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This paper presents analytical and numerical investigations of the inte-
raction between a cylindrical elastic shell surrounded by an unbounded
ideal compressible liquid and containing other compressible liquid with
a vibrating spherical inclusion in it. Only small amplitudes of the vibra-
tions are considered, therefore the linear theory of elastic shells is used,
and the behavior of liquids is described by the Helmholtz equations. Ap-
proach to the solution of such a problem is based on the re-expansion of
partial solutions to the Helmholtz equation written in cylindrical coor-
dinates by spherical functions and vice versa. The results obtained may
be used for researching processes of vibro-displacement and localization,
decontamination of liquid media, airing and dispersion, in bioacoustics,
defectoscopy, cardiovascular medicine and in technologies for reconstruc-
tion of oil production in corked wells.
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1. Introduction

Development of different fields of contemporary technics, elaboration of
intensive technological processes give rise to necessity of investigation of the
interaction between rigid or elastic bodies (shells) and a liquid or elastic me-
dium. The study on the interaction of bodies in a liquid or elastic medium
appear in bioacoustics, defectoscopy, cardiovascular medicine and in technolo-
gies reconstructing oil production in corked wells.
A significant part of the general problem on the interaction between such

bodies and media is formed by coupled problems. Among the well-known clas-
sical interaction problems one can choose the following: investigation of dif-
fraction of electromagnetic waves (Ivanov, 1968), acoustic waves (Shenderov,
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1972; Belov et al., 1998) and elastic waves (Guz et al., 1978) in multilinked
bodies. A characteristic feature of most solved problems is the identical con-
figuration of the boundary surfaces. Recently, some simulation work has been
carried out, and peculiarities of the interaction process in a liquid (both incom-
pressible and compressible) in the system of bodies with different geometry
have been found (Olsson, 1993; Kubenko and Savin, 1995; Kubenko and Kruk,
1995; Kubenko and Dzyuba, 2000, 2001).
The aim of the paper is to develop mathematical methods and to inve-

stigate the dynamic interaction of bodies with different geometric form in an
ideal compressible liquid under periodic dynamic action. The mathematical
technique is expected to allows one to rewrite a general solution to the cor-
responding constitutive equations from one to an other coordinate system. It
enables getting an exact analytical solution (as a Fourier series) to the interac-
tion problem for a collection of rigid and elastic bodies, as well as gas bubbles;
to research vibrations of cylindrical vesseles (elastic shells) filled with a liquid
and containing spherical inclusions (particles, bubbles, etc.) and to study cha-
racter of a stream in the space occupied by structurally or arbitrarily disposed
bodies with spherical, cylindrical and other forms.

2. Problem formulation

We consider the following hydrodynamic system: an infinite thin elastic
circular cylindrical shell with the thickness h is surrounded by an unbounded
ideal compressible liquid with the parameter: c2 – sound speed in the liquid,
γ2 – liquid density, and contains an other compressible liquid (c1, γ1) and a
vibrating spherical inclusion in it. The spherical body is supposed to harmo-
nically vibrate according to a given law along the shell axis. The spherical
body and the cylindrical shell do not intersect. They are described by spheri-
cal and cylindrical coordinate systems, see Fig. 1. A steady-state vibration is
considered, so the exponential factor expressing time dependency is neglected.
The boundary problem consists in searching solutions to the following

Helmholtz equations relative to wave potentials

∇2ϕ(l) +
ω2

c2l
ϕ(l) = 0 l = 1, 2 (2.1)

The vector of the liquid speed and its pressure in an arbitrary point of the
liquid volume are expressed through the wave potential as follows

U l = gradϕ
(l) p(l) = iγlωϕ

(l) l = 1, 2 (2.2)



Interaction of cylindrical shell... 475

Fig. 1. Geometry of the system

Thus, it is necessary to find the solutions to Eqs (2.1), which whould satisfy
the boundary conditions:
— on the sphere surface

∂ϕ(1)

∂r

∣

∣

∣

r=r0
= V (θ) V (θ) =

∞
∑

n=0

VnPn(cos θ) (2.3)

— on the thin elastic shell surface

∂ϕ(l)

∂ρ

∣

∣

∣

ρ=ρ0
= −
∂w

∂t
= iωw l = 1, 2 (2.4)

In equations (2.1)-(2.4) ϕ(1), ϕ(2) denote the wave potentials inside and
outside the cylindrical volume, respectively; ω – sphere vibration frequency;
w – the cylindrical shell deflection (the deflection w is assumed to be positive
in the direction of the shell curvature center); V (θ) – function describing
motion of the sphere surface which can be presented in the form of Legendre’s
polynomials series.
The following non-dimensional variables are introduced afterwards

r =
r

ρ0
f =
γ1
γm

ω =
ωρ0
c1

U =
U

c1
ϕ =

ϕ

ρ0c1
p =

p

γ1c21

(2.5)
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Further considerations only they will be used, and the overbars shall be
omitted for convenience in all expressions.
The cylindrical shell undergoes an action of the hydrodynamic load

q
∣

∣

ρ=ρ0
=
(

−p(1) + p(2)
)
∣

∣

∣

ρ=ρ0
(2.6)

which is symmetric relative to the shell axis. Consequently, the deformations
of the shell middle surface do not depend on the angle of rotation around the
Oz-axis, and the displacement of the middle surface along the arc is identically
equal to zero.
As we consider a thin elastic cylindrical shell, its motion is discribed by

equations of the linear shell theory based on the Khirgoff-Love hypotheses
(Volmir, 1979). Let us write these equations in non-dimensional variables (2.5)
in the case of axisymmetric deformation of the shell

∂2u(z)

∂z2
− ν
∂w(z)

∂z
= −ω2

c21
c2m
u(z)

(2.7)

−ν
∂u(z)

∂z
+
(

1 +
h2

12

∂4

∂z4

)

w(z) =
c21
c2m

(f

h
q(ρ0, z) + ω

2w(z)
)

where u is the displacement of the shell middle surface in the axial direction;
γm – density of the shell material; cm – sound speed in the shell material,
cm =

√

E/[γm(1− ν2)]; E – elasticity modulus; ν – Poisson’s ratio.
The problem statement will be complete if the shell deflection is expressed

through the unknown wave potential. So, the Fourier transformation according
to the z-coordinate is used in Eqs (2.7). As a result, the system of equations
of shell motion in the image space is obtained

−ξ2uF (ξ)− iνξwF (ξ) = −ω2
c21
c2m
uF (ξ)

(2.8)

−iνξuF (ξ) +
(

1 +
h2

12
ξ4
)

wF (ξ) =
c21
c2m

(f

h
qF (ρ0, ξ) + ω

2wF (ξ)
)

It is a system, which allows one to extract the correlation between the shell
deflections and liquid speed potentials in the image space

wF (ξ) =
R(ξ, ω)

iω

[

ϕ(1)F (1, ξ) −
γ2
γ1
ϕ(2)F (1, ξ)

]

(2.9)

R(ξ, ω) =
ω2
c2
1

c2
m

f
h

(

ω2
c2
1

c2
m

− ξ2
)

ν2ξ2 +
(

ω2
c2
1

c2
m

− ξ2
)(

1 + h
2

12 ξ
4 − ω2

c2
1

c2
m

)
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3. Solution technique

The potential outside the cylindrical volume, which is the solution to the
Helmholtz equation (2.1) in the cylindrical coordinates when ρ → ∞, looks
like

ϕ(2)(ρ, z) =

∞
∫

−∞

C(ξ)H0
(

√

ω2
c21
c22
− ξ2ρ

)

eiξz dξ (3.1)

where C(ξ) is the unknown function.

The liquid potential inside the shell is constructed in the form of a super-
position

ϕ(1) = ϕ(1)s + ϕ
(1)
c (3.2)

of the potential caused by action due to the spherical body on the liquid
and the potential defining the liquid disturbance carried into it through the
cylindrical shell. The first function must decrease when r →∞, and the second
one must be a limited function when ρ→ 0.

The component of the total potential caused by presence of the sphere and
damped when the radial coordinate grows looks like

ϕ(1)s (r, θ) =
∞
∑

n=0

xnhn(ωr)Pn(cos θ) (3.3)

where xn is the unknown constants; hn – spherical Hankel’s function;
Pn – Legendre’s polynomials.

The potential which presents the solution to the Helmholtz equation in
the cylindrical coordinates, limited when the radial coordinate tends to zero,
looks like

ϕ(1)c (ρ, z) =

∞
∫

−∞

B(ξ)J0(
√

ω2 − ξ2 ρ)eiξz dξ (3.4)

where B(ξ) is the unknown function and J0 a cylindrical Bessel’s function.

The investigation is based on the possibility of representing the solution
to the Helmholtz equation in form (3.2) both in the cylindrical and spherical
coordinate systems. It is necessary for the boundary conditions to be satis-
fied on the surface of each body. In accordance with the developed solution
technique the correlations that express the cylindrical wave function through
spherical ones and vice versa are used (Yerofeyenko, 1972)
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eiξzJ0(
√

ω2 − ξ2 ρ) =
∞
∑

n=0

in(2n + 1)Pn
( ξ

ω

)

jn(ωr)Pn(cos θ)

(3.5)

hn(ωr)Pn(cos θ) =
i−n

2ω

∞
∫

−∞

H0(
√

ω2 − ξ2 ρ)Pn
( ξ

ω

)

eiξz dξ

As a result, we obtain a representation of the total potential inside the shell
in the spherical

ϕ(1)(r, θ) =
∞
∑

n=0

[xnhn(ωr) +Bnjn(ωr)]Pn(cos θ)

(3.6)

Bn = i
n(2n + 1)

∞
∫

−∞

B(ξ)Pn
( ξ

ω

)

dξ

and in the cylindrical coordinate systems

ϕ(1)(ρ, z) =

∞
∫

−∞

[

A(ξ)H0(
√

ω2 − ξ2 ρ) +B(ξ)J0(
√

ω2 − ξ2 ρ)
]

eiξz dξ

(3.7)

A(ξ) =
1

2ω

∞
∑

n=0

xni
−nPn

( ξ

ω

)

Now, we can satisfy boundary conditions (2.3), (2.4).
At first it is necessary to write the boundary conditions on the shell surface

(2.4) in the Fourier image space

∂ϕ(l)F (ρ, ξ)

∂ρ

∣

∣

∣

ρ=ρ0
= iωwF (ξ) l = 1, 2 (3.8)

where, in accordance with expressions (3.1), (3.7)

ϕ(1)F (ρ, ξ) = A(ξ)H0(
√

ω2 − ξ2 ρ) +B(ξ)J0(
√

ω2 − ξ2 ρ)

ϕ(2)F (ρ, ξ) = C(ξ)H0
(

√

ω2
c21
c22
− ξ2ρ

)

and the expression for wF (ξ) is determined by formula (2.9).
Satisfying boundary conditions (3.8) one can express the unknown func-

tions B(ξ), C(ξ) through the coefficients xn of the expansion of the ”internal”
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fluid speed potential, caused by the sphere presence, into a Fourier series ac-
cording to the Legendre polynomials

B(ξ) = −
A(ξ)

D(ξ)

{

√

ω2 − ξ2[1−M(ξ)]H1(
√

ω2 − ξ2) +

+ R(ξ, ω)H0(
√

ω2 − ξ2)
}

(3.9)

C(ξ) =
A(ξ)

D(ξ)

R(ξ, ω)
√

ω2 − ξ2
√

ω2
c2
1

c2
2

− ξ2H1
(

√

ω2
c2
1

c2
2

− ξ2
)

×

×
[

J0(
√

ω2 − ξ2)H1(
√

ω2 − ξ2)−H0(
√

ω2 − ξ2)J1(
√

ω2 − ξ2)
]

The following designations are introduced here

D(ξ) =
√

ω2 − ξ2[1−M(ξ)]J1(
√

ω2 − ξ2) +R(ξ, ω)J0(
√

ω2 − ξ2)

M(ξ) =
γ2
γ1
R(ξ, ω)

H0
(

√

ω2
c2
1

c2
2

− ξ2
)

√

ω2
c2
1

c2
2

− ξ2 H1
(

√

ω2
c2
1

c2
2

− ξ2
)

From the boundary condition on sphere surface (2.3) and by virtue of the
orthogonality of the Legendre polynomials, we obtain the following relation
for any n

xnh
′

n(ωr0) +Bnj
′

n(ωr0) =
Vn
ω

Substitution of relations (3.6), (3.9)1 into the last expression leads to an
infinite system of linear algebraic equations

xn −
1

2ω
(2n+ 1)

j′n(ωr0)

h′n(ωr0)

∞
∑

m=0

in−mqmnxm =
Vn

ωh′n(ωr0)
(3.10)

for n = 0, 1, 2, ..., which enables to define coefficients of the expansion of the
”internal” fluid speed potential into a Fourier series according to the Legendre
polynomials.
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The coefficients qmn are determined as follows

qmn =















































2

∞
∫

0

{

√

ω2 − ξ2[1−M(ξ)]H1(
√

ω2 − ξ2)+

+R(ξ, ω)H0(
√

ω2 − ξ2)
}Pn
(

ξ
ω

)

Pm
(

ξ
ω

)

D(ξ)
dξ

(n+m) – even

0 (n+m) – odd
(3.11)

4. Numerical results

The complex and coupled problem has been reduced to the investigation
and solution of an infinite system of linear algebraic equations (3.10). The
system was solved by a truncation technique. The truncation order of this
system was defined by a test in such a way that the sufficient accuracy of
satisfying boundary conditions was reached.

The coefficients qmn were determined by formula (3.11). The integration
interval was divided into three segments: 0 ¬ ξ < ωc1/c2, ωc1/c2 < ξ < ω
and ω < ξ < ∞. The upper infinite limit was replaced with a finite one
which guaranteed stability of the obtained results at least in the third decimal
digid. In integration within the limits of the second and third of the above
intervals the integrands were expressed through the modified Bessels functions.
It should be mentioned that the integrands have singularities at points where
their denominators are equal to zero. The investigation of the behaviour of
the integrands in the ε-neighbourhood of the singular points showed that
they tended to the same absolute value and opposite sign if calculated from
the right and from the left of these points. During computation these points
were isolated by a small ε-neighborhood.

All calculations were executed in the nondimensional variables. The follo-
wing parameters of the internal and external liquids and shell material were
considered:

• Internal medium: c1 = 1500m/s, γ1 = 1000 kg/m
3

• External medium: c2 = 3000m/s, γ2 = 3000 kg/m
3

• Shell material: f = 1/8, ν = 0.3, E = 2 · 1011N/m2.
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The internal fluid patameters were considered as normalization multipliers.

The spherical body surface was assumed to pulsate with the non-
dimensional amplitude equal to one, according to the law

V (θ) = 1 (4.1)

or to oscillate in accordance with the relation

V (θ) = cos θ (4.2)

Note once more that the harmonic time-dependence is omitted.

The hydrodynamic and elastic characteristics of the concerned sys-
tem ”spherical inclusion-internal compressible liquid-elastic cylindrical shell-
external compressible liquid” were investigated. At the same time we studied
the influence of geometric proportions of the considered bodies and sphere
vibration frequency on these characteristics. Comparisons were made with the
cases of the sphere vibrations along the axis of the thin elastic cylindrical shell
loaded only by the internal compressible liquid (without accounting for the
external one).

Fig. 2. Pressure distribution along the surface of the pulsating sphere for different
frequencies

The influence of the frequency of sphere vibrations on the distribution of
absolute values of the fluid pressure and shell flexures along the surfaces of
considered bodies is shown in Fig. 2 - Fig. 5. A sphere with the radius equal
to half of the cylinder one is considered. Here the law describing the sphere
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Fig. 3. Pressure distribution along the surface of the oscillating sphere for different
frequencies

Fig. 4. Distribution of the deflections of the shell along its surface for different
frequencies of sphere pulsations

surface vibrations was defined by relation (4.1), see Fig. 2 and Fig. 4, and
by relation (4.2), see Fig. 3 and Fig. 5. Figures 2 and 3 illustrate the pressure
distribution along the sphere surface in the region 0 ¬ θ ¬ π/2; figures 4 and 5
show the distribution of the shell deflections along its generatrix in the region
0 ¬ |z| ¬ 3. The firm lines correspond to the characteristics calculated with



Interaction of cylindrical shell... 483

taking into consideration the external medium; the dotted lines correspond to
the characteristics calculated disregarding its influence.

Fig. 5. Distribution of the deflections of the shell along its surface for different
frequencies of sphere oscillations

Graphic dependences of absolute values of the pressure in the external
liquid and its particles speed from the distance r between the spherical bo-
dy center and a point being considered in shell external region (θ = π/2;
ρ0 ¬ r ¬ 3ρ0) for different frequencies of the sphere surface pulsations are
given in Fig. 6 and Fig. 7.
The figures show, for the excitation frequency ω = 6 for the sphere pulsa-

tions and ω = 8 for the sphere oscillations, the absolute values of the pressure,
shell deflections and liquid speed, both in the external and in the internal shell
region, have essentially (by a few times) increasing amplitude. This circum-
stance apparently witnesses that there are families of cutoffs of waveguide
modes in the cylindrical domain, which presents a great challenge in further
investigations of such a hydrodynamic system.

5. Conclusions

An exact analytical solution (as a Fourier series to the problem) of inte-
raction of an infinite thin elastic circular cylindrical shell, surrounded by an
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Fig. 6. Distribution of the pressure in the shell external region on the plane z = 0

Fig. 7. Distribution of the external fluid speed on the plane z = 0

unbounded ideal compressible liquid and containing an other compressible li-
quid with a vibrating spherical inclusion in it has been obtained in the paper.
The suggested approach has been based on the re-expansion of a particular
solution to the Helmholtz equation, written in the spherical coordinates, by
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a system of cylindrical harmonic functions and vice versa. Such an approach
enables one to meet boundary conditions on both the spherical and cylindri-
cal surfaces. The developed method of construction of the exact liquid speed
potential allows:

• investigation of the fields of speeds and pressures of the compressible
liquids and the deformation state of the cylindrical shell also with the
predetermined precision;

• study on some applied and technological processes (for example, vibrodi-
splacement and localization, purification and decontamination of liquid
media, airing and dispersion, technologies of reconstructing oil produc-
tion in corked wells) on the basis of more exact input data.

The theory has been tested numerically on a steel shell immersed into
granite, filled with water and containing vibrating spherical inclusion on its
axis. The obtained results can find and found real application to model and
to investigate the problem of reconstruction of oil production in corked wells
(for Sumy oil-and-gas production department).
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Oddziaływanie cylindrycznej powłoki z ciałem kulistym zanurzonym

w idealnym ośrodku ściśliwym

Streszczenie

W pracy przedstawiono rezultaty badań analitycznych i numerycznych dotyczą-
cych problemu interakcji pomiędzy sprężystą powłoką cylindryczną w otoczeniu ideal-
nego ośrodka ściśliwego, która wewnątrz zawiera inny ośrodek ściśliwy, a w nim drga-
jący obiekt o kształcie kulistym. Analizowano małe drgania układu w ramach liniowej
teorii sprężystości, a dynamikę ośrodków ściśliwych opisano równaniami Helmholtza.
Rozwiązanie problemu otrzymano w drodze rozwinięcia rozwiązań cząstkowych rów-
nań Helmholtza wyrażonych we współrzędnych walcowych za pomocą funkcji sferycz-
nych i na odwrót. Otrzymane wyniki mogą być przydatne w badaniach zagadnień
transportu i pozycjonowania wibracyjnego, oczyszczania płynów, osuszania i rozpra-
szania, w bioakustyce, defektoskopii, medycynie układu krążenia, jak również w tech-
nologiach rekonstrukcji wydobycia ropy naftowej z zasypanych odwiertów.
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