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This study concerns the application of shape sensitivity analysis as a sys-
tematic methodology to determine the energy release rate of cracked shells,
within the framework of a linear elastic approach that takes into account
the effect of transverse shear deformation. This methodology and the direct
method of shape sensitivity analysis is applied to shells with an arbitra-
ry middle surface and leads to an explicit general expression for the shape
sensitivity of the total potential strain energy. In elastic shells with cracks,
crack initiation is simulated by a change of shape characterized by a suitable
tangential velocity distribution over the middle surface of the shell. In this
case, a useful expression of energy release rate is expressed in terms of the
strain-stress state and the adopted shape change velocity field. Finally, sha-
pe sensitivity analysis is applied to the circular cylindrical shell and thus the
condition of null divergence of the corresponding Eshelby tensor is verified.
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1. Introduction

It is well known that a curved sheet containing a through crack has a
reduced resistance to fracture initiation. Moreover, it has been verified that
cracks in shells can severely decrease their strength, their load-carrying capa-
city, and in limit situations can also cause sudden failure. For this reason, the
interaction of flaws with shells curvature is a subject that has received careful
attention. To ensure structural integrity failure criterions have been developed
by the simultaneously application of shell theory and fracture mechanical con-
cepts. To establish a proper failure criterion, the knowledge of the shell stress
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distribution due to the presence of cracks and the fracture initiation law are
necessary, as it was pointed out by Folias (1974).

Concerning the shell stress distribution it is also well known in fracture
mechanics that in the vicinity of the crack tip or on the crack surface, the
transverse shear deformation can not be ignored. On the other hand, the ap-
proximate Kirchhoff boundary conditions used in the classical theory of plates
and shells are inadequate to determine the stress field in the neighborhood of
the crack tip or the displacement of the crack surface. Nevertheless, this diffi-
culty can be overcome by selecting a shell theory that takes into account the
effect of transverse deformation. Such a hypothesis leads to a more accurate
solution for the stress analysis of cracked shells, as it was reported by Sih and
Hagendorf (1974).

In reference to the fracture initiation laws, the earliest work of Griffith
introduced the first statement of the energy balance criterion for crack ini-
tiation. Therefore, it has been accepted that the energy release rate provides
the work required to create new fracture surface in elastic materials. Thus,
the energy release rate has become a very useful parameter in linear elastic
fracture mechanics.

Since the pioneer work of Griffith, the continued interest in developping
the procedures to determine the energy release rate has been maintained up
to the present time.

Regarding the conservation laws and path-independent integrals that have
been widely used in the analysis of cracked bodies, we must go back to the
classic papers of Eshelby (1956, 1975) in which the notion of a force on a lat-
tice defect and the concept of the energy momentum tensor, were addressed.
Particularly, the J-integral proposed by Rice (1968) exemplifies how success-
fully these invariant integrals can be applied in fracture mechanics and also
indicates the usefulness of the J-integral in determining the energy release rate
of cracked bodies.

In a subsequent paper, Bergez and Radenkovic (1973) extended the con-
cept of path-independent integrals to the shell theory, even though they did
not place any restrictions on the geometry of the middle surface. However, it is
accepted today, that such integrals are not path-independent in general. Fur-
ther, Lo (1980) has shown that J and related integrals, are path-independent
for circular cylindrical shell in the context of the Koiter linear elastic theory.
Later on, Kienzler and Golebiewska-Herrmann (1985) discussed the conserva-
tion laws in higher order shell theory. Recently, Li and Shyy (1997) derived
several new invariant integrals for shallow shells within Marguerre’s approach.
More recently, Kienzler and Herrmann (2000) turned on to circular cylindrical
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shell theory that accounted transverse shear deformation and the associate
Eshelby’s tensor in the framework of material space.

Since the energy release rate is generally interpreted as the rate of the
energy dissipated in the fracture process per unit crack propagation length,
and due to the difficulty of obtaining expressions for the potential energy as
explicit functions of the crack length, which enable us to obtain derivatives in
a direct form, several procedures, both numerical and experimental, have been
developed in fracture mechanics. Among them, the Shape Sensitivity Analysis
(proposed originally by Cea (1981) developed mainly by Zolésio (1981), Ma-
smoudi (1987) and widely discussed by Haug et al. (1986), can be successfully
applied. As shown in Feijéo et al. (2000), the crack growth is simulated as a
shape change of a 3D cracked body. Then, using the well known results from
the shape sensitivity analysis, the general expression for the energy release ra-
te was obtained in that paper. Moreover, this general expression is a function
of a velocity field describing the change of shape.

On the other hand, shape sensitivity analysis for curved elements was first
applied by Chenais and Rousselet (1984) and later by Rousselet (1987) in the
shape optimization of arches submitted to static loads. In addition, theoretical
aspects of axisymmetric shells and numerical results were reported by Mota
Soares et al. (1987).

In the case of arches, the analysis was performed along the mid line and in
axisymmetric shells-along the meridian curve. In both cases the local system
of coordinates is orthogonal and the vector base is given by the unit normal
and the unit tangent to the curve (the mid line in the case of the arch and the
meridian in the case of the axisymmetric shell).

However, in shells with arbitrary shape the coordinate curves over the
middle surface generally are not orthogonal. Therefore the corresponding equ-
ations have been established by using curvilinear coordinates over the middle
surface of the shell. Covariant and contravariant components of vectors and
tensors have to be introduced and partial derivatives are to be replaced by
covariant derivatives with the help of Christoffel’s symbols.

In the case when the middle surface of a general shell is defined by a smooth
mapping of a two-dimensional domain, shape derivatives may be performed
by differentiation with respect to the mapping. In other words, the change of
the shape can be seen as the change of the mapping.

This approach and the Lagrangian Method, which allows to carry out the
derivative of any functional, were applied by Bernadou et al. (1991). Their aims
were in shape optimization of a thin shell within the framework of Koiter’s
theory formulated in an arbitrary curvilinear coordinates and subjected to
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different kinds of loads over the middle surface of the shell. A comprehensive
general analysis of shape sensitivity was included.

A rather simple and direct derivation in an orthogonal coordinate system,
shell theories and shape sensitivity analysis become more involved in arbitrary
curvilinear coordinates, making it difficult to follow the physical meaning of the
model. To overcome this difficulty and to work independently of the coordinate
system, we adopted in this paper the intrinsic base defined at each point of
the middle surface by its unit normal vector and its tangent plane, cf. Valid
(1981).

Among a number of different possible approaches to the theory of small-
strain linear elastic shells, we have selected the one developed by Reissner
(1941), that takes into account the effect of transverse shear deformation. Re-
issner’s approach appears to us to be preferable to other since it uses relatively
simple formulation and requires in the definition of strains only the first order
gradient of displacements. Moreover, it leads to results of considerable gene-
rality and is also suitable for the applications that are in focus of attention.

Considering the application to fracture mechanics to be conducted later
and to demonstrate the simplicity of the approach adopted in this work, we
have limited ourselves to carry out exclusively the shape sensitivity analysis
of the total potential energy of the shell submitted to static loads along its
boundary.

2. Shell shape change

In the present section, we introduce the concept of shape change of the
middle surface of the shell that will allow us to study the behavior of functions
and functionals when the shape of a shell is modified. Proposed originally by
Cea (1981) and widely discussed by Haug et al. (1986), this approach simulates
the change in shape by a motion from an initial configuration to a known
deformed configuration characterized by the adopted velocity field defining
the shape change.

On the other hand, the basic idea behind almost all theories of shells is to
reduce the analysis over the middle surface by means of simplified assumptions.
According to this, we may characterize the shape of the shell by the geometry
of its middle surface.

Then, let us consider an elastic shell characterized by a smooth middle
surface §2,, bounded by a curve that we also assume to be smooth and denoted
by 0f2,. The shape change of the shell will be defined by a known smooth
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vector field V(X), X € (2,. Using this approach, the shape change of the shell,
and more precisely the shape change of its middle surface, can be described
by the transformation y., given by

X7 : 2, — (2,
(2.1)

z, =x(X)=X+7V(X) 71€eRT

for 7 € R sufficiently small.

Thus, the shape change is a smooth one-parameter family of transforma-
tions where V(X)) is the direction of the domain variation. This means that,
for a given direction V' (X)), the shape change of 2, is uniquely determined
by the parameter 7 € RT.

The transformed domain (2. might be considered as a deformed confi-
guration of the initial domain {2, under the transformation from {2, to (2,
defined by (2.1). Furthermore, introducing the continuum mechanics termino-
logy, Gurtin (1981), an analogy can be drawn between change of shape and
motion of a body. From this point of view, V(X)) can be seen as the shape
change velocity field.

From now on and to simplify the notation, we will omit the subscript 7
identifying (2, (02;) with {2 (02). Moreover, the surface {2 can be seen as
the actual description of the middle surface at each value of 7. Therefore,
the surface {2 might be considered as a perturbation of the initial surface (2,
and the transformation from (2, to {2, as a function of the point X and the
parameter 7.

Since at each 7, the shape change is a one-to-one transformation from (2,
to (2, there is a unique inverse transformation y ! of 2 to (2,.

Hence, any scalar, vector, or tensor field associated with the shape change
can be expressed as a function over the initial surface (2,, or a function over
the actual surface (2. Within the continuum mechanics analogy, we call them
material and spatial descriptions, respectively. For instance, in the particular
case of the shape change velocity field, we may write for both descriptions

V =V (X) v=v(T;T) (2.2)

In this paper we shall carry out the analysis over the middle surface of
the shell in the actual configuration. In other words we will adopt the spatial
description, taking advantage of the well-known expressions of the material or
total (time) derivatives of spatial fields developed in Continuum Mechanics,
Gurtin (1981). From this analogy, the shape sensitivity of any regular functio-
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nal characterized by its spatial description ¥ (7;), can formally be defined as

dv oV (1;x
_{ (1;2)

dr or ‘OC:XT(X)}‘X:X;l(w) (2.3)

Furthermore, in the shape sensitivity analysis of shells it is convenient to
describe vector and tensor fields using the intrinsic shell frame defined at
each point @ of the middle surface {2 by its unit normal n, and its tangent
plane T,.

In addition, we introduce the projection tensor operator over the tangent
plane T}, and the projection tensor operator over the normal vector mn, respec-
tively denoted by IT and nm ® n. Hence, the unit tensor | may be described as

I =11+ (n®mn) (2.4)

where ® denotes the tensorial product of vectors.

Considering the application to cracked shells, we assume that the shape
change velocity at each point of the middle surface lies over the corresponding
tangent plane, thus the spatial description of this velocity is denoted by wvy.
Moreover, we assume that both the unit normal vector m and the tangent
vector vy, are smooth fields on (2.

We also define the surface gradient of spatial fields (Gurtin, 2000). This
surface gradient can be seen as the restriction to T}, of the usual gradient

grad(-) = grad (-)|z, (2.5)

Fore instance, the surface gradient of the spatial description of the velocity
field, admits a unique decomposition into tangential and normal components

grad sv; = I grad yvy + n ® (grad s'vt)Tn (2.6)

In particular, we denote by grad sn, the surface gradient of the unit nor-
mal m. This gradient, known in the literature as the curvature tensor, has a
central place in the theory of surfaces and is concomitant with the formulation
of theory of shells that reduces the analysis to the middle surface.

Since n is a unit vector, the surface gradient of the scalar product n-n =1
leads to

(gradgn) 'n =0 (2.7)

From (2.7), we conclude that grad,n lies on the tangent plane T, at the
point x under consideration. In addition, it can be easily verified that gradsn
is a symmetric tensor (Gurtin, 2000), thus

grad ;n = (gradyn) " (2.8)
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On the other hand, as a consequence of the orthogonality between the
vectors v; and m, the surface gradient of the scalar product v, -n = 0,
leads to

(grad sv;) 'n = —(grad ;n)v; (2.9)

Subsequently, inserting (2.9) into (2.6), we may write
grad sv; = Il grad sv; — n ® (grad sn)vy (2.10)

Here, the first term on the right-hand side represents the tangential component
and the last term — the normal component of the surface gradient of the
velocity.

It will be evident in the following sections of this paper that the surface
gradient of the velocity plays an outstanding role in the shape sensitivity
analysis of shells.

3. The potential energy of the shell

The purpose of this section is to introduce the mechanical model and the
expression of the cost function, using the well-known terminology of optimi-
zation. As a first step we assume the selection of the mechanical model and
the cost function. In spite of the fact that classical shell theories are quite ap-
propriate for problems without stress singularities, when fracture mechanics
must be included, more accurate theories are necessary to adequately model
the behavior of the shell near the crack tip region. Among a number of different
possible approaches to the analysis of elastic shells, we have selected one which
appears to us to be preferable to others since it leads to results of considerable
generality using only first order gradient in the strain-displacement relations.
For simplicity we shall be concerned with a shell within the framework of a
linear elastic small-strain approach that takes into account the effect of trans-
verse shear deformation, known in the shell literature as Reissner’s theory.
Furthermore, considering the application to shells containing cracks to be ac-
complished later, we adopt as cost function the total potential energy of the
shell under analysis, given by

Y(ug, up, ) =U—-W = /qﬁ(es,’y,ﬁs) a2 —w (3.1)
N

Here, ¢ denotes the specific strain energy of the shell, u;, u,, ¥ the kinema-
tically admissible displacement fields, €°, 7, k° the strains associated to the
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displacements by kinematical relations and the super index (o) the symme-
tric part of the tensor (e). The domain integral on the right-hand side of the
above expression represents the total strain energy stored in the shell and W
the external work.

Within the framework of Reissner’s approach, the strain-displacement re-
lations take the form

S

e® = (Il grad suy)® + u, grad sn
~v = -9+ grad su, — (grad sn)u, (3.2)
Kk® = (IIgrad 49)°

Here, the vector field u; denotes the tangent displacement, the scalar field
Uy is the normal displacement, the tangential vector field 1 is the rotational
angle of the normal at any point of the middle surface.

Hence, from the above definition of the strains, stretching of the middle
surface €° leads to a tangent second order tensor field, the transversal shearing
~ to a tangent vector field, and the flexural strain k® to a tangent second order
tensor field.

As it was noted, the strain-displacement relations of this approach, given
by (3.2), involve all three displacements and require in its definition only the
first order gradient.

Then, to throw additional light on Reissner’s kinematical assumptions, the
meaning of the surface gradient of scalar, tangential vector and unit normal
fields are essential.

3.1. Total strain energy

According to Reissner’s assumptions, the total elastic strain energy stored
in the shell U may be expressed as the sum of the stretching U, shearing U,
and flexural strain energy U,

U="U.+U,+U, (3.3)

given, respectively, by

m:!@m7 m:!¢m9 m:!@@g (3.4)

where the scalars ¢., ¢, and ¢, denote, respectively, the specific elastic stret-
ching, shearing and flexural shell energy.
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3.2. External work

For simplicity we will not consider the body forces. In this case the external
work is performed by a system of loads applied along the boundary, hence

W= /(i-ut+qun+m-19)d8(2 (3.5)
o

Here, t, g and 7@ denote the loads prescribed on the boundary 92, the vector
field ¢ denotes the tangent force, the scalar field § — the shearing force and
the tangential vector field 7 the moment. These loads are compatible with
the shell model under analysis.

4. Variational form of the equilibrium

Now, making use of the Principle of Virtual Power (which is equivalent to
the Principle of Minimum Total Potential Energy due to the assumption ad-
opted in this work), the equilibrium of the shell can be written in the following
variational form:

e Find u;, u, and ¥ € K, such that

/N - (Il grad suy + U, grad gn) df2 +

(9]

+/Q [ =9+ grad i, — (grad ;n)a;] d2 + /M T grad ;0 d2 4.1)
(9] 2

- /(E-ﬁt+qan+m-f9)da!2:0
oS

for all u;, u, and 9 € K;,, and where K, is the space of admissible
kinematical displacements.

We also assume that the fields wuy, u, and 9 are prescribed (null for sim-
plicity) along the boundary 962, (002 = 082, U2 ; 082, NI = 0).

In the above variational form, the tangential symmetric second order tensor
N denotes the membrane force of the shell, the tangential vector @ — the
transverse shearing force and the tangential symmetric second order tensor M
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— the bending moment in the middle surface of the shell. They are given by
the formulae

_ 99

Py _ 09k
= e M=

0
=%

N
0% oK

(4.2)

Next, we insert the following surface tensor relations

N - IIgrad @i, = div,(N"%,) — @, - I div ;N
Q - grad su, = div4(u,Q) — U, div,Q (4.3)
M-I grad ;8 = div,(M'9) — 9 - ILdiv,M

Further, by the use of the surface divergence theorem

/divs(NT'&t) 0 = / Nm - @i dOQ

02 02

/ div (@,Q) d©2 = / (Q - m)d, dOO (4.4)
(0] OS2

/divs(MTﬁ) d = / Mm -9 doS2

02 o2

the Principle of Virtual Power (4.1) can be rewritten as

—/[HdivSN—i—(gradsn)Q} Uy dQ—/[dist—N-gradsn]ﬁn s —
(0] (0]

—/[ndiVSMJrQ} D d+ (4.5)
(9}

+/ [(Nm —B) - + (Q - m — Q)i + (Mm — ) - 9] dO2 = 0
o

where divg denotes the spatial surface divergence of vector or tensor fields
and m is the outward unit normal vector to the boundary curve 0f2. This
normal lies on the intersection of the tangent plane to the middle surface of
the shell and the normal plane orthogonal to the unit tangent vector of the
curve 0f2 at the point under consideration. In the theory of surface curves,
the unit tangent vector to the curve 02 together with the normal vectors n
and m, mutually orthogonal, compose the intrinsic frame of 9f2.
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The above expression furnishes the Euler surface equations of the shell
(strong form of the equilibrium) associated to the Principle of Virtual Power
in 2

ITdivsN + (grad ;n)Q =0
dive@ —N- gradsn =0 (4.6)
IdiviM+Q =0
as well as the natural boundary conditions on 02
Nm =t Q- m=7g Mm =m (4.7)

The coupled nature of the equilibrium equations is a direct consequence of
the strain-displacement relations adopted.

5. Shape derivative of vectors

In this section we start applying the analogy between the material (total
time) derivative and shape derivative to obtain the shape derivatives of the
tangential vector u; and the unit normal vector m. When the direct method
is used, these derivatives are useful to perform the shape derivative of the
corresponding surface gradients.

In its general form, the material (total time) derivative of superficial fields
defined by (2.3), may be rewritten as

Su(ria) = { L @mn} (5.1)

Here, ¥ denotes a scalar, vector or tensor field, the subscript m — the material
description and sp — the spatial description.

To this end, we focus our attention on shape changes characterized by
the spatial description of a tangential velocity field given by v;(x). Then, the
shape change gradient F defined at each material point X (de = FdX) is
such that its partial time (7) derivative is given by

O {grad sv¢ }mF (5.2)
or
Moreover, from FF~! =1 we have
QF*1 = —F {grad ;v;}m (5.3)

or
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Derivative of the tangent vector field u;

The spatial description of the tangent vector u; and its material descrip-
tion denoted by wu; are related as follows

{ui}m = Fuy (5.4)

Next we apply the partial derivative with respect to 7 on both sides of
(5.4) and, inserting (5.2), we have
0 OF _

0 _ _
E{Ut}m = E(Fut) = Eut = { grad sv; },, Fu, (5.5)

Further, inserting (5.5) into (5.2), we obtain

du,

i {{gradsvt}mFﬂt}sp = (grad svy)uy (5.6)

thus, combining (2.10) and (5.6), the vector du;/dr can be written in the
convenient form J J

% = H% — [(grad sn)v; - ugln (5.7)
Here, the first term on the right-hand side represents the tangential component

and the second one — the normal component of the total derivative of wy.

Derivative of the normal vector field n

Since mn is a unit vector field, the first information about dn/dr may be
found by differentiating the scalar product n - n = 1 with respect to 7
dn
n=0 (5.8)
dr
Thus, the total time derivative dn/dr results in a tangential vector.
Moreover, as the vectors u; and n remain orthogonal, the differentiation
of the scalar product mn - u; = 0 with respect to 7, leads to

dn duy
From (5.7) and (5.9) it is finally obtained
dn
7 = (grad sm)v, (5.10)

As it will be seen later, the total derivative of n will be used in the approach
of shape sensitivity analysis of shells presented in this work.
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6. Shape derivative of surface gradients

While in the formulation of Reissner’s shell model, the knowledge of first
order surface gradients were necessary, in the shape sensitivity analysis the
shape derivative of these gradients must be carried out.

For a superficial vector field, we may write

{grad su}y, = (Vsu)F! (6.1)

where u and w denote respectively the spatial and material (referential)
descriptions of the displacement, Vg is the material surface gradient and
F — the shape change gradient.

From (6.1) and (5.4), we have

0 ou 0
_ 27 i i~ —F 1
S (VAR = (Vo )P 4 (V) -
(6.2)
du
= { grad S }m —{grad su},,{ grad sv; }m
Thus, combining (5.1) and (6.2), we obtain
d u
o grad su = gradsd— — grad su grad vy (6.3)
T T

On the other hand, in terms of intrinsic components of the displacement
(ug, up), we may write

U = Ut + uUpmn

du = dut —i—dﬂn—i-u d_n
dr ~ dr dr "dr
grad su = grad su; + u, grad sn + n ® grad su, (6.4)
radd— radd —|—d— rad sn +n ® radd +
g S Ir g ar ar g s g dr
dn dn
+uy, grad s— + — ® grad su,
dr  dr

If we insert (6.4)3 4 into (6.3), we obtain
du
o grad su, = gmdsd—;1 - (glradsfvt)T grad su,
d d
. grad yn = gradsﬁ — grad ¢n grad sv, (6.5)

d d
g grad su; = grads% — grad su; grad sv;



656 E. TArROCO, R.A. FELIOO

Derivative of the gradient of scalar field wu,

In the case of the gradient of a scalar-valued field, we recall (6.5);. Again,
since grad su, is a tangent vector field, introduction (2.6) into (6.5); yields

d d
— grad su, = graudsﬂ — (11 gradsvt)T grad suy, (6.6)
dr dr

Therefore, the total derivative of grad su,, leads also to a tangent vector.

Derivative of the gradient of the normal vector field n

Now, we return to (6.5)2. Upon inserting (5.10) into (6.5)2 and making
further use of the following tensorial relation

grad ¢ [(grad S’I’L)T’Ut] = (grad, grad ;n) T, + (grad,n) " gradv,  (6.7)

the total derivative of grad sn becomes

d
. grad sn = (grad ; grad sn)T'vt (6.8)

Derivative of the gradient of the tangential vector field u;

For any superficial vector field, in particular for the tangential vector field
uy, similarly to (2.10), the following relation holds

ITgrad su; = grad ;u; + n @ (grad sn)uy (6.9)

Next, by differentiating with respect to 7, we obtain

® (grad sn)u; + n ® %[( grad sn)u]

(6.10)
If we apply the projector tensor IT on both sides, and introducing (5.10), the
foregoing expression reduces to

d d dn
E(H grad su;) = e grad sus + e

d d

Hd—(H grad su;) = Hd_ grad su; + (grad sn)v; @ (grad sn)u, (6.11)
T T

From (6.5)3 and (6.11), we may write

d d
II— (I grad su;) =11 gradsﬁ — IT grad su; grad sv; +
dr dr (6.12)

+(grad sn)v; @ (grad sn)uy
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Finally, substitution of (5.7) into (6.12) yields

d d
II— (H grad Sut) =1T1I grandsl'Iﬂ — [(grad sn)v; - us) grad sn —
dr dr (6.13)

—ITgrad su; grad sv; + (grad sn)vy @ (grad sn)uy

With the preceding results, we can now perform the shape derivative of
the strains in Reissner’s model.

7. Shape derivative of the strains

In order to obtain the total derivatives of the stretching strain e, transverse
shearing strain «, and flexural strain &, with respect to the parameter 7, we
return to the strain-displacement relations given by (3.2). An inspection of
these equations shows us that we have to perform the total derivatives of the
unit normal vector field n, the tangent vector fields w; and . Further we
shall perform the total derivatives of the surface gradient of u,, n, u; and 9.
Within the continuum mechanics analogy and using the general expressions
of the material (total time) derivative of superficial fields, we carry out in this
section the shape derivatives following the definition given in (2.3).

Shape derivative of the stretching strain e
From the definition of stretching (3.2)1, the total time derivative of € yields

d d duy, d
di = I — (T grad suy) + T " grad yn + und grad 4n (7.1)
As it will be seen later, in the present approach the tangential component

of de/dr will be relevant, thus
de d du. d
HE = HdT (ITgrad su;) + d—Tn grad sm + unHE grad sn (7.2)
Upon introducing (6.13) into (7.2), the tangential component of the total de-
rivative of the stretching strain can be written as
de d
II— = —IIgrad ;u; grad sv; + u, II— grad yn — [( grad sn)v; - u grad sn +
dr dr
(7.3)
du,,

duy
+(grad sn)v; ® (grad sn)u; + I grad JI— o Ly o grad sn
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Shape derivative of the shearing strain ~
Likewise, from (3.2)s, the total derivative of -, takes the form

dy  d9 d d duy
g + I grad su, — <E gradsn)ut — (gradsn)g (7.4)

By inserting the derivative of gradsu, from (6.6) into the above expression,
the total derivative of the shearing strain leads to
dv

(I grad sv;) " grad su, — (% grad sn) up— o+

by _

dr (7.5)

du,, duy
+ gradsﬁ —( gradsn)ﬁ

Shape derivative of the flexural strain x

From (3.2)3, the tangential component of the total derivative of k may be
written as

dr d
II— =II—IIgrad 9 7.6
Since the rotation 1 is a tangent vector, the evaluation of its total time deri-
vative will be entirely similar to the evaluation of Ild(IIgrad su;)/dr shown
in (6.13), thus (7.6) may be rewritten as
dk
II— = —IIgrad ¢ grad ;v; — [(grad sn)v, - Y] grad sn +
dr (7.7)

+(grad sn)v; ® (grad sn)d + Il grad SHZ—ﬂ
-

8. Shell shape sensitivity

Let us begin the present section with differentiating the cost function with
respect to the parameter 7. Due to the approach adopted in this work, in
which the potential energy is chosen as the cost function, combining (3.1) and
(3.3), we may rewrite diy/dr as

dyp d d d d
—=—U.+—U,+-—U,——W 8.1
dr dr €+dT 7+d7’ todr (8.1)

Thus, to perform the total derivative of the potential energy of the shell,

it will be required to calculate the total derivative of each one of its terms.
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Shape derivative of the stretching strain energy U,

Let us first consider the elastic stretching strain energy Uy, given by (3.4);.
Upon the application of Reynolds’ transport theorem, the total derivative of
U, with respect to 7 yields

%UE = Z (‘i;is + e divev,) d2 = / (a¢5 (de divyv,) d2  (82)

Oes dr
kP4

where div zv; represents the surface divergence of the shape change velocity,
defined by
divgvy = I, - I grad sv; (8.3)

where 1, denotes the identity tensor over the tangent plane.
Expression (8.2) can be rewritten as

d de .
—U. = !(N T+ o div yv;) d2 (8.4)

Furthermore, by substituting (7.3) and (8.3) into (8.4), the total derivative of
the stretching energy may be rewritten as

U /qbs (IT grad su;) ' N] - grad jv,dS2 +/unN-H<—dd gradsn)dQ—
T
02

- /[(N - grad sn)u; — N(grad sn)uy) - (grad sn)v, d2 + (8.5)
Q
+/N Il grad Hcil —1—ddﬂgradsn} ds?

Shape derivative of the shearing strain energy U,

In the same manner as before, the total derivative of U, given in (3.4)s
can be written as

L. /(% + ¢ divov, ) d2 = /(Q : Z—Z + ¢ divev,) d2 - (3.6)
(9}

dr dr
2
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Thus, from (7.5), (8.3) and (8.6), the total derivative of the shearing energy
becomes

d(i— /[@b'y (grad sUn & Q)] - grad jv; df2 —
2

- /(Q ® uy) - (% gradsn) df2 + (8.7)
N

dun dut

dd
+(ZQ. [_E + grads? - (gradsn)ﬁ} ds?

Shape derivative of the flexural strain energy U,

Similarly, from (3.4)3, we obtain

dr

_/ % s les'Ut) a0 = /(M I+ les'Ut) a2 (8.8)
(9}

Finally, from (7.7) and (8.3), the total derivative of the flexural energy
equals

—dd U, = /[qb,ilp — (I grad ;¥) " M] - grad v, df2 —
7_
Q

- /[(M - grad sn)¥ — M(grad ;n)?9] - (grad sn)v, df2+  (8.9)
2

—l—/M-ngadsH@ ds?
dr

Shape derivative of the external work W

Proceeding as before and assuming that the prescribed load at the boun-
dary remains unchanged, the material derivative of W may be expressed as

d

d d
g U+ —9 + (t- up + quy, + M- ﬂ)dlvsvt} dos?
-

—W = /t —ut—i-qd dr

ol
(8.10)
In what follows we also assume that the shape change of the shell, charac-
terized by the velocity field vy, is such that divsv; =0 on 9f2 and v; = 0 on
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02,. Hence, the preceding expression takes the more simple form

d
dr

d d
W= /t pURR R —zﬂ doQ =

o dr
' (8.11)

4 d __d
_8! [t-l’[aut+q%un+m-ﬂazﬂ 4o
t

Furthermore, by combination of (8.1), (8.5), (8.7), (8.9) and (8.11), the shape
derivative of the potential energy of the shell can be written as

9 _

ar {(‘be + ¢y + o)l — (I1 gradsut)TN — grad su, ® Q —

9]

d
~(Mgrad ;9) M| - grad ,o; d2 + /(unN - Q®u)- grad,nd® -
T

- /[(N - grad sn)u; — N(grad sn)u; + (M - grad sn)d — (8.12)
2
du;  duy,
_M(gradsn)'ﬂ} (grad sn)v df2 —l—/N IMgrad JJI— e Ly e grad sn) a2 +

duy,

duy dg
o (gradsn) o d_Q—i—/M ITgrad Hd_ Ao —

a9
+/Q- |-+ erad, ="
2

du,  du,  d9
/(t no g I ) 4o
o

In addition, since the shell is in equilibrium with the prescribed loads along
the boundary and taking into account that Ildw;/dt, du,/dr and IId9/dr
belong to Kj,, the Principle of Virtual Power (4.1), leads to

du duy,
/N ITgrad, Hd —l—d—grad n)d!2+
do duy, du
+/Q- —o terads—— (gfadsn) . } 2 + (8.13)

9 d duy, 9
+/M Tl grad T d2 - /t Hﬂ+q; T

; ) do =0
o
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Further, by combination of (8.12) and (8.13), the shape derivative of the po-
tential energy of the shell reduces to

d
% = /[(¢5 + ¢y + )l — (11 gradsut)TN — grad su, ® Q —
2

d
—(I1 gradsﬂ)TM} - grad svy df2 + /(unN - Quy) - . grad sndf2 —
T
“ (8.14)

- / {(N - grad sn)u; — N(grad sn)u, + (M - grad sn)d —
N
—M( grad Sn)ﬂ} - (grad sn)v, df?

The expression in brackets in the first integral on the right-hand side of
the above equation we denote as

Y = (¢e+ ¢y + o), — (M grad yuy) ' N— grad su, ®Q— (I grad ¥) "M (8.15)

An inspection of this expression enables us to recognize the similarity be-
tween X and the energy momentum tensor, introduced by Eshelby (1975) in
the analysis of defects in three-dimensional elasticity in the context of infini-
tesimal deformation. Thus X could be viewed as an extension of Eshelby’s
tensor used for the analysis of elastic shells within Reissner’s approach. The
energy momentum tensor 3 yields a tangential tensor and to point out the
effects of the stretching, transversal shearing and flexural strain, it can be
expressed as the sum of three terms

Y=3.+3,+3, (8.16)
where

3. = ¢, — (T grad yu;) 'N 3, = ¢, — grad su, ® Q a17)

2, = ¢ul, — (M grad ;9) "M
Next, we insert (6.8) and (8.15) into (8.14), to obtain

d
d—w = /E - grad svy df2 + /(unN —Quy) - [(grad gradsn)T'vt] df —
-
(0] (0]

— / {(N - grad sn)u; — N(grad sn)us + (M - grad sn)9 — (8.18)
N

—M( grad Sn)ﬂ} - (grad ¢n) v, d2
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Finally, taking into account the definition of the transpose of the second and
third order tensors, this expression may be written in a more suitable form

d
d—¢ :/2- grad sv; dQ—i—/(gradsgradsn)(unN —Quy) vy df2 —
-
(] (0]

- /(grad sT) {(N - grad sn)u; — N(grad sn)u, + (M - grad sn)9 — (8.19)
Q
—M( gradsn)'ﬁ} ~v; dS?

It should be emphasized that the shape derivative of the potential strain
energy of the shell, given by the foregoing expression, is exclusively a function
of the strain-stress state and the adopted shape change velocity field v;.

9. Boundary integral

Let us review in this section the shape derivative of the total potential
energy of the shell in the light of the expression of the Reynolds’ theorem that
allows us to rewrite the mentioned derivative as a boundary integral.

To do so, we assume that the shape change of the shell is given by the
tangential velocity field v; defined along its boundary 0f2 (v; = 0 along
02 — 0(2;). Then, we recall the definition of the potential energy of the shell
that, in the present analysis, takes the following form

D, un,9) = U—W = /¢(ss,7,n8) dQ—/(i-ut+§un+m-ﬂ) o0 (9.1)
(0] o

Next, consider the first term on the right-hand side of the above expression
and by using Reynolds’ theorem, the shape derivative of the strain energy of
the shell yields

iU:/@dQJF/gbvt-mdaQ:/@dmr/¢vt-mdaﬁ 9.2)
dr or or
(0] o8 02 o2

Further consider the second term on the right-hand side of (9.1). In the same
manner as before and with the assumption that the prescribed loads at the
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boundary remain unchanged (£d0(2, gdof2 and mddf? are independent of the
parameter 7), the shape derivative of the external work may be expressed as

0
dTW / t- H —ut + (gradsut)'vt} dof? +

oo (9.3)

D91y grad ,9)v;| dos2

b [ Al L+ (o ) v v+ [ o[

X2 o

Upon combining (9.1), (9.2), (9.3), the total derivative of the potential energy
becomes

% 9¢ g —

B B
x| o wn 7 T ﬂ]d80+

0
/ t H_ut+q6

o (9.4)

+ / {gb'vt -m —t - (Il grad su;)v; — g grad suy,) - vy — M - (IT gradsﬂ)vt} dos?

Moreover, as the shell is in equilibrium with the applied loads along its boun-
dary, from the Principle of Minimum Total Potential Energy, we have

09

87' U, +m - IT—

9 9] 4o = 0 (9.5)
.

df2 — /tﬂaut—i—qa 3

0
Gl

Therefore, from (9.4), (9.5) and the natural boundary conditions (4.7), the
shape derivative of the total potential energy of the shell, becomes

/Em vy dOS2 = /Em vy dOS2 (9.6)
08

This expression points out that when the change of the shape of the shell is
performed by a tangential velocity defined along the boundary, according to
our assumption, the shape derivative of the potential energy leads to a path
integral that represents the flux of the Eshelby energy momentum tensor along
the boundary of the shell.

The foregoing result allows us to know something more about the Eshelby’s
tensor for elastic shells.
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10. Eshelby’s momentum energy tensor

This section is devoted to perform the surface divergence of Eshelby’s
tensor within the framework of Reissner’s shell theory. It should be noted that
the surface divergence of a tangential tensor results in a vector with tangential
and normal components. Nevertheless we will now focus our attention on the
tangential component; the application to cracked shells will be conducted in
the next section.

To do so, let us compare the shape derivative of the total potential energy
expressed as a domain integral (8.19) with the same shape derivative carried
out in (9.6). Thus, we may write

Ccll—w:/Em-'vtdaﬁz/E-ngadsvtdQ—l—
-
of? 0

+ /( grad s grad sn)(u,N — Q @ uy) - vy d2 — /(grad sT) [(N - grad sn)uy —
Q Q

(10.1)
—N(grad sn)u; + (M - grad ;n)9 — M( gradsn)'ﬁ} v df2
Subsequently, we introduce the following tensor relation
div (2 vy) = M div,X - v; + 3 - I grad v, (10.2)

Next, we integrate the preceding expression over the domain (2 and further
we make use of the divergence theorem to obtain

/Zm-'vt daﬁ:/E-ngadsvt dQ—l—/Hdist-vt df? (10.3)
052 2 0]

Then, from (10.1) and (10.3), we have

/{H div 43 — (grad s grad sn)(u,N — Q ® u;) + (grad 4n) {(N - grad sn)u; —
“ (10.4)

—N(grad sn)u; + (M - grad sn)9 — M(gradsn)'ﬂ” ‘v df2 =0

Since the above equation should hold for arbitrary tangential velocity vy,
the quantity in the parentheses must vanish, then

IIdiv¥ = II( grad ; grad sn)(u,N — Q ® u;) — (grad 4n) [(N - grad sn)uy —
(10.5)

—N(grad sn)u; + (M - grad sn)9 — M( grad Sn)'ﬁ}
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Consequently, we have obtained the expression of the projection over the
tangent plane of the surface divergence of Eshelby’s tensor of elastic shells
within the framework of Reissner’s approach. On the other hand, using (10.5)
together with the shape derivative of the potential energy expressed as a do-
main integral (8.19), we arrive to the equivalent expression of shape derivative
as a path integral (9.6).

10.1. Circular cylindrical shell

Now, the shape derivative of the potential energy will be applied to a
circular cylindrical shell. At the begining we carry out the first and second
order surface gradient of m, that characterize the geometry of the middle
surface of the shell.

For circular cylindrical shell, one of the principal radii of curvature is infi-
nite and the other is constant. Consequently, the second order surface gradient

of m vanishes
grad s grad sm = 0 (10.6)

Moreover, if we assume over the tangent plane orthogonal base vectors e, and
e, respectively following the circumferential and the longitudinal directions,
the only non-vanishing component of gradsn is given by

(grad sn)yy = €4 - (grad sn)ey =7 (10.7)

where r denotes the radius of curvature.
If we assume that (10.7) and (10.6) hold, it can be easily verified that the
right-hand side of (10.5) vanishes, thus

II( grad s grad sn)(u,N — Q ® u;) — (grad sn) {(N - grad sn)u; —

(10.8)
—N(grad sn)u; + (M - grad sn)9 — M( gradsn)ﬂ} =0
Then, combining (10.5) and (10.8) we obtain
Idiv,S = 0 (10.9)

Therefore, for displacement fields wu;, u, and ¥ in equilibrium with the
applied loads on the boundary of a circular cylindrical shell, the surface diver-
gence of Eshelby’s tensor projected over the tangent plane vanishes.

Finally, combining (10.1) and (10.8), the following relations holds

d
d—w = / YXm - vy dOS) = /E - Tl grad sv; df2 (10.10)
-
(o0} [0}
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11. Cracked elastic shells

In the present section we apply the analysis to the case of an elastic shell
containing cracks.

Since Griffith provided the primary criterion for crack extension in linearly
elastic bodies, the energy release rate has played an essential role in fracture
mechanics. Therefore, our aim in this section is to evaluate the energy release
rate of an elastic shell with arbitrary smooth middle surface containing a crack.

To do this, let us consider a plane P cutting the middle surface of the shell
along the (smooth) curve C, see Fig. 1. The crack is a part of this curve and
its faces are denoted by CI and C_, respectively. We assume that the shell
is in equilibrium with a given traction at the boundary. For simplicity, body
forces will not be considered and null traction along the faces of the crack will
be assumed.

Fig. 1. Cracked shell

Let us also assume that the crack advances in a such form that the crack
tip remains over the curve C. Then, the crack initiation can be simulated as a
shape change of the shell by choosing a suitable tangential velocity field, vy,
over the cracked domain (2 (see Fig. 1). This tangential velocity function must
be smooth, takes unitary value at the crack tip and remains tangent to the
faces of the crack, v; - m* = 0, and also vanishes along the boundary of the
uncracked shell domain (042).
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With the aid of the previously developed shape sensitivity analysis, we can
easily obtain the expression for the derivative of the potential strain energy
with respect to crack advance. This derivative with negative sign, traditionally
denoted by G, is known in fracture mechanics as the energy release rate. From

(10.1) follows

G = —/E-ngadsvt dQ—/(gradsgradsn)(unN—Q®ut)-vt df? +
(p] (0]

—|—/(grad5n) [(N - grad sn)u; — N(grad sn)uy + (M - grad n)9 — (11.1)
N

—M( grad Sn)ﬁ} < df?

11.1. Circular cylindrical shell with a crack

In this section, the above expression for G will be written for the case of
a circular cylindrical shell containing a crack through its thickness, Yahsi and
Erdogan (1983). The cutting plane P is inclined by an arbitrary angle 6 to
the circumferential direction (see Fig.2).

.02
0
e CP
7, A t/é
Ry At
S
i 1]
7 !
!
2.2\ !

Fig. 2. Circular cylindrical shell with a crack
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For this shell, the tangent plane at any point @ of the middle surface {2
(z € §2), can be described by the intrinsic base system {e;,es}. Then, the
tangential unit vector ¢, always tangent to the curve C, can be defined as

t = cos ey + sinfe, (11.2)

From the above definition, the shape change velocity field v; takes the
form
v =at (11.3)

where a(x) € [0,1] is a smooth scalar (realvalued) field. At the tip of the
crack a(x) = 1, on both crack surfaces, 0 < a < 1, and along the boundary
of the domain (02) a(x) = 0.

From the definition of v; follows

grad sv; =t ® grad sa + agrad st (11.4)
Then, projection of this expression on the tangent plane is
ITgrad sv; =t ® grad ;o + allgrad st (11.5)

From (10.10) the energy release rate as a domain integral can be expressed
by

d
G= _d_¢ = —/2- grad sv; d2 = —/E-(t@ grad s + oIl grad st) df2 =
T
9] (9}

(11.6)
= —/(t- Y grad sa + a3 - I grad st) df?
(9}
As a path integral, the energy release rate becomes
d
:—%:J:/o&}m-tdf (11.7)

Here I'is any contour around the tip of the crack over the middle surface of
the shell and whose two end points lie on the crack faces C and C .

12. Final remarks

The present paper shows a straightforward use of the (continuous) varia-
tional formulation linked to the direct method of sensitivity analysis to obtain
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the shape derivative of the total potential energy stored in a shell within the
framework of Reissner’s theory.

To perform the shape derivative, the analogy with material (total time)
derivative of Continuum Mechanics is widely explored. In fact, the spatial
description of this derivative and the use of some well-known expressions of
mechanics vastly simplify this task.

The intrinsic surface frame composed of both the unit normal vector and
the tangent plane in each point of the middle surface of the shell is employed.
Moreover, the procedure and the results are presented in a compact notation
(independent of the coordinate system) to point out the advantage of this
formulation. By doing so the physical meaning of the model and the shape
derivatives are preserved and the resulting expressions are not obscured by an
excess of notations.

In dealing with general elastic shells containing through cracks, if crack
advance is simulated by a suitable change of shape, the shape sensitivity ana-
lysis can be used as a systematic methodology to obtain the energy release
rate.

Moreover, the energy release rate expression obtained in the present work
requires the evaluation of the displacement (uy,u,,?) solution of the state
equation (equilibrium equation in our case) and the definition of the shape
change velocity field v;. In practical evaluation of the energy release rate, as
we are free to select the velocity, we can take advantage of choosing the more
convenient distribution over the middle surface of the shell. Thus, the energy
release rate expression for cracked shells conducted in the present study is
meaningful in both the theoretical and practical aspects.

In shells with arbitrary middle surface, this procedure led to a surface
integral in which the Eshelby’s tensor naturally appears. It was also verified
that, in spite of the considered null body force in the analysis of the shell, the
divergence of Eshelby’s tensor did not vanish. However, in the particular case
of circular cylindrical shell, the divergence of Eshelby’s tensor vanishes. In this
case it is simple to show the equivalence between the surface integral and the
integral along a contour around the crack tip lying over the middle surface of
the shell. This integral, well known in fracture mechanics as the Rice-Eshelby-
Cherepanov J-integral, remains path independent and also represents a useful
alternative to evaluate the energy release rate of circular cylindrical shells
containing through cracks.
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Analiza wrazliwosci ksztaltu podatnych powlok z peknieciami

Streszczenie

Badania opisane w pracy dotycza zastosowania analizy wrazliwosci ksztaltu jako
systematycznej metodologii wyznaczania tempa uwalnianej energii powtok z peknie-
ciami w ramach liniowego podejscia uwzgledniajacego efekt deformacji od Scinania
poprzecznego. Ta metodologia i bezposrednia analiza wrazliwosci ksztaltu zostata za-
stosowana do powlok o dowolnej powierzchni érodkowej, pozwalajac na znalezienie
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jawnego i ogllnego wyrazenia na pochodna catkowitej energii odksztalcenia. W po-
datnych powtokach z peknigciami symulacje inicjacji pekniecia dokonano na podstawie
zmiany ksztaltu okreslonej odpowiednim rozkladem predkosci powierzchni srodkowej
powloki. W takim przypadku uzyteczna formule okreslajaca tempo uwalnianej ener-
gii wyznaczono w funkcji stanu naprezenia i odksztalcenia oraz zmian rozkladu pola
predkosci powierzchni srodkowej. Na koniec, analize wrazliwosci ksztaltu zastosowano
do szczegdlnego przypadku powloki cylindrycznej, gdzie warunek zerowej dywergencji
odpowiadajacego tensora Eshelby’ego zostal potwierdzony.
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