for points located in the middle of each of the layers (Fig. 3). For the purpose
of strength analysis, the beam was subject to a transverse load of a constant
intensity distributed at its whole length.

Fig. 3. Discretization of material properties

Fig. 4. Normal stress at cross-section: (a) theory, (b) FEM

Figure 4 presents an example of normal stress distribution in points lo-
cated in the middle cross-section of the beam. The theoretical distribution
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(Fig. 5a) was determined from Hooke’s law (1.4) based on the adopted for-
mulas of moduli of elasticity (1.1) and the broken-line hypothesis assumed
for determination of displacements (1.2). The stress distribution patterns ob-
tained analytically and numerically (FEM) are very similar, which seems to
confirm the justness of the broken-line hypothesis.

Fig. 5. Critical load as function of beam length

4. Numerical analysis of buckling

The critical loads determined on the grounds of the analytical solution to
equation (2.8) for a family of beams are specified in Table 1. Moreover, the
critical loads are determined by means of FEM. The subspace Iteration algo-
rithm was applied. Values of the loads are shown in Table 1. The comparison
of the solutions obtained with both methods shows that the error does not
exceed 4 percent for the beam of the length L = 5000mm (Fig. 5).

Table 1. Values of critical loads

L [m]
FCR [N]

Eq. (2.8) FEM

2.0 25808 24915

2.5 16795 16346

5.0 4295 4166
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5. Conclusions

The above proposal of analytical description of the field of strains in a
beam properties varying through thickness is a generalization of an approach
to multi-layered composite beams. The linear Euler-Bernoulli hypothesis for
beams subject to bending makes a particular case of the description. The
general solution to three equations of stability enable one define a simple
formula for the critical load of the beam. The critical loads obtained from
the analytical and numerical (FEM) solutions are similar, with the maximum
difference not exceeding 4 percent.
The work was presented at the 10th Symposium of Structure Stability in

2003 (Zakopane).
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Wyboczenie sprężyste belki porowatej

Streszczenie

Przedmiotem pracy jest prosta belka o przekroju prostokątnym, podparta prze-
gubowo na obu końcach, obciążona wzdłużną siłą ściskającą. Belka wykonana jest
z materiału izotropowego porowatego. Właściwości tego materiału są zmienne na wy-
sokości belki. Na osi belki moduł sprężystości jest najmniejszy, natomiast na po-
wierzchniach górnej i dolnej największy. Z zasady stacjonarności całkowitej energii
potencjalnej wyznaczono układ równań różniczkowych stateczności belki. Układ ten
rozwiązano analitycznie i zapisano w postaci zamkniętej wyrażenie na obciążenie kry-
tyczne ściskanej belki. Wyniki tego rozwiązania zweryfikowano dla przykładowej belki
za pomocą metody elementów skończonych (System COSMOS).
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