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The aim of the contribution is to formulate an averaged model descri-
bing the dynamic behaviour of periodically folded shell-like structure,
called a folded plate. The contribution proposes new approach to the
modelling one-dimensional periodic structure. The characteristic feature
of the proposed model is that it makes possible to take into account
the effect of periodicity cell size on the dynamic behaviour of the perio-
dic structure. It will be shown that the dynamic behaviour of the plate
with one-dimensional periodic structure cannot be treated as a specific
case of dynamics of the plate with two-dimensional periodic structure.
The main drawback of most of the existing averaged models for periodic
structure is that only averaged boundary conditions can be described.
On the basis of the proposed model, a more general displacement boun-
dary conditions in the mezo-scale (in the region of the periodicity cell)
can be defined.
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1. Introduction

The subject of this paper is to formulate and investigate an averaged model
describing the dynamic behaviour of a plate structure periodically folded along
one direction. This structure under consideration, referred to as a folded plate,
is composed of many identically repeated elements, which are periodically di-
stributed along one direction (Fig.1). Every element, called the periodicity
cell, is made of a linear-elastic homogeneous material. The exact analysis of
periodic folded plates within the theory of thin elastic shells is too complicated
to constitute the basis for investigations of most engineering problems. Thus,



114 B. MICHALAK

problems of such plates are investigated in the frame-work of various appro-
ximate methods. So-called effective rigidity plate theories were presented e.g.
in Caillerie (1984) and averaged homogenized models of plates with periodic
structure e.g. in Lewinski (1992), while the models for plates with a technical
anisotropy were presented e.g. Troitsky (1976).

Fig. 1. A scheme of the uniperiodic folded plate

Using the asymptotic homogenization method, the effect of the periodicity
cell size on the overall folded plate response is neglected. In order to investigate
non-stationary problems we have applied a modelling approach presented in
Wozniak and Wierzbicki (2000). This model takes into account the length-scale
effect on dynamic response of a periodic structure.

The aim of this paper is two-fold. First, to formulate a non-asymptotic
plate-type (averaged) model of folded plates with periodic structure along one
direction (along the zy-axis). Second, to investigate a free-vibration problem
in the framework of non-asymptotic model of a folded plate with boundary con-
ditions which can be defined in the mezo-scale on the boundaries z; = const.
The main drawback of the effective rigidity plate theories and models for pla-
tes with a technical anisotropy, is that the displacement boundary conditions
have to be imposed not on the complete displacement field u but only on the
averaged part U of this field. In the proposed model, boundary conditions
on the boundaries z; = const can be imposed on the complete displacement
field u (in the mezo-scale).
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2. Modelling procedure

In this paper we will investigate a thin shell-like structure with a periodic
structure along one direction (Fig. 1). The plate of this kind will be referred to
as uniperiodic folded plate. Let the midsurface of the undeformed folded plate
be given by zt = R'(6',6%), (6',6%) € II, where II is a regular plane region.
It is assumed that: z' = @', 22 = 0% and z® = 2(6?), where z(-) is a function
satisfying the condition z(0%) = z(6% +1). Let [ stand for the period of plate
structure in the direction of the z?%-axis and hence (0,1) is the periodicity
interval in the plate midplane. Moreover, we assume that [ is sufficiently small
compared to Ljy, the smallest characteristic length dimension of IT,! < L.
At the same time the thickness ¢ of the shell is supposed to be constant and
small compared to [. Hence, parameter [ will be called the mezostructure
length parameter.

Let us denote periodicity intervals by AL(zs). For an arbitrary integrable
function f we define the averaging operator on AL(z3) given by

1

(i1, 22) = 7 ff($1=22) dzy (2.1)

AL(z9)

The direct description of folded plates is based on the well-known (Green and
Zerna, 1954), linear theory for thin elastic plates. Using notations g, = Ctuei,
n =g, Xg,/|g; X g,|, where C*, are given by Eq. (2.2), we obtain the metric
tensor of the undeformed midsurface an5 = C*,Cis and a Ricci tensor eqg
as AL-periodic functions (Fig.2) and define o = det ayg

C'H=0 C* =0 C% =
Cly =0 C% =1 C3y = ttana (2.2)
nt =0 n? = Fsina n® = cos o

Fig. 2. The periodicity interval of the uniperiodic folded plate
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By u = u'(z,t)e; = v*g, + wn we denote the displacement vector field of
the folded plate midsurface, by p = p’(z,t)e; the external forces, and by p
the mass density averaged over the plate thickness related to the midsurface.
In the framework of the linear approximate theory of thin elastic plate, we
obtain:

— strain-displacement relations

eap = C'(attip) Kap = N'Uiap (2.3)
— comnstitutive equations
n*®DH¢_; m*PBH ks (2.4)
where

1
HeBm — 5 [gaugﬁ’r + g™ gﬁu + V(Ea'reﬁu + eaueﬁ"r)]

E§ _ Eé&
1—v2 le-—:ﬂ

— equations of motion (in the weak form)

f(na‘géeag + m“’eﬁna,{g)\/ﬁ dz'dz? + %/ pitbuiva dz'de? =
7 7

(2.5)

:/piéui\/a dz'dz?

I

The modelling approach to the mezostructural theory of the folded plates
is based on the tolerance averaging concepts given by Wozniak and Wierzbicki
(2000).

Basic kinematics hypothesis

We restrict our considerations to the motion; the displacement fields
u(z,t) are periodic-like functions, u(z,t) € PLAL(T), T is a certain to-
lerance system (Wozniak and Wierzbicki, 2000). The macrodisplacements
Ui(z,t) = (u;)(,t) describing the averaged motion of the folded plates and its
all derivatives, are a slow-varying functions of x5 only, U;(z,t) € SVaL(T),
i.e. they satisfy conditions of the form (fU;)(z) = (f)(z)U;(z) for every inte-
grable function f. The local displacement oscillations defined by v =u - U,
v(z,t) € PLAL(T) are highly oscillating functions in zj, i.e. they satisfy the
conditions:



ON THE DYNAMIC BEHAVIOUR OF A UNIPERIODIC... 117

(i) ((vF)g)(z,t) = (Fus)(z,t), £ € lI, F - slow-varying functions of 9

(ii) v(z) € O(1?), lv,q (2) € O(1?), Pvjus(z) € O(1%), where O(I*) — 0 with
[ = 0.

The displacements wu; will be approximated by

Uo (2,1) = Uy(2,t) + h(zo) Va(z, t) r=(z",z®)ell t ;(g .

u3 (:L', t) =Us (E, t) + Q(Q:Q)V3 (:'B, t)

Functions U;(zy,z9,t), Vi(zy,29,t) are slowly varying functions only in the
periodicity direction zy (basic unknowns).

The functions h(-)V4(-,t) and g(-)V3(-,t) describe the local displacement
oscillations.

Functions h(-) and g¢(-) will be referred to as the mezo-shape functions
and are obtained as an approximate solution to the eigenvalue problem on
a plate segment in the periodicity interval AL(z), together with periodic
boundary conditions.

The form of the mezo-shape functions is obtained as an eigenvibrations
form of a plate segment in the periodicity interval AL(z5).

Values h(z) and g(z) satisfy the conditions h(z) € O(1?), h, (z) € O(1),
h|cx,@(x) € O(l)a g(x) € 0(12): s (3) € 0(1)1 gjaﬁ(m) € O(l)

3. Averaged description

The modelling procedure proposed in Wozniak and Wierzbicki (2000) and
the aforementioned kinematics hypothesis lead to the equations of motion
presented below in the coordinate form

MR 5 N2, +(pUT = §
NY — K"y + M7 4 PR g — 201 4 (BRR)VY = (57h) (3.1)
N? - K3la||a + M3 + P3laﬁf|aﬁ - 2lea”a + (59.9)'(}3 = (§39>

where we have denoted the arbitrary function f defined on IT

f fa for a=1 _J 0 for a=1
fia = { 0 for a=2 fla= fro  for a=2 (3.2)
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The constitutive equations have the form

Ni|a — DmljﬁUj’g + Gz’a|,ur5Vu”5 + Hz’a}qu + Gs'ali:}éVané + Hs’al.'jva

N® = HaljﬁUj,g + GaméVqu + Ha"u'Vu + G“|‘3‘5V3H5 + Hal:ng

N* = HYPU, g + GOV, 5 + HIMV, + GO0V, + H3V;

Kl — Gaﬁljéyjﬁ + Hﬂﬁluévmlé + Gaﬁlﬂvﬂ + Ha’g||35V3H,§ + GPBYy,

K38 = g3y, 5 + HWIMVMM + Gy, 4 H:’ﬁ”%Vaua + G3ABY,

MileB — picBlivé Ujns + Biaﬁlmﬁynm s+2 Biaﬁlmvplh + BiaﬁiuVu +
+Bzaﬁ|3’rﬁws|hé + 2Bzaﬁ|3’y§V3"7 + Biaﬁ|3v3

M® = BQU‘YJang + Cal”’wVth + 20&1“71/#”’1’ + B""“Vu +
+CB°Vy 5 + 20TV, + BBV,

M? = B3Ny, 5+ C30V, s+ 203y, + BIRY, + (3.3)
+C30Vy s+ 20337V + B3V,

prlef — BTQﬁU’YJanJ + CTaﬁlWY&Vu“fyg + QCTG‘Blm’V””.Y + CTQﬁ!“VH +
+CTQ’8|375V3”75 -+ 207056'37‘/3”7 + CTQﬁ|3V3

p3laB _ p3aBljve U5+ Csaﬁlm«fvu'ha + 203“&“71@"7 + C3aﬁiuvﬂ +
+C3'5’5513’Y‘5V3H75 + 203&,6[311/3”7 + C3aﬁ|3V3

L7le — BTaqudems + OTQW’}"SVMH’YJ + 207(1[”71/“”7 + GTﬂluVu +
+cra|375V3|h§ + 207&'371;3”’}’ + C'ra|3V3

3le — Bsa|j7éUj,75 + C3a|m‘5Vu|h§ + 2030|MV”"7 + C3aluV“ +
+C3eByy, 5 4203y, 4 CReBy,

The form of the coefficients in relations (3.3) is given in he Appendix.

The above equations are the basis for investigations of the overall beha-
viour of uniperiodic folded plates. Substituting the right-hand sides of Eq.
(3.3) into Eq. (3.1), we obtain 6 equations for 3 macrodisplacements U; and 3
disturbance variables V;. The equations for disturbance variables V; obtained
for plates with two-dimensional periodic structure are ordinary differential
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equations, while for plates with uniperiodic structure they are partial differen-
tial equations involving the derivatives of disturbance variables with respect
to the time and z;-coordinate. In the case of a rectangular folded plate, the
midplane of which is 1T = (0,L;) x (0, Ly), two boundary conditions on the
edges z; = 0,L; and z9 = 0, Ly for the macrodisplacements U; should be
defined. On the edges z; = 0, L; we should define two boundary conditions
for the disturbance variables V;, which enable us to define us the boundary
conditions in the mezo-scale.

4. Applications

We shall investigate simple problem of a cylindrical bending of a rectan-
gular folded plate with a periodic structure along the zs-axis. Let the plate
band be simply supported on the opposite edges =, =0, ; = L, where L,
is its span. In this case the basic unknowns U;(-) and V;(-) depend only on
arguments z; = @' and . Within the framework of the structural theory ST,
by substituting the right-hand sides of Eq. (3.3) into Eq. (3.1), we obtain the
system of equations for U; = U;(z1,t) and V; = Vi(z,t)

MM =N (BT =0 s=1,2,3

N® — K31t 4 M? 4 PsIML ) —2L31 ) 4+ (BRAYVS =0 s=1,2

.

N? = K30y M3 4 PPy 2131 +(pgg) V3 = 0
(4.1)
The periodicity interval AL = (0, L) is shown in Fig. 2. Hence, the mode-
shapes functions A(-) and g(-) for this cell will be assumed in the approximate

forms
(w3 (E)) e veee!
e R [ I OL S
w(E-E-) e e

After substituting the right-hand sides of constitutive equations (3.3) with

notations given in the Appendix into Eq. (4.1), the system equations of motion
will have a form
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_D<H1111011011\/E>U1,u+(§)ﬁ1 -0

B(H" M n?n®\/a )Usp,1111 +B(H"M gn’®n®/a YVa,1111 +
+B(H" g 59 n*n®/a )Vs,1, —D(H* ' C*,C?3v/a YUs,11 —
*D(H21219032022\/E )VB:H +<5>U2 —0

B(H"M'n3n3/a \Us, 1111 +B{H" M gn3n®v/a Vo, 1111 +
+B(H"**h,22 n’n’va )Va,1 —D(H*'*' C*,C°2+/a )Us,11 —
—D(H 2 hC%,C%/a YWa, HPYU2 =0

—D(HM'CY Oy hho/a YVi 1 +

+D(H" 2 b,y C'1CY Ve )Vi + (pRE)V =0
(4.3)
B(H""'n2n2hhv/a Yo, +[23(H1122h,22 hnn?y/a ) —

—4B(H"%h, h,yn*n®*a ) — D(H**'C*,C*hhv/a }]Vzm +
+[B(H22?2n n2h,99 hyas v/a ) + D(H*2h o by C%C%/a )]Vz
+B(H“”n2n3h\/ﬁ)U3,1m+[B(H22“n2n3h,22\/5)—

— D(HM hC*,C%/a )| Ug,ir +(phh)V* = 0

B(Hlllln 399v/a )V3,1111+[2B(H1122g, 2 g7 n3f>
—4B(H'*?g,3 g,an’n’Va ) — D(H*'C%,0%ggv/a )]Ve.,u+

+ [3(522227137139:22 9:22v/a ) + D(H***?g,9 9,5 C°,C%5/a )] Vi +
+B(Hl“1n2n3gﬁ}Ug,uu+[B(H22”n2n3g,22\/&} _

—D(H™?'4C%C?%/a )] Usy11 +{(5gg)V® = 0



ON THE DYNAMIC BEHAVIOUR OF A UNIPERIODIC... 121

where for the assumed cell we have

Cll=0 021:0 03120
Cly =0 C% = C% = ?
1
nt =0 n? = q:4—zi ! ; nd = ;
1+16(1§) 1+16({)

Boundary conditions

Solution to Eq. (4.3) will be assumed in the form satisfying the boundary
conditions for a simply supported plate. For transverse vibration, boundary
conditions on a mezo-scale have the form (cf. Fig. 3):

w=vy=m'' =0 for z;=0,L
(4.5)

w = nluy + nduz = 0

= ug =uz =0
v2=022u2+03w3:0 } 2 ’

where g, u3 the folded plate displacements, and m!'! being the bending
moment along these edge, are given by equations

‘UQ(:L', t) s Uz(x,t) + h(l‘g)%(.‘t, t) =0 for { T = ((xl = (), L), :{:2)
ug(z,t) = Us(z,t) + g(z9)V3(z,t) =0 t2>0

m'' = BH' 20y, + BHY N 0305, + BH M 021V, +
+BH”“TL39V3,11 +BH1122n2h,22 V2 + BH] 122,”'39’22 V3 =)

The boundary conditions present above are valid for any functions h(zs),
g(:BQ)‘: nz(:c?): n’a(x?)'

mll

Fig. 3. Boundary conditions on the edges z; = const
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Hence, we arrive at the following boundary conditions for the macrodispla-
cements Uy, Us and the disturbance variable V5, V3 for z; =0, L

Uy=Us=Vy=V3=0 U1 = Us,11 =0 Vo, = V3,11 =0
(4.7)
Functions satisfying the above conditions can be assumed as
Uy = Agsin(kz;) cos(wsat) Us = Azsin(kz;) cos(wst) (4.8)
Vy = Cy sin(kz ) cos(wst) V3 = Cysin(kz) cos(wst) -

where k := /L is the wave number and As, A3, Cy, C3 are the corresponding
amplitudes.

Substituting the right-hand sides of Eq. (4.8) into Eq. (4.3) we obtain for
the out-of-plane vibrations non-trivial solutions only if

(w3)*(p) — Ca3 Css

B ~0 (4.9)
Cs3 (w3)?(phh) — Css

where for a constant thickness 4, with notation A :=4d/l, v := kl

Cs = 5(17}3”2)053 =
N E [ 1 ot 4 8(f/D2(1 - v) ’\272]
6(1 —v?) L12,/1 + 16(f /1) 1+ 16(f/1)?
Css = Cs3= b Cys =
1—p?
_ -E§ 4f/1 [A?rﬁ BwAyr (1- V)qf?}
L—v2 /1+16(f/1)2L 18 121+ 16(f/1)?] 3

E§ E§ 1 f\2
e o= ol — 711 ) 4l )
Css = 7——Chs=1—; T [07 111(1) Y (4.10)

2,2 N2
+ 56.88888 LT g 96666 T 4

V1+16(f/1)? A
(f/1)* 1
+ 1365.333 \/W+12)‘2]

From Eq. (4.9) we conclude that for the above form of vibrations we have

two free vibration frequencies: a lower vibration frequency w§ and a higher
"

one wsy
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Wyt = B (Ph)Ci + (PG5 — VA
— 2 Y
po(1 = v?) 2(p)(phh) (411)
W) = E  (phh)Cyy + (B)Cis X' + VA
Ve - 0?) 2(p)(phh)

where
A = ((phh)Chy + (P)CisAt)? — 4(p)(Phh)(Ci3Cly — ChzCis)A?

Now we consider free vibrations of the uniperiodic folded plate in the frame-
work of the homogenized model in which the structure of the folded plate is
scaled down to [ — 0. Keeping in mind that §/l = counst, we shall neglect
mezoinertial terms (phh) — 0, (pgg) — 0 in the equations of motion. From
Eq. (3.1) we obtain the governing equations in the form

MoB, oy N, (G = 0
NT — KV + MY + PP g — 210l =0 (4.12)

N® — K3l + M3 4 P31oB) 5 — 213 =0

The solution to the above equations can be assumed in the form (4.8). Now
formula (4.9) leads to

(w3)?(p) — C33  Cis

=0 (4.13)
Cs3 —Css

From Eq. (4.13) we can obtain the relation for lower vibration frequency

E O! 2
(w3)? = PD) [C:fss - E‘C?Tsﬁ)"] (4.14)

Figure 4 show the diagrams of the free vibration frequency w versus the
non-dimensional wave number <y, where the continuous line concerns the free
vibration frequency for structural theory, while the dashed line describes the
free vibration frequency for the homogenized model.
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2 pS(1-v?)
‘(a.)) e

. @?4)?
1.51-10° )
— MST LM
o__1
I 7100
J_1
720
S
: (@3)?
1.04-107F
2.55-10°%h
5.38-10°10 ! ! 1 ——
0.1 0.2 03 4y

Fig. 4. Free vibration frequencies wj, wy versus the non-dimensional wave number
v =kl

5. Conclusions

In this presentation, the dynamic behaviour of folded plate with one-
dimensional periodic structure is analysed. This model, called the uniperiodic
folded plate model, is represented by the system of differential equations for
the macrodisplacements U and the disturbance variables V', with coefficients
which are functions of z;-coordinate and are independent of z, the periodi-
city direction. The characteristic feature of these equations is that in the case
of a rectangular folded plate, at the boundaries z; = const the displacement
boundary conditions have to be imposed on the complete displacement field u.
In this model, at the boundaries z; = const, the boundary conditions in the
mezo-scale can be defined. In the typical approach for the refined models of pe-
riodic bodies which were presented in a series of papers (Baron and Wozniak,
1995; Wierzbicki, 1995; Jedrysiak, 1998; Michalak, 1998; WoZniak, 1999) and
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called internal variable models, the considered structures have periodic struc-
ture in both directions. In the framework of these models, the displacement
boundary conditions have to be imposed only on the averaged part U of the
displacement field. Hence, internal variable models are not sufficient for the
analysis of uniperiodic folded plate, this plate cannot be treated as a specific
case of those with a periodic structure in both directions.

Analysing the obtained results, it can be observed that this model makes it
possible to investigate higher-order resonance vibration of folded plates which
cannot be obtained within the framework of homogenized models, while the
lower frequency coincides with those obtained from the homogenized model.

Appendix

Dielif = p(H*PCi;CI.\/a )

il — ppulic — D(H‘sa’*‘;C’gC“ hmf)
Hi® = Fdlie = p(H*PCi5CP 9,5v/a )
H¥ = D(H™PC, C* highisv/a )
H® = {3 = D(H™C*,C3 9,k 5v/a )
HY® = DIH G, 0P g5g5v/a )

H™AI = D(HPYCT ,C* hhy/a )

H¥1 = p(HC3,C3,99v/a )

H™¥ = 308 = D(H$CT ,C% hgy/a )
BioBlwy _ gwyliaf — B{H“ﬁ"’éhmﬂpﬂiﬁ)
il — pulied = B(HSYhy sniniv/a )
BioBdy — p3lied = ey ndniv/a )
BieBI _ guisliaB — p(pesv ppuni. /g
BieAidE — p3viliaf = B(HRY gp3pi /g )
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BiehB = Blief = B(H*P"g, sm’n'\/a )
BTk = B(H“f’“f&hmghhm“n"\/&)

BB = B3I" = B(H*"hyq4g),5m°n" Va )
B = B(H am‘smaﬁghzsﬂaﬂe'\/a )

AteBlivd = B( BV Va)

CTeBIS = B(H*PY hhntn"V/a )
CreBi3n — ol = BB hendnT /a )
crelmt = gmdlre = B(HY b ghntn™/a )
C3eBI3 = B(H* " ggn’n’y/a )

Clelmd — gurtle = B(H* g shnkniy/a )
ch = ¥l = B(H“ﬁ7§g|5hlaﬁnfn3ﬁ)
I3 — o3l = B(ﬂaﬁwéghiaﬂn7n3\/&)
B3B3y — 3138 — B(Haﬁ"“ﬁgg|5n3n3\/a)
03013 — 31378 = B(_Haﬁ'yéggl snn3y/a )
CTlmd — omdlr = B ( J2 Clall hl ghntn’ Va)
cTlwy — omlT = B(H“‘méhmghwn“n"\/ﬁ)
C3lwé — o3 = B(H“ﬁ""sgl 5hn“n3\f)
c8lwy — omI3 = B(H“ﬂ""sglaghlan“n3\/§)
C3B = C¥B = B(H* g, 49,5n°nVa )
crelrd — gdvdira — g paBs by gn3n"a)
Tl = B(H Y hghsnnva )

craldr — glra = B(Haﬁfyﬁhwgl‘sn:}n?'ﬁ)

;33 — o3 Be = B(H“ﬁ7591ﬁ9|an n’va)
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G = GHITB = D(HBMCT ,CF hyshy/a )
G — G¥B = D(HPICI,C%gv/a )
G¥lk — G = D(HPY OO CF hysg/a )
GBIk — GudliB = DBV CF o hn/a )
G718 = GAB = D(HY 7 ,C%,g,5hV/a )

G3ﬁ]3 _ GBISB - D(ﬂaﬁ’Y‘sCBaC%gwg‘\/&)
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O dynamicznym zachowaniu sie jednokierunkowo periodycznych plyt
tarczownicowych

Streszczenie

Celem pracy jest otrzymanie uérednionego modelu opisujacego dynamiczne za-
chowanie si¢ plyt jednokierunkowo periodycznych zbudowanych z tarczownicowych
elementéw powlokowych. Rozwazania oparte sg na metodzie uéredniania tolerancyj-
nego przedstawionej w pracy Wozniaka i Wierzbickiego (2000). Otrzymane réwnania
uwzgledniajg efekt skali, co pozwala opisa¢ zjawiska dyspersji. Przedstawiony mo-
del pokazuje, ze dynamika plyty jednokierunkowo periodycznej nie moze by¢ trak-
towana jako szczegéluy przypadek plyty o strukturze dwukierunkowo periodyczne;j.
Wadg wiekszosci istniejgcych usrednionych modeli struktur periodycznych jest to, ze
pozwalaja one na zapisanie warunkéw brzegowych tylko dla wartoéci usrednionych.
Proponowany model pozwala zapisa¢ na brzegach prostopadtych do kierunku perio-
dyczno§ci warunki brzegowe dla pdl catkowitych, a nie tylko dla ich usrednionych
czesci.
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