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A method of determination of the shesr stiffness of an anisotropic non-
homogeneous plate of moderate thickness has been presented in the pa-
per. The set of shear coefficients for the plates has been formulated and
determined by the author.
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1. Introduction

In the theory of moderately thick plates the following kinematic hypothesis
is usually assumed

uo(X?, 2) = uga(X?) — 2¢0(XP) uz(XP,2) =w(XP)  (11)

where %gq(X?), ¢o(X?) and w(X?) are functions to be found. This hypo-
thesis is associated with the names of Hencky and Bolle. The paper by Hencky
(1947) focusses on the bending state of plates. In the same year 1947, Bolle,
unaware of the work of Hencky, published two papers (Bolle, 1947a,b) in which
kinematic hypothesis (1.1) was assumed for the bending state. Saying it more
precisely, Bolle proposed a hypothesis for strains that implies the mentioned
hypothesis for displacements.
The strain fields are determined from the formulae

€q Xﬁ,z = €0ag(X?) + 2ko5(XP
s(X7, z) s(X7) + zkap(XP) 12)

1
eas3(XP,2) = EXa(Xﬁ) e3s(XP,2) =0
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in which

1
eOaﬂ(Xﬁ) = 5(”0&,,{3 + u()ﬂ,a)
(1.3)

Rep(XP) = ~3(bop T 950)  Xa=wa—da

Upon neglecting the temperature effects the main stress components S
read

S — GBI (g0, + 2Knyy) + CP G (1.4)

In the theory of moderately thick plates the strains ey3 do not vanish as in
the Kirchhoff theory, but are given by Eq. (1.2),.
Thus the stresses S,3 could possibly be found from appropriate constitu-
tive equations leading to
gad _ aa3ﬁ3xﬁ (1.5)

However, the thus derived constitutive stresses (called also extra-stresses) wo-
uld not satisfy the boundary conditions on the plate faces IT* and II~.
The normal stresses S33 could possibly be determined by the formula

hy hi

e
Z
for K = 3, upon taking into account the stresses S, given by constitutive
equations (1.5).

The stresses S33 found in this manner would satisfy the boundary condi-
tions on the faces, but would simultaneously lead to their incorrect distribution
across the plate thickness.

Better predictions of the stresses Skg3 can be derived from formula (1.6)
by finding the stresses S3, and, subsequently, the stresses Ss3.

Basing upon hypothesis (1.1) one finds the following set of equations of
moderately thick plates
— equilibrium equations

N 4 p® +5% =0 M3 - Q% +m® +@m® =0
’ | (1.7)
Qp+p3+by=0

— constitutive equations

Nag = B;’Eegw + H;;R'yw + S0ap
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Mg = Hggeg-yw + Dz‘;nw + Sap (1.8)

Qo = Kgxg + k;rﬁhlp"'ﬂ + k;Bhgp_ﬁ

in which the stress resultants are defined as below

hq h1 h1
Naf} = / Sag dz Mag = / Zsaﬁ dz Qa = / Sag dz (19)
—ho —ho —ha

the stiffnesses Bygy,, Hopgyws Dopyw being given by

hy

Baﬁ'}w(mé) = / aaﬁfyw(xéaz) dz
“ho
h1

Daﬁ'rw(xé) = /.zzamgw(X‘i, z) dz (1.10)

hy

Hagw(a:é) = fzéagw(X‘s,z) dz
—hg

The transverse shear stiffnesses K,g and the quantities sgus and s,g are
expressed as follows

Kop = kapKap (1.11)
hi hi
S0ap — f 8336@633 dz Sapf = f ZS336Q533 dz (1.12)
—ho “hy
where ,
1
I?aﬁ = 6a353 dz (1.13)
_h2
or
h1 G h1 .
1?11 = / —13— dz 1?22 = / —--——23 dz
1 — n45ms4 1 — nasms4
—hy “hy
(1.14)
hi G h1 G
Riy=Ry =- f sGis_ g, _ / MG
— 745754 1 = 145754

—hg —hs
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The summation does not concern the underlined indices. The quantities h;
and ho represent the distances of the faces to the reference plane.

The method of finding the quantities s¢,5 and sqg, as certain averaged
functions, is explained in the book Jemielita (2001).

Two types of correction factors are introduced into equations (1.8) and
(1.11): the shear correction factors kng (k12 = k21) and other ones k;:ﬁ, B

The Hencky-Bolle kinematic assumptions imply an incorrect distribution
of the transverse shear stresses across the plate thickness.

Introduction of these coefficients enables improving the mathematical de-
scription worsened by bad consequencies due to oversimplified kinematic hy-
pothesis in the final equations of the theory.

In the case of unbalanced (i.e. transversely asymmetric) anisotropic plates
one should define the set of three coeflicients k.3 and six coefficients k:ﬁ, "

Various criteria of assuming the shear correction factors in the transversely
homogeneous plates are discussed by Jemielita (1998).

A method of determination of the shear stiffness of an anisotropic non-
homogeneous plate of moderate thickness has been presented in the paper.
The set of shear coefficients for the plates has been formulated and determined
by the present author.

2. Stiffnesses due to transverse shear

The transverse shear stiffnesses are determined by equating the virtual
work of the transverse forces on the averaged strains with the work of the
transverse stresses on the transverse strains

hi hi
QT = f 8Sses dz = / 0S{EsSs dz (2.1)
—ha —hsy

In the above variational equation the following notation is introduced

0 g I 754
1 13 G. G
Q= S — Eq— | Gis G
[QJ y [523] S=1 s 1

Goz  Gag

(2.2)

e
CS=|: 13} r [Xl]
€23 X2
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The column of the averaged deformations is expressed in the form

r— { X1 ] - K-l{Q— hKtpt — th“p*] (2.3)
X2
where
K — Ku K | K+_[k{"1 kf‘zjl
Ky Ky | ky, ki
ko k| ¥ -
ka1 kap | Dy Doy

Here pl, p, represent the tangent loadings applied on the plate faces, the
matrix K represents the stiffness matrix due to the transverse shear.

The column of the stresses Sg, in the case of the absence of the volume
forces, is represented as follows

Sg — %FQ ~Gtpt -G p~ (2.4)
where
fu(z)  fira(z) 911(2)  g15(2) ]
F(z Gt (z) =
- [ ) funlo ] ) I ) ah)

11

h = hy+ hy

G (z) = ! Ez) 912(2) ]

921(2)  995(2)
For the time being, the functions fugs, 954, 954 are unknown.

Substitution of (2.3) and (2.4) into variational equation (2.1) gives the
following formulae for the matrices K, K* and K~

1
_ 1
K = o f FTESF dz (2.5)
'_hZ
T + T
K+ MHK/F EsG* da K- hth/F EsG™ dz (2.6)

—hg —ho
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3. Transverse shear coefficients

The components of the stiffness matrix due to shear can be expressed in
form (1.11), from which one obtains the following formulae for the unknown
shear coefficients

kog = = 3.1
wf Kaﬁ ( )

where the stiffnesses I?a,@ are defined by (1.13) or (1.14).

In order to make the formulae for the shear coefficients complete one should
define the functions fuz, g;ﬂ and g, 4.

Consider an anisotropic strip of constant stiffnesses. Assume that the de-
flection of the strip is described by the following functions

w=w(X") ¢ = pr(X")

The strains eg;; and kp; are functions of the variable X!.

It 1s not difficult to prove that by neglecting the stress component Ss3 and
the temeperature effect one obtains the following formulae for the stress Si;
and the stress resultants Nj, Mq;!

S11 = Cri(z)(eo11 + zK11) Ny = Byieonn + Hy1611
M1 = Hyieo11 + Diikn

The above constitutive equations imply

Sll

1
= —C NuuDyy— M H\y —z(N, H{, — M1 B 2
BuDii - I, 11(2)[N11 D1y 11Hy1 — 2(Ny Hyy 11B11)] (3.2)

where Bjj, Hy; and Dj; represent the in-plane, reciprocal and bending
stiffnesses, respectively.

By using the equilibrium equations and formula (3.2) one finds the follo-
wing formula for the tangent stresses Si;3 = S3;

1
Sn(X,2) = S15(x,2) = P 1) 4 (g (2) 4 27 (X i (2)
3.)

'In such a strip all the stresses Sqk occur. Also the stress resultants are non zero.
We give here only those formulae for the stresses and stress resultants which will be
used in the sequel.



COEFFICIENTS OF SHEAR CORRECTION... 79

where

z

fll(Z) = Z}L—I(HU / C“(z) dz — Bu f 3011(2) dz) (34)

—hy —hs

911 (2) = ‘Ail[(ﬂu — h Hyy) f Ci1(z) dz —

—hsg
Z

—(H1 — h1B1y) / 2C1(2) dz]
—ha

(3-5)
1 Z
91:(2) = A [(Dn + hoHyy) f Ci1(2) dz —
1
_h2
Z
—(Hy + hoByy) / zCy1(z) dz] +1
—ha
A, = By Dy, — H}, (3.6)

One notes easily that the thus determined functions satisfy the following bo-
undary conditions

fii(h) = fii(=h2) = g{1(=h2) = g7, (A1) =0
g1 () =1 g1 (~ho) = =1

and the integral conditions

1 h1 hy hi
A [ fu(z)dz=1 /gﬂ(z) dz = /gl"l(z) dz =0
—h2 ~hs —ha

Finding the functions f21(2), g5,(2), g5;(2) is much more difficult. Ac-
cording to the assumed criterion (satisfaction of appropriate constitutive equ-
ations or equlibrium equations) we find various forms of these functions, and
the obtained coefficients are expressed by complicated formulae.

Since the shear coeflicent of unequal indices has minor influence on the
final distribution of the stress resultants and displacements, one can assume

fair(z) =0 93, (2) =0 921(2) =0 (3.7)
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By considering the deflection of the strip that depends only on the variable
X? one obtains similar expressions. The final formulae for the functions f,g,
gag and g, are expressed as follows

fag(z)zz';’:;(ﬂag / Caal(?) 42 — Baa f 2Caa(2) d2)  (38)
N —hg —ha

z

9a2) = 3~ [(Paa ~ b1 Haa) [ Caa(2) ds -

—ho
z

“(Hag - h’lBag) / zC%(z) dz]

T (3.9)

Z
1
9o (2) = A [(Dag + hoHyg) / Coa(z) dz —
193

_.h2
z

—(Haq + h2Bag) [ 2Cqa(2) dz] +1
~hs

f12(2) = f21(2) = g15(2) = 951(2) = g52(2) = g51(2) =0 (3.10)

Aa = fo(_xD@ - Héa (3.11)

Taking into account relations (3.10) the shear coefficients can be put in an
explicit form as follows

h*Asy h%A1,
kl] = = k22 = —
futt Kol (3.12)
h*A h2A
kg =kg = — = = —
Kl2R KglR
k= h Ay Pj| - APy P h Ap Pl — APy
11 hl R 12 hl R (313)
et — h APy — Ay P gt — h AnPfy — Ay P
1o R 2 R
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h AggPl_l — AL2P2_1

k‘l—I - h'—Z- R
k= — h Allpg_l — A2LP]__1
21 — h_2 R

where

R = A1 Ay — AjpAg

hy
4
Ajp = Ay = 25 fi1foe dz =
23
2
h} f
P, = eadaq dz
e ./ Ga3
_h2

Py = / f11922 dz

—hsy

While finding the quantltles P wp and
assume the functions gaﬁ and g,5.

81
= = P AnP, — Ank,
Pk R (3.14)
\— _ h AuPp — AnPj
22 — h: R
(3.15)
(3.16)
hy
f11fa2 dz
=2
(3.17)

Py = / f22911 dz

—ha

P from Eqgs (3.17) one should

In the case of orthotropic plates we have 745 = 754 = 0, which gives the
following simple formulae for the shear coefficients

h?
kag= hi hi
[ Gaadz [ G f2, dz
—ha —ha T
k+ . -th
aa — hi
h1 f G%,_afc%_a dz

—hs

klgzkm:kf—?:k;l:kﬁ:kglzo

k=

(3.18)
b
—h -
e = (3.19)
hg f G 3 dz
“h2
(3.20)
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In the balanced (or transversely symmetric) orthotropic plates we have
H,; = Hyy = 0 and the functions depending on the variable z are given by the
simple formulae

z

h
Faal?) = - [ 2Cogl(2) dz (3.21)
T DC‘!O!
—ho
gg-};t}_(z) = / Caa d ang_(z) dz)
0‘,0!
e (3.22)
ho
C!O{ DG‘,G:
—ho —hsy

Formulae (3.18) and (3.21) coincide with those found in the work by Hinton
and Owen (1984)2.

In the case of a homogeneous anisotropic plate equations (3.12)-(3.17) im-
ply

Y _ 1
kit = ko = kiz = kn = ¢ ki =k = =k = =k = ¢
(3.23)

kiy = kip = kyfy = ky; =0

In the case of a transversely isotropic but non-homogeneous plate the trans-
verse forces can be determined from (1.8), where the shear stiffness is defined
by the formula

hy
K=k f Gy dz
—hsa
in which
k= » }iz (3.24)
[ Galatz [ iy s*(e) da

’In thas work, page 254, one reads that equations (3.18) can be used to find the
shear coefficients in the case of unbalanced plates. This statement is untrue, since we
deal with different functions faa(2) in this case, compare Eqgs (3.21) with Egs (3.8).
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hy

hy
h | admot()1G) ds h | adme (@) dz
pt = = - . (3.25)
m_{zg_;(g_))dz hz_}f G—;A@—)dz
[ E
1) = fule) = fune) = 5 (0 [ 12y da-
e (3.26)
[ E()
-B / 31—:“;2—(;5 dz)
—hg
1 [ E
g+(z) = gf‘l = g;'z — —Z[(D — th) / - 1(;)(3) dz —
—hy
[ E
—(H - . B) / 2= f;)(z) dz]
e (3.27)
| E
9 (2) =91, =99 = —Z[(D + hoH) / - fj)(z) dz —
_h2
I B
—(H+ haB) | = dz] +1
1 -2
{ v2(2)
where A = BD — H? and while the stiffnesses B, H, D are given by
! BE) "B
Z Z z
B:fl“—“vﬂ_(zidz HZ/l—u?(z)d"’
" o (3.28)
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Wspélczynniki §cinania poprzecznie niejednorodnych plyt $redniej
grubosci

Streszczenie

W pracy przedstawiono sposdb wyznaczania wspoélczynnikéw écinania anizotro-
powych, poprzecznie niejednorodnych plyt éredniej grubosci o poprzecznrej niejedno-
rodnosci. Korzystajac z zalozen kinematycznych Hencky-Bolle’a podano podstawowe
réwnania teorii plyt éredniej grubosci. Korzystajac z zasady réwnowaznoéci prac wir-
tualnych wyznaczono wzory na wspolezynniki §cinania i podano ich jawng postac.
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