
JOURNAL OF THEORETICAL

AND APPLIED MECHANICS

51, 3, pp. 741-750, Warsaw 2013

STRESS DISTRIBUTION IN TWO-LAYERED HALF-SPACE WITH

PERIODICAL STRUCTURE CAUSED BY HERTZ PRESSURE

Waldemar Kołodziejczyk, Roman Kulchytsky-Zhyhailo

Bialystok University of Technology, Faculty of Mechanical Engineering, Białystok, Poland

e-mail: waldekk@pb.edu.pl; r.kulczycki@pb.edu.pl

The paper presents analytical solutions for displacements and stresses in an elastic layered
half-space with periodic structure in the case of an axi-symmetrical contact problem. The
solutions are arrived at employing the Hankel transform. Finally, a comparison is made
between the results obtained using the classical theory of elasticity and those obtained
within the framework of the homogenized model with microlocal parameters.

Key words: layered structures, contact, stress distribution

1. Introduction

Extensive applications of layered composite materials in both civil and mechanical engineering,
geophysics as well as their widespread presence in nature (varved clays, sandstone-slates, thin
layered limestones) have made composite materials an object of intensive research. To be able to
create or verify strength hypotheses of the materials, adequate knowledge of stress distribution
in the composites caused by mechanical factors, eg. pressure distribution, is essential.

The formulation of contact problems for periodically layered composites based on the classi-
cal theory of elasticity leads to boundary value problems for partial differential equations with
discontinuous, strongly oscillating coefficients. As this approach is rather complicated, the clas-
sical formulation of the problem is often replaced with approximated models (Sun et al., 1967;
Achenbach, 1975; Bensoussan et al., 1978; Christensen, 1980; Sanchez-Palenzia, 1980) in which
mechanical properties of the medium are determined on the basis of mechanical and geometrical
properties of the analyzed composite components.

In some problems, a periodically layered structure is replaced with a homogeneous trans-
versely isotropic medium (Postma, 1955). In this model, calculated strains and stresses are
averaged in the fundamental layer. On the other hand, the homogenized model with microlocal
parameters (Matysiak and Woźniak, 1987; Woźniak, 1987) makes it possible to evaluate local
values of strains and stresses in each sublayer. Owing to the simplification of the mathematical
solution, the homogenized model with microlocal parameters has been applied to resolve some
contact problems of mechanics and geomechanics (Kaczyński and Matysiak, 1988, 1993, 2001;
Kulchytsky-Zhyhailo and Matysiak, 1995; Matysiak and Pauk, 1995).

However, the application of the homogenized model to a periodically layered structure results
in errors. To estimate these errors, it is necessary to compare solutions for the periodically layered
structure based on two approaches:

(i) homogenized model with microlocal parameters

(ii) non-homogeneous medium with separate elastic layers.

In the case of heat transfer and theory of elasticity, such investigations were carried out
in Kulchytsky-Zhyhailo and Kołodziejczyk (2004, 2007), Kulchytsky-Zhyhailo and Matysiak
(2005a,b). It was shown that the solutions obtained using these models were consistent if the
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ratio δ of thickness of the fundamental layer to the size of heating area or loading area was small
(δ < 0.2).
One of the fundamental issues of contact mechanics is the problem of pressing a rigid sphere

into an elastic half-space. In the case of a homogeneous half-space, the problem is reduced to
the loading of the surface by Hertz pressure

p(r) =
3

2
p0
√
1− r2 (1.1)

where: p0 – mean contact pressure, r – dimensionless cylindrical coordinate (r < 1) with respect
to the radius a of the contact area.
Similar results were obtained for a periodically layered half-space using the homogeni-

zed model with microlocal parameters (Kulchytsky-Zhyhailo and Matysiak, 1995). For a non-
-homogeneous half-space, expression (1.1) is a good description of pressure distribution for the
case when δ < 0.2 (Kulchytsky-Zhyhailo and Kołodziejczyk, 2007). It should be noted here that
the authors focused their attention on two parameters only, i.e. pressure distribution and size of
the contact area.
In the present paper, the authors focus on stress analysis in a layered medium with periodical

structure caused by pressure (1.1) and compare the results obtained using the two models.

2. Formulation of the problem

Let us consider a two-layered elastic half-space with a periodic structure loaded by Hertz pressure
(Fig. 1). A repeated fundamental layer is composed of two homogeneous elastic sublayers with
thickness l1 and l2. Mechanical properties of the sublayers are characterized by Young’s moduli
E1 and E2 and Poisson’s ratios ν1 and ν2.

Fig. 1. Diagram of the analyzed problem

3. Homogenized model

Initially, the basis for consideration is the homogenized model with microlocal parameters. The
governing equations of the homogenized model given in terms of macro-displacements can be
written in the following form (Kaczyński and Matysiak, 2001):
— equations

A1
(∂2u
∂r2
+
1

r

∂u

∂r
−
u

r2

)
+ (A3 +A5)

∂2w

∂r∂z
+A5

∂2u

∂z2
= 0

(A3 +A5)
( ∂2u
∂r∂z
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1

r

∂u
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)
+A4
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∂z2
+A5

(∂2w
∂r2
+
1

r
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∂r

)
= 0

(3.1)
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— boundary conditions on the surface of the half-space

σzz = −p(r)H(1− r) σrz = 0 z = 0 (3.2)

— regularity conditions in infinity

u,w → 0 r2 + z2 →∞ (3.3)

where

A1 =
(
λ̃+ 2µ̃−

[λ]2

λ̂+ 2µ̂

)
A3 = λ̃−

[λ]([λ] + 2[µ])

λ̂+ 2µ̂
A5 = µ̃−

[µ]2

µ̂

A4 = (λ̃+ 2µ̃)−
([λ] + 2[µ])2

λ̂+ 2µ̂
λ̃ = ηλ1 + (1− η)λ2 [λ] = η(λ1 − λ2)

λ̂ = ηλ1 +
η2

1− η
λ2 µ̃ = ηµ1 + (1− η)µ2 [µ] = η(µ1 − µ2)

µ̂ = ηµ1 +
η2

1− η
µ2 λi =

Eiνi
(1 + νi)(1− 2νi)

µi =
Ei

2(1 + νi)

and η = l1/l, u, w are dimensionless displacements, σ – stress tensor, H(·) – Heviside’s unit
step function.
Relations between the stresses and macro-displacements are as follows (Kaczyński, 1994)

σzz = A3
(∂u
∂r
+
u

r

)
+A4

∂w

∂z
σ
(i)
rr = Ki

∂u

∂r
+ Li
u

r
+Mi

∂w

∂z

σ
(i)
ψψ = Li

∂u

∂r
+Ki

u

r
+Mi

∂w

∂z
σrz = A5

(∂u
∂z
+
∂w

∂r

) (3.4)

and

Ki = λi + 2µi − hiλi
[λ]

λ̂+ 2µ̂
Li = λi − hiλi

[λ]

λ̂+ 2µ̂

Mi = λi − hiλi
[λ] + 2[µ]

λ̂+ 2µ̂
i = 1, 2

h1 = 1 h2 = −
η
1−η

(3.5)

where i is the sublayer number in the fundamental layer. From relations (3.4), it follows that the
presented model yields separate equations for computation of stress tensor components in the
first and second sublayer of the fundamental layer. However, for σzz and σrz they are identical
(index i can be omitted). For the stress components σrr and σψψ having jump discontinuities
on boundaries between the layers we have two formulas for each.
Solutions of the set of equations (3.1) can be expressed as follows (Elliot, 1949a,b)

u =
∂Ψ1
∂r
+
∂Ψ2
∂r

w = κ1
∂Ψ1
∂z
+ κ2
∂Ψ2
∂z

(3.6)

where

κk =
γ2kA1 −A5
A3 +A5

(3.7)

Ψk are elastic potentials satisfying equations

∂2Ψi
∂r2
+
1

r

∂Ψi
∂r
+
∂2Ψi
∂z2
γ2i = 0 i = 1, 2 (3.8)
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γ2i are roots of the characteristic equation

A1A5γ
4 + (A23 + 2A3A5 −A1A4)γ

2 +A4A5 = 0 (3.9)

In order to find a solution to equations (3.8), Hankel’s transform is used

f̃(s, z) =

∞∫

0

rf(r, z)J0(sr) dr (3.10)

where J0 is the Bessel function. A general solution to the set of equations (3.8) satisfying
conditions (3.3) takes the form

Ψ̃i(s, z) = Ci(s) exp
(
−
sz

γi

)
i = 1, 2 (3.11)

Expressing (3.4)-(3.6) in Hankel’s transform domain and satisfying boundary conditions
(3.2), we obtain

C1 = C
(p)
−1 p̃(s)

1

s2
C2 = C

(p)
0 p̃(s)

1

s2
(3.12)

where

p̃(s) =
3

2
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√
π

2
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√
s3
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C
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0 = −

γ2
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Taking into account (3.4), (3.6), (3.11), we obtain

u(r, z) =

∞∫

0
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4. Classical model

Let us consider a layered half-space as n fundamental layers (2n sublayers) joined with a homo-
geneous part of the half-space (Fig. 2). It was shown (Kulchytsky-Zhyhailo and Kołodziejczyk,
2007) that over a fixed number of separately considered layers, the mechanical properties of
the homogeneous part of the half-space can be quite arbitrarily chosen. They may include the
properties of either the first or the second layer. However, considering the fact that the homoge-
neous part of the half-space possesses averaged properties of the homogenized medium described
above, it is possible to obtain a sufficiently exact approximation solution of the problem for a
significantly smaller number of separately considered layers.

Fig. 2. Diagram of the analyzed problem

The equations for separately considered layers can be written as follows

∆uk −
uk
r2
+ dk
∂θk
∂r
= 0 ∆wk + dk

∂θk
∂z′
= 0 k = 1, 2, . . . , 2n (4.1)

where θk = ∂uk/∂r+uk/r+∂wk/∂z
′, k – layer number, d2j = 1/(1−2ν1), d2j−1 = 1/(1−2ν2),

j = 1, 2, . . . , n.

Differential equations (3.1) for the homogenized medium “0” should be attached to the above
system of equations. The solution to the equations should satisfy the following conditions:

— boundary conditions on the surface z′ = nδ

σ(n)zz = −p(r)H(1− r) σ(n)rz = 0 z′ = nδ (4.2)

— boundary conditions between the layers and between the layers and the homogenized medium

uk = uk+1 wk = wk+1 σ
(k)
rz = σ

(k+1)
rz

σ
(k)
zz = σ

(k+1)
zz z′ = zk k = 0, 1, . . . , 2n − 1

(4.3)

— regularity conditions in infinity

uk, wk → 0 for r
2 + z′2 →∞ (4.4)

where zk is the coordinate z
′ of the point of intersection of the upper plane limiting the k-th

layer with z′ axis.

The solution to the classical elasticity theory problem formulated in this way was obtained
using the Hankel transform. Applying the algorithm described in Kulchytsky-Zhyhailo and Ko-
łodziejczyk (2007), we obtain expressions to calculate displacements and stresses in form (3.13),
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where functions Ur, Uz, Sz1, Sz2, Sr1, Sr2 should be replaced with the following

2U
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where

ck = cosh(s(zk − z
′)) sk = sinh(s(zk − z

′)) Dk = dks(zk − z
′) µk =

Ek
2(1 + νk)

Expressions (4.5) and the corresponding equations for the homogenized half-space “0” include
(8n + 2) unknown functions Ck(s), k = −1, 0, 1, . . . , 8n. Satisfying boundary conditions (4.2)
and (4.3), we obtain a system of algebraic equations allowing us to determine the unknown
functions (Kulchytsky-Zhyhailo and Kołodziejczyk, 2007).

5. Numerical results and discussion

The stress distribution arising in the non-homogeneous half-space obtained within the framework
of the homogenized model depends on four dimensionless parameters: ratio E1/E2 of Young’s
moduli of the materials of individual layers, Poisson’s ratios ν1 and ν2, the thickness ratio of
the upper layer to the thickness of the periodicity cell η = l1/l = δ1/δ. When considering the
layered medium, the stress distribution is additionally dependent on the parameter δ. In order
to confine the range of the considered parameters, it was assumed that ν1 = ν2 = 0.3. To
emphasize the differences that arise between the solutions obtained from both models the ratio
of Young’s modulus was assumed E1/E2 = 8. Since the results change only insignificantly within
the considered range of δ parameter when altering the sequence of layers in the periodicity cell,
we restrict our analysis to the case when E1/E2 > 1.
The calculations show that the stress distributions σzz and σrz for the homogenized model

are very close to the corresponding stress distribution for the layered medium. All the distri-
butions are similar to those obtained for a homogeneous medium in the classical Hertz contact
problem. However, significantly different results can be observed for the stress distribution of
σrr and σψψ. These stress distributions along z-axis are shown in Fig. 3 (at z-axis σrr = σψψ).
For a non-homogeneous medium on each boundary between layers these stress components un-
dergo a jump. This discontinuity is illustrated by black vertical lines. The two gray lines are
obtained on the basis of the homogenized model, and they describe the stress distribution in the
layers with smaller and greater Young’s modulus respectively. As seen in Fig. 3, the stress di-
stribution obtained from the homogenized model describes the stress distribution in the layered
medium with sufficient accuracy. The difference between the results decreases with reduction of
δ parameter. Thus, a suggestion can be made that a detailed analysis of stress distribution in a
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non-homogeneous medium can be based on the homogenized model, which will radically reduce
the time of computation.

Fig. 3. Stress distribution σrr/pmax along z-axis for different values of δ; black line – solution for the
layered medium, gray lines – solution for the homogenized model, dashed lines – boundaries between

layers; E1/E2 = 8, ν1 = ν2 = 0.3, η = 0.5

When analyzing the stress level, special attention should be paid to the existence of regions
of tensile stresses that are determined on the basis of principal stress σ1 as well as to the
distribution of the second invariant of the deviatoric stress tensor

J2 =
1
√
6

√
(σ1 − σ2)2 + (σ1 − σ3)2 + (σ2 − σ3)2 (5.1)

Typical distributions of dimensionless parameters σ1 and J2 with respect to parameter
pmax = (3/2)p0 are shown in Figs. 4 and 5. In layers with greater Young’s modulus two regions
of tensile stresses occur. The first is found in the vicinity of the points of the unloaded surface
of the half-space (Fig. 4a). Maximum of the σ1 stress, similarly to the contact problem for the
homogeneous medium, occurs on the boundary of the loaded circle. The stress can be determined
from the expression

σ
(1)
1 (1, 0) =

p0µ1
√
A1A4 +A3

(5.2)

The other region arises at a certain depth. Tensile stresses in this region are generally much
smaller than the stress at points z = 0, r = 1.

Fig. 4. Tensile stress distribution σ1 in layers with: (a) greater Young’s modulus, (b) smaller Young’s
modulus

In layers with smaller Young’s modulus, the region of tensile stresses occurs beneath the
unloaded surface of the half-space (Fig. 4b). In this case, there exist two local maxima of σ1
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stresses. The first at the boundary of the loading area, the other at a certain small depth in the
vicinity of the boundary of the contact surface. It should be noted that for points z = 0, r = 1

we have a simple relation σ
(1)
1 /σ

(2)
1 = µ1/µ2.

The distribution of J2 parameter in the layers with greater Young’s modulus has three local
maxima (Fig. 5a). The first one occurs at some depth on z-axis, the second one – at point z = 0,
r = 0, the third one – at points z = 0, r = 1. The distribution of J2 parameter in layers with
smaller Young’s modulus (Fig. 5b) is similar the one that occurs for the homogeneous isotropic
medium in the classical Hertz contact problem. The only maximum arises on z-axis at some
depth beneath the surface.

Fig. 5. Distribution of J2 in layers with: (a) greater Young’s modulus, (b) smaller Young’s modulus

Figures 6 and 7 show maximum values of relative parameters σ1/σ
(i)
1,H and J2/J

(i)
2,H as a

function of η for three values E1/E2 = 2, 4, 8 described by lines 1,2,3 respectively. σ
(i)
1,H , J

(i)
2,H

are corresponding parameters given by the classical Hertz contact problem for the homogeneous
medium with mechanical properties of the i-th layer (i = 1, 2) (Timoshenko and Goodier, 1951;
Johnson, 1985)

σ
(i)
1,H =

1

3
p
(i)
max,H(1− 2νi) J

(i)
2,H(νi = 0.3) = 0.356p

(i)
max,H (5.3)

where pmax,H is the maximum pressure in the classical Hertz contact problem of pressing of a
sphere into a homogeneous isotropic half-space and

p
(i)
max,H

pmax
=

[
A1(γ1 + γ2)µi

(A1A4 −A
2
3)(1− νi)

]2/3
(5.4)

Black lines in Figs. 6a and 6b show values of the parameter on the boundary of load circle.
Gray lines show maximum values on z-axis.
It can be seen in Fig. 6a that tensile stresses on z-axis and on the boundary of the circle of

contact achieve comparable values for small values of η and relatively large difference in values
of Young’s moduli. For η close to 1, the tensile stress does not appear at all.

It follows from Fig. 6b that the local maximum J2 existing on z-axis dominates the local
maximum at the boundary of the loading circle. One exception is the small range 0.37 < η < 0.47
(E1/E2 = 8). It should be noted that gray line 3 consists of two parts. The left hand part
corresponds to the case when the maximum J2 at the center of the loading circle prevails in the
maximum J2 on z-axis at some depth. The part on the right refers to the opposite situation.
When η → 1, the maximum on z-axis is at the same depth as in the classical Hertz contact
problem, i.e. z = 0.48 (ν1 = 0.3). With decreasing η, the depth of maximum J2 increases (e.g.
E1/E2 = 4 from 0.48 (η → 1) to 0.66 (η = 0.01)).
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Fig. 6. Distribution of (a) σ1, (b) J2 in layers with greater Young’s modulus as function of η

Fig. 7. Distribution of (a) σ1, (b) J2 along z-axis in layers with smaller Young’s modulus
as function of η

Lines in Figs. 7a and 7b show maximum σ1 and J2 in the layers with smaller Young’s
modulus. Curves 2 and 3 in Fig. 7a consist of two parts. The one on the left corresponds to the
case when maximum σ1 is on the boundary of the loaded circle, the one on the right – when
maximum σ1 is at some depth under the unloaded surface.

When η → 0, the maximum J2 in layers with smaller Young’s modulus occurs at the same
depth as in the Hertz contact problem. With increasing η, the depth of maximum J2 decreases
(i.e E1/E2 = 4 from 0.48 (η → 0) to 0.25 (η = 0.99).

6. Conclusions

The paper presents the stress state in a layered half-space with periodical structure caused
by Hertz pressure. Two different models of the layered medium have been considered: one – a
homogenized model in which mechanical properties of the medium are determined using both
the mechanical and geometrical properties of the analyzed composite components, and the other
– where a certain number of layers are considered as separate homogeneous and interacting
entities satisfying the conditions of ideal mechanical contact. In conclusion, it is demonstrated
that stresses in layers of different mechanical properties are quite different. Additionally, the
location of tensile stress regions σ1 as well as the distribution of the second invariant of the
deviatoric stress tensor J2 are presented.
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